Licensee hereby acknowledges and agrees to the following terms and conditions of this License Agreement for its use of the HBM Software Documentation:

HBM UK Ltd grants the Licensee who accepts and abides by the terms of this License Agreement a non-exclusive, non-transferable, royalty-free, and revocable license to the HBM Software Documentation. Unless otherwise indicated, all HBM Software Documentation are copyrighted and owned by HBM UK Ltd and are the property of HBM UK Ltd. They are licensed to you and for your use only as an individual who has purchased the software (“Licensee”). Notwithstanding this License Agreement, the Licensee shall not have a license to the trademarks, logos, or any other intellectual property of HBM UK Ltd and/or its affiliates or Licensor(s).

Licensee may print a single copy of the HBM Software Documentation for his/her reference. Licensee may reprint the HBM Software Documentation, as needed, if the original printed copy is damaged and/or destroyed.

Except as provided above, no part of the HBM Software Documentation, either text or image, may be used for any purpose other than Licensee’s own personal use and reference as a learning aid. Therefore, the reproduction, modification, creation of derivative works, storage in a retrieval system, or retransmission, in any form or by any means, electronic, mechanical or otherwise, for reasons other than Licensee's personal use, is strictly prohibited.

Certain photos and images in the HBM Software Documentation are used under non-transferable licenses obtained by HBM UK Ltd and/or its affiliates and are owned by its Licensor(s) (“Licensor”). Images depicting photos of actual persons are licensed to HBM UK Ltd and/or its affiliates and the signed model releases for these images are on file with the Licensor(s). HBM UK Ltd makes no copyright claims on these images. All ownership and intellectual property rights to the HBM Software Documentation are reserved by either HBM UK Ltd and/or its affiliates or its Licensor(s).

DISCLAIMER: THE HBM SOFTWARE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO: 1) ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY; 2) ANY WARRANTY THAT THE HBM COURSE MATERIALS WILL CONFORM TO SPECIFICATIONS; 3) ANY WARRANTY THAT THE WORK WILL BE ERROR FREE OR VIRUS FREE. IN NO EVENT SHALL HBM UK LTD, ITS AFFILIATES, DISTRIBUTORS, CONTRACTORS, AGENTS, AND ITS LICENSOR(S) BE LIABLE FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO, DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF, RESULTING FROM, OR IN ANY WAY CONNECTED WITH THE HBM SOFTWARE DOCUMENTATION, WHETHER OR NOT BASED UPON WARRANTY, CONTRACT, TORT, OR OTHERWISE, WHETHER OR NOT LOSS WAS SUSTAINED FROM, OR AROSE OUT OF THE RESULTS OF, OR USE OF, THE HBM SOFTWARE DOCUMENTATION. LICENSEES AGREE TO WAIVE ANY AND ALL CLAIMS AGAINST HBM UK LTD, ITS AFFILIATES, DISTRIBUTORS, CONTRACTORS, AGENTS, AND ITS LICENSOR(S), AND SHALL INDEMNIFY, DEFEND AND HOLD HARMLESS HBM UK LTD, ITS AFFILIATES, DISTRIBUTORS, CONTRACTORS, AGENTS, AND ITS LICENSOR(S) FOR ANY AND ALL LIABILITIES, CLAIMS, DEMANDS, DAMAGES, EXPENSES OR LOSSES THAT MAY ARISE FROM THE LICENSEE’S USE OR DISTRIBUTION OF THE HBM SOFTWARE DOCUMENTATION, INCLUDING ANY LIABILITIES OR DAMAGES FROM DERIVATIVE WORKS OR OTHER PRODUCTS BASED ON, OR RESULTING FROM, THE USE THEREOF.

This License Agreement is subject to change without notice and does not represent any commitment on the part of HBM UK Ltd and/or its affiliates to the Licensee, including any commitment to maintain or update the HBM Software Documentation. The names of companies, products, people, characters, and/or data mentioned in the HBM Software Documentation are not intended to represent any real individual, company, product or event, unless otherwise noted. Any rights not expressly granted herein are reserved for HBM UK Ltd.
Table of Contents

Chapter 1: Getting Started .. 1
 Quick Tour ... 1
 Quick Tour of XFMEA and RCM++ .. 1
 Using Repositories and Projects ... 2
 Project Properties ... 5
 Using FMEAs ... 7
 Using RCMs ... 17
 More Analyses and Tools.. 27
Technical Support ... 32
 When Requesting Support .. 32
Reliability Consulting ... 33
Install and License ... 33
 System Requirements .. 33
 Installation and Licensing .. 35
 License Manager ... 38
 Borrowing Licenses ... 39
Chapter 2: Repositories and Projects ... 43
 Synthesis Repositories .. 43
 Database Types ... 43
 Standard Repositories ... 44
 Enterprise Repositories ... 45
 Projects ... 56
 Creating and Managing Projects ... 56
 Project Properties ... 58
 Project Owner .. 61

XFMEA/RCM++/RBI 2019 User's Guide
Contents

Public, Private and Reference Projects ... 62
Locked and Unlocked Projects ... 64
Check In and Check Out Projects ... 65
Manage Projects Window ... 67
Recycle Bin ... 69
Security ... 70
Applying Login Security ... 70
Planning Your Security Approach ... 71
User Accounts ... 77
Managing Security Groups ... 84
Associating Security Groups with Active Directory ... 93
Setting Item Permissions ... 94
Status Indicators .. 96
Reset "In Use" Flags .. 98
Repository Logins ... 98
Repository Settings ... 99
E-mail Settings Page ... 99
Other Settings Page ... 100
Unit Settings ... 100
Default Name Formats ... 102
Project Planning Resources .. 104
Working Days/Holidays ... 105
XFRACAS Connection ... 106
Managing and Restoring Data ... 107
Enterprise Database Maintenance ... 107
Standard Database Maintenance ... 108
Contents

Chapter 3: Desktop Application Interfaces ... 113

Ribbon and Backstage View .. 113
Project Manager and My Portal .. 113
Status Bar .. 114
Show, Tile, Dock and Pin Panels ... 114

Show or Hide ... 114
Tile or View One Page at a Time ... 114
Dock or Float ... 116
Pinned or Unpinned .. 118

Project Manager ... 119

Opening a Project .. 119
Filtering the List of Projects .. 119
Searching for a Particular Project ... 120
Current Project Explorer ... 120
Working with Multiple Projects .. 122

My Portal .. 123

Portal Messages .. 124
Actions in My Portal ... 125
Repository Users List ... 128
Project Plan Summary in My Portal .. 129

Folios ... 131

Data Sheets .. 131
Change Units ... 134
General Spreadsheets ... 135
Control Panels .. 137
Contents

Home Tab .. 157
 Clipboard.. 157
 Edit .. 158
 Move Record ... 158
 Reporting ... 159
 Synthesis ... 159

My Portal Tab .. 160
 Messages ... 160
 Actions .. 160
 Users ... 161

Project Tab .. 161
 Management ... 161
 E-mail Project .. 163
 Security ... 163
 Current Item .. 164
 Data Management .. 164
 Reports .. 165

System Hierarchy Tab ... 165
 Add Items .. 165
 Risk Based Inspection (available only for RBI) ... 166
 Current Item .. 167
 Tools .. 167
 XFRACAS .. 169

Analyses Tab ... 170
 Planning ... 170
 FMEA ... 170
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Importing Settings from Another Database</td>
<td>199</td>
</tr>
<tr>
<td>Active File and Reset Library</td>
<td>199</td>
</tr>
<tr>
<td>Importing Settings to a Library</td>
<td>200</td>
</tr>
<tr>
<td>Importing an Entire Profile</td>
<td>200</td>
</tr>
<tr>
<td>Copy Existing</td>
<td>200</td>
</tr>
<tr>
<td>Profiles</td>
<td>201</td>
</tr>
<tr>
<td>Selecting the Default Profile</td>
<td>201</td>
</tr>
<tr>
<td>Profile Settings</td>
<td>202</td>
</tr>
<tr>
<td>Interface Styles</td>
<td>203</td>
</tr>
<tr>
<td>Viewing or Editing Settings</td>
<td>204</td>
</tr>
<tr>
<td>Customizing Record Properties</td>
<td>205</td>
</tr>
<tr>
<td>Modifying Drop-Down Lists</td>
<td>206</td>
</tr>
<tr>
<td>Worksheet Columns</td>
<td>207</td>
</tr>
<tr>
<td>FMEA > RPNs</td>
<td>208</td>
</tr>
<tr>
<td>FMEA > Criticality</td>
<td>209</td>
</tr>
<tr>
<td>FMEA > Sync Options</td>
<td>212</td>
</tr>
<tr>
<td>Control Plan > Sync Options</td>
<td>213</td>
</tr>
<tr>
<td>DVP&R > Sync Options</td>
<td>214</td>
</tr>
<tr>
<td>Rating Scales</td>
<td>215</td>
</tr>
<tr>
<td>Editing a Scale</td>
<td>216</td>
</tr>
<tr>
<td>Sub-Severity Criteria</td>
<td>216</td>
</tr>
<tr>
<td>Quantitative Values</td>
<td>217</td>
</tr>
<tr>
<td>Risk Discovery Questions</td>
<td>217</td>
</tr>
<tr>
<td>Editing a Set of Risk Discovery Questions</td>
<td>218</td>
</tr>
<tr>
<td>Risk Discovery Ratings</td>
<td>218</td>
</tr>
<tr>
<td>Editing a Set of Risk Discovery Ratings</td>
<td>219</td>
</tr>
</tbody>
</table>
Contents

Phrase Sets.. 220
Type Phrases Into the Tables... 220
Import Phrases from Excel ... 221
Exporting FMEA Descriptions to Phrase Sets.. 221
FEC Logic .. 221
Editing the FEC Logic ... 222
Available Tree Configurations .. 222
Task Logic ... 223
Editing the Task Logic .. 224
Checklists ... 225
Editing a Checklist .. 225
Assumptions ... 225
Editing an Assumption List .. 226
Surveys ... 226
Editing a Survey .. 226
Conditions of Use .. 227
Editing a Condition List .. 227
Converting Prior Version Libraries ... 227
Converting Libraries and Profiles from Version 5 ... 227
Converting Configurable Settings from Version 5 ... 229
Chapter 6: System Hierarchy ... 233
System Hierarchy Filtered View .. 234
System Hierarchy Columns .. 234
Building the System Hierarchy ... 237
Adding New Items .. 237
Deleting Items ... 238

http://xfmea.reliasoft.com
Moving Items .. 238
Cutting/Copying and Pasting Items .. 238
Smart Add and Import .. 239
Item Properties ... 240
Item Categories in XFMEA/RCM++/RBI .. 242
 Smart Add Category .. 243
 Select from Category List .. 243
 Create Categories .. 243
Smart Add Keywords ... 244
Associated Analyses and Diagrams ... 245
 Available Analyses ... 246
 Available Diagrams .. 247
Importing Analysis Data ... 247
 Smart Add and Import .. 247
 Import Existing (Items or FMEA Records) ... 249
 Import Existing Items (Browse Method) ... 251
 Importing from Lambda Predict to XFMEA/RCM++/RBI .. 252
 Importing MPC Systems Into XFMEA, RCM++ or RBI ... 254
 Import or Sync from XFRACAS .. 256
Chapter 7: FMEA Analysis .. 261
 FMEA Background .. 261
 FMEA Applications and Benefits ... 262
 When to Perform an FMEA ... 262
 Basic Analysis Procedure for FMEA ... 263
 Identify the Functions, Failure Modes, Effects, Causes and Controls 267
 Integration with Other Analyses (Including APQP) ... 270
Contents

References .. 272
Choosing the FMEA Structure.. 273
Grouped Effects and Causes .. 273
Effects Before Causes ... 274
Causes Before Effects ... 275
Setting the Default FMEA Structure .. 276
Changing the FMEA Structure ... 276
Local FMEAs .. 277
Add an FMEA .. 277
Copy/Paste an FMEA .. 277
Cut/Copy and Paste Portions of an FMEA .. 278
Delete an FMEA .. 279
Delete a Portion of an FMEA .. 279
Linked FMEAs .. 279
Linked Analyses in the FMEA Hierarchy .. 280
Linked Analysis Commands ... 281
Add Linked FMEA ... 281
Paste as Linked .. 281
Go to Source Analysis ... 282
Show Locations Used .. 282
Delete Analysis .. 283
Remove Link .. 283
Remove External FMEAs .. 283
FMEA Analysis Tab .. 284
FMEA Header ... 284
FMEA Hierarchy .. 285

http://xfmea.reliasoft.com
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qualitative Criticality Analysis</td>
<td>329</td>
</tr>
<tr>
<td>Quantitative Criticality Analysis</td>
<td>330</td>
</tr>
<tr>
<td>MIL-1629A Criticality Analysis</td>
<td>334</td>
</tr>
<tr>
<td>FMEA Plots</td>
<td>336</td>
</tr>
<tr>
<td>Types of Plots</td>
<td>337</td>
</tr>
<tr>
<td>Copy Information from the Plot</td>
<td>338</td>
</tr>
<tr>
<td>FMEA Dashboards</td>
<td>338</td>
</tr>
<tr>
<td>Data Source Drop-Down List</td>
<td>339</td>
</tr>
<tr>
<td>FMEA/FMRA Dashboard Data Fields</td>
<td>340</td>
</tr>
<tr>
<td>FMEA Tools</td>
<td>343</td>
</tr>
<tr>
<td>Find and Replace</td>
<td>343</td>
</tr>
<tr>
<td>Transfer Projects</td>
<td>345</td>
</tr>
<tr>
<td>Ratings Update</td>
<td>346</td>
</tr>
<tr>
<td>Failure - Cause Matrix</td>
<td>347</td>
</tr>
<tr>
<td>FMEA Statistics Window</td>
<td>347</td>
</tr>
<tr>
<td>Diagnostic Logic Assistant (DLA)</td>
<td>347</td>
</tr>
<tr>
<td>Chapter 8: RCM Analysis</td>
<td>351</td>
</tr>
<tr>
<td>RCM Background</td>
<td>351</td>
</tr>
<tr>
<td>Prepare for the Analysis</td>
<td>352</td>
</tr>
<tr>
<td>Select the Equipment to Be Analyzed</td>
<td>353</td>
</tr>
<tr>
<td>Identify the Functions</td>
<td>354</td>
</tr>
<tr>
<td>Identify the Functional Failures</td>
<td>354</td>
</tr>
<tr>
<td>Identify and Categorize the Effects of Failure</td>
<td>354</td>
</tr>
<tr>
<td>Identify the Causes of Failure (Failure Modes)</td>
<td>355</td>
</tr>
<tr>
<td>Select the Appropriate Maintenance Tasks</td>
<td>356</td>
</tr>
<tr>
<td>RCM References</td>
<td>358</td>
</tr>
</tbody>
</table>
Functional Failure Analysis (FFA) .. 358
Failure Effect Categorization (FEC) .. 360
Task Manager and Task Selection ... 362
 Task Selection ... 362
 Using Maintenance Task Selection Logic .. 363
 Simulation and Cost Calculations ... 364
Task Types in RCM++/RBI .. 368
Optimum Replacement Window .. 370
 Available Items .. 370
 Planned and Unplanned Replacement Costs ... 371
 Calculation Options ... 371
 Results and Plots ... 371
 Create Tasks .. 371
Task Packaging ... 372
 Scheduled Task Packaging Window ... 372
Chapter 9: RBI Analysis ... 377
 RBI Background ... 377
 Introduction ... 378
 Consequences of Failure .. 378
 Probability of Failure ... 378
 Program Parts ... 379
 Date Definitions .. 379
 Risk Categories (Current Repository) ... 380
 The Scoring Matrix ... 383
 Defining the Management Score ... 383
 Building the RBI System Hierarchy ... 384
Contents

Adding RBI Equipment .. 385
Adding RBI Components ... 385
Converting System Hierarchy Items to RBI Equipment .. 386

RBI Assessment ... 386
RBI Properties ... 386
General Properties .. 387
Damage Factors Selection ... 388
Damage Factor Properties .. 389
Consequence Properties ... 389
RBI Results... 392
RBI Plots .. 396

Special Item Types .. 396
Configuring a HEXTUBE Component ... 396
Configuring Pressure Relief Devices ... 399

Table of Steel Types .. 401

Chapter 10: Analysis Plans .. 405
Analysis Plan Window ... 405
Team Tab... 406
Analysis Checklist Tab ... 406
Ground Rules and Assumptions Tab... 407
Conditions of Use Tab ... 407
Work Sessions Tab .. 407
Quality Survey Tab .. 408

Chapter 11: Risk Discovery ... 409
Showing Results in the System Panel ... 409
Generating a Report.. 410

http://xfmea.reliasoft.com
Contents

Using Questions .. 410

Showing Results in the System Panel .. 411

Generating a Report... 411

Using Ratings ... 412

Showing Results in the System Panel .. 412

Generating a Report... 413

Chapter 12: Parameter Diagrams (P-Diagrams) ... 415

Add a P-Diagram ... 415

Enter the Data ... 415

Select Existing Text ... 416

Import Elements from Excel .. 416

Reports and Queries ... 417

P-Diagram Elements .. 417

Input Signals .. 418

Control Factors .. 418

Noise Factors ... 418

Ideal Responses .. 418

Error States .. 419

Chapter 13: Test Plans ... 421

Add a Test Plan .. 421

Add Actions to the Test Plan ... 421

Test Plan Columns ... 422

Test Plan View .. 422

Reports and Queries ... 423

Reuse Records in a Test Plan ... 423

Reusing Actions .. 424
Contents

Reusing Controls ... 424

Chapter 14: Design Verification Plans (DVP&R) .. 427
DVP&R Header .. 428
DVP&R Worksheet .. 429
DVP&R Worksheet Columns .. 431
Synchronizing a DVP&R with a DFMEA ... 433
Sync Options for New DVP&Rs ... 434
Sync Options for Existing DVP&Rs ... 435

Chapter 15: PFD Worksheets (Process Flow Diagrams) .. 437
Adding a PFD Worksheet .. 437
PFD Worksheet Header ... 439
PFD Worksheet Tab .. 439
PFD Worksheet Columns ... 442
Sync Options for PFD Worksheets .. 443
General Sync Workflow ... 444

Chapter 16: Process Control Plans ... 449
Adding a Control Plan ... 449
Control Plan Header .. 449
Control Plan Worksheet ... 451
Control Plan Worksheet Columns .. 453
Sync Options for Control Plans ... 454
Automatic Transfer .. 455
Manual Transfer ... 455

Chapter 17: Design Reviews Based on Failure Mode (DRBFM) .. 457
DRBFM Header ... 458
DRBFM Worksheet ... 459

http://xfmea.reliasoft.com
Contents

Diagram Ribbon Diagram Tab ... 487
Diagram Ribbon Format Tab ... 489
Diagram Skins and Appearance Settings .. 490
Using Diagram Skins ... 491
Converting Version 9 Skins ... 493
Diagram Style Settings .. 494
Block Style Settings ... 497
Connector Style Settings ... 500

Chapter 19: Failure Modes and Reliability Analysis (FMRA) .. 505

Enabling and Viewing the FMRA ... 505
FMRA Columns .. 506
Building the FMRA Hierarchy ... 507
Adding New Records ... 507
Deleting Records .. 508
Using Cut/Copy to Move or Duplicate Records ... 508
Setting FMRA Record Properties .. 508
Setting the Reliability Policies ... 509
Using Rating Scales to Set the Reliability Policy .. 511
Batch Update Reliability Policies .. 513
Using Mirror Groups in an FMRA ... 514
Setting the Operation Properties for an FMRA .. 515
Allocate Target Reliability and Availability .. 517
Highlights Based on Target Reliability/Availability .. 518
FMRA Diagrams and Reliability-Wise Configurations .. 519
Working with FMRA Diagrams .. 519
Analytical and Simulation FMRA Diagrams ... 521
FMRA Calculations .. 521
Analytical Results in an FMRA ... 522
Calculation Options Window (XFMEA/RCM++/RBI) ... 523
Simulation Results in an FMRA ... 523
Chapter 20: Generated Reports .. 525
XFMEA/RCM++/RBI Reports Window .. 525
Select Items .. 525
Selected Report Forms ... 525
Templates Manager ... 526
Report Customization/Settings .. 526
Save/Publish ... 526
Generate Report ... 526
Tips .. 527
Standard Report Forms .. 527
Sub-Item Data Combined or Separated .. 532
Report Customization/Settings Window .. 534
Font Size and Style Considerations ... 535
XFMEA/RCM++/RBI Templates Manager .. 535
Active File and Reset Templates ... 536
Import Templates .. 536
XFMEA/RCM++/RBI Report Templates ... 536
Fields ... 537
Column Header Customization .. 538
Repeat Column Headers in Word ... 538
Save/Publish Reports .. 539
Saving and Publishing .. 539
Published Reports Manager ... 539
Viewing the Reports in SEP ... 540
Chapter 21: Query Utility .. 541
Specify the Data Source .. 541
Specify the Query Criteria ... 543
 Two Types of Actions Queries .. 543
 Causes With or Without Actions and Controls 544
Customize the Column Headers .. 544
View and Use the Query Results .. 545
 Special Consideration for Action, Control and Task Query Results 545
Query Templates .. 546
 Using a Saved Template in the Query Utility 546
 Saving New Templates from the Query Utility 547
Chapter 22: Excel Templates for Import/Export 549
Import from Excel ... 549
Export to Excel .. 550
Creating and Managing Import/Export Templates 551
 Import/Export Template Window .. 551
 Import Based on Reference Number .. 552
Validating Data for Import ... 553
Chapter 23: Change Logs ... 557
Change Log Icons and Statuses .. 557
Storing Data from Prior Analysis Versions ... 558
Change Log Window (for Entire Analysis) ... 558
 Change Log Activation ... 559
 Version History ... 559

http://xfmea.reliasoft.com
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change Log</td>
<td>559</td>
</tr>
<tr>
<td>Starting and Ending Revisions</td>
<td>560</td>
</tr>
<tr>
<td>To start a revision:</td>
<td>561</td>
</tr>
<tr>
<td>To start multiple revisions:</td>
<td>561</td>
</tr>
<tr>
<td>To end a revision:</td>
<td>561</td>
</tr>
<tr>
<td>To end multiple revisions:</td>
<td>561</td>
</tr>
<tr>
<td>To reopen the most recent revision:</td>
<td>562</td>
</tr>
<tr>
<td>Version Details Window</td>
<td>562</td>
</tr>
<tr>
<td>Record Change Log Window (for Specific Records)</td>
<td>562</td>
</tr>
<tr>
<td>Reason for Change Window</td>
<td>563</td>
</tr>
<tr>
<td>Electronic Approval Tracking</td>
<td>563</td>
</tr>
<tr>
<td>Assign Reviewers Window</td>
<td>564</td>
</tr>
<tr>
<td>Approve/Reject Version Windows</td>
<td>564</td>
</tr>
<tr>
<td>Approve Multiple Change Logs</td>
<td>565</td>
</tr>
<tr>
<td>Workflow Overview for Using a Change Log</td>
<td>566</td>
</tr>
<tr>
<td>Without Electronic Approval Tracking</td>
<td>566</td>
</tr>
<tr>
<td>With Electronic Approval Tracking</td>
<td>567</td>
</tr>
<tr>
<td>Chapter 24: Xfmea, RCM++ and RBI Settings</td>
<td>569</td>
</tr>
<tr>
<td>Synthesis Settings</td>
<td>569</td>
</tr>
<tr>
<td>Synthesis Settings</td>
<td>569</td>
</tr>
<tr>
<td>Backup/Check Out Options</td>
<td>571</td>
</tr>
<tr>
<td>Other Synthesis Settings</td>
<td>571</td>
</tr>
<tr>
<td>Application-Specific Settings</td>
<td>572</td>
</tr>
<tr>
<td>General Settings</td>
<td>572</td>
</tr>
<tr>
<td>System Hierarchy Settings</td>
<td>573</td>
</tr>
<tr>
<td>FMRA Settings</td>
<td>574</td>
</tr>
</tbody>
</table>
Contents

- FMEA Hierarchy Settings ... 574
- Reset Settings... 575
- Project Item Settings.. 576
- Region and Language Settings.. 576
 - Viewing or Changing the Region and Language Settings for Your Computer 577
 - Which Language is Selected by Default When You Install the Software............... 579
 - Defining Date and Time Formats .. 580
 - Changing the Decimal Symbol, the List Separator and the Currency Symbol 580
- Chapter 25: ReliaSoft CommonTools... 583
 - Categories, Identifiers and Filters .. 583
 - Defining Categories .. 583
 - Identifiers .. 585
 - Project and Item Filters ... 588
- Synthesis Explorer .. 590
 - Save and Apply Views ... 591
 - Project and Item Filters ... 591
 - Category Panel .. 592
 - Built-in Find/Filter, Configuration and Grouping Tools 592
 - Synthesis Explorer Dashboards .. 593
 - Synthesis Explorer Properties ... 595
- ReliaSoft Locator Links .. 597
 - Creating a Locator Link ... 597
 - Posting Locator Links on a Web Page ... 598
- Watches and Alerts ... 598
 - Enable Alerts via E-mail or SMS .. 599
 - Subscribing to a Watch ... 600
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action Alert Preferences</td>
<td>601</td>
</tr>
<tr>
<td>Action and Gate Monitors</td>
<td>602</td>
</tr>
<tr>
<td>What is Your SMS Address?</td>
<td>603</td>
</tr>
<tr>
<td>History Logs</td>
<td>604</td>
</tr>
<tr>
<td>Activating a Project History Log</td>
<td>604</td>
</tr>
<tr>
<td>Viewing Record History Logs</td>
<td>605</td>
</tr>
<tr>
<td>Import, Export and Data Conversion</td>
<td>606</td>
</tr>
<tr>
<td>Importing from an Existing Repository</td>
<td>606</td>
</tr>
<tr>
<td>Importing from Prior Version Files</td>
<td>607</td>
</tr>
<tr>
<td>Importing/Exporting Projects</td>
<td>620</td>
</tr>
<tr>
<td>Importing/Exporting Project Items or Resources</td>
<td>621</td>
</tr>
<tr>
<td>Importing from Excel or Delimited Text Files into a Folio</td>
<td>623</td>
</tr>
<tr>
<td>Using XML in BlockSim and Lambda Predict</td>
<td>627</td>
</tr>
<tr>
<td>Attachments</td>
<td>628</td>
</tr>
<tr>
<td>Attachment Locations</td>
<td>630</td>
</tr>
<tr>
<td>Select Existing Text Window</td>
<td>632</td>
</tr>
<tr>
<td>Project and Item Filters</td>
<td>633</td>
</tr>
<tr>
<td>Record Filter</td>
<td>633</td>
</tr>
<tr>
<td>Phrase Sets</td>
<td>634</td>
</tr>
<tr>
<td>Field Text</td>
<td>634</td>
</tr>
<tr>
<td>Record Filter Options</td>
<td>635</td>
</tr>
<tr>
<td>Check Spelling</td>
<td>637</td>
</tr>
<tr>
<td>Results Window</td>
<td>638</td>
</tr>
<tr>
<td>Quick Parameter Estimator (QPE)</td>
<td>639</td>
</tr>
<tr>
<td>Quick Parameter Estimator Wizard View</td>
<td>639</td>
</tr>
<tr>
<td>Quick Parameter Estimator Expert View</td>
<td>640</td>
</tr>
</tbody>
</table>
Contents

Quick Parameter Estimator (ALTA) ... 641
Chapter 26: Resources .. 647
Types of Resources ... 647
 Used in Multiple Applications ... 647
 Used Only in BlockSim ... 649
 Used Only in RENO .. 649
Local, Global and Reference Resources ... 650
 Parent/Child Resource Relationships ... 651
 Keeping Resources Together ... 651
Creating and Selecting Resources ... 652
 Opening a Resource Wizard ... 652
 Back Arrow and Main Page ... 653
 Selecting an Existing Resource .. 654
 Creating a Resource .. 655
 Editing a Resource .. 655
 Removing a Resource ... 655
Universal Reliability Definitions (URDs) .. 656
 Trace Usage .. 657
Models .. 657
 Naming the Resource ... 657
Associated Analysis .. 657
Model Category ... 658
Model Type .. 658
Additional Tools ... 659
Publishing Models ... 660
Tasks .. 662
Corrective Tasks .. 666
Preventive Tasks ... 669
Inspection Tasks .. 672
On Condition Tasks ... 675
Task Scheduling ... 676
Crews ... 678
Spare Part Pools .. 680
Metrics .. 684
Metric Types ... 685
Calculated Result and Saved Values ... 685
Target Conditions and Result Indicator .. 686
Identifiers, History, Watch and Trace Usage .. 687
Showing Metrics in Folios/Diagrams .. 687
Using Metrics in Project Planner Gates .. 689
Pushing Metrics from an FMRA .. 691
Variables .. 692
Using Variables to Store Output Values in RENO ... 693
Profiles .. 696
Creating Profiles Manually (All Types) .. 697
Importing Data from nCode GlyphWorks to Create Stress Profiles 699
Maintenance Groups .. 700
Maintenance Group Manager ... 701
Mirror Groups ... 703
Task Packages ... 703
Actions .. 705
Actions as Resources ... 705
Contents

Configurable Settings .. 706
Show/Hide Properties for Individual Records ... 706
Priority .. 706
Action Status and Review Status ... 707
E-mail and Alerts ... 707
Add to Outlook Calendar ... 708
Person Responsible and Resources .. 708
Action Timeline and Status .. 709
Costs and Man Hours .. 710
Action Status Updates ... 712
Review and Approve Actions ... 713
Configurable Settings for Actions and Controls .. 714
Actions Explorer .. 715
Controls ... 717
Configurable Settings ... 718
Resource Manager ... 718
Resource Filter .. 719
Built-in Find/Filter, Configuration and Grouping Tools .. 719
Creating, Viewing, Editing and Deleting Resources ... 719
Tracing Where Resources Are Used .. 720
Local and Global and Reference Resources ... 720
Exporting Information from the Resource Manager ... 721
Finding and Filtering Records .. 721
Configuring Columns .. 725
Grouping Panel .. 727
Removing Unused and Duplicate Resources ... 728
Contents

Select Resource Window ... 729
Trace Usage ... 730
Dependency Viewer ... 730
Dependency Viewer - Diagram View ... 732
Batch Properties Editor .. 735
Spreadsheet Editor ... 737
Exporting Information from the Batch Properties Editor ... 737

Chapter 27: Project Planner ... 739
Creating a Project Plan .. 739
 Importing or Starting Again from a Blank Plan .. 739
Project Plan Hierarchy .. 740
 Project Planner Columns ... 741
Project Planner Timelines .. 742
 Planned Dates ... 742
 Actual Dates ... 743
 Expected Dates ... 743
Project Planner Gates ... 744
 Gate Properties ... 744
 Gate Status .. 745
Actions in Project Plans ... 745
 Adding Actions to the Plan ... 746
Project Plan Summary Panel ... 746
Check Utilization .. 749
Project Planner Gantt View .. 750
Project Planner Plot View .. 751
Set Colors ... 752
Contents

Project Planner Dashboards ... 753
Data Source Drop-Down List ... 753
Examples for Different Field Types ... 754
Project Planner Ribbon ... 756
Project Planner Tab ... 756
View Tab .. 759

Chapter 28: ReliaSoft Plot Utilities ... 761
Basic Plot Features .. 761
Redraw Plots ... 761
Identify a Plot’s Source Analysis ... 762
Show or Hide Plot Items ... 762
Scaling ... 762
Zoom ... 763
Aspect Ratio .. 763
Show Coordinates ... 764
Add Custom Labels .. 765
Move Plot Items .. 765
Export or Copy Plot Graphics .. 765
Export or Copy Plot Data ... 766
Setting Confidence Bounds ... 766
Setting Target Markers ... 768
Plot Setup .. 769
Importing and Exporting Plot Settings ... 769
Plot Elements .. 769
Plot Setup: Plot Titles Page ... 770
Plot Setup: Axis Titles/Labels Page ... 771
Contents

If you prefer to start with a blank report: ... 791
If you want to assign the first data source: .. 791
If you want to use a saved template: .. 792

Associated Data Sources ... 792
 Associating Data Sources ... 792
 Linking Multiple Data Sources with Different Time Units 794

Synthesis Workbook Templates ... 794
 Saving Your Own Templates .. 795
 Using a Template ... 795

Spreadsheet Module ... 796
 Send to Excel ... 796
 Inserting Functions .. 796
 Showing Formulas .. 796
 Recalculate Formulas .. 797
 Adding Custom Charts .. 797
 Defining Names .. 797

Word Processing Module ... 798
 Using the Function Wizard .. 798
 Using the Plot Wizard .. 798
 Using Spreadsheet References .. 798

Formulas and Functions ... 798
 Function Wizard - Data Sources .. 798
 Function Wizard - Formulas .. 801
 Data Entry Tips for Functions .. 802
 Returning Confidence Bounds .. 806

Plot Wizard ... 807
Select the Plot Type .. 808
Select the Data Source .. 808
Insert the Plot Holder .. 809
Custom Charts ... 810
Adding a Chart .. 810
Changing the Data Displayed on an Axis .. 811
Changing the Chart Type and/or Data Set .. 811
Applying a Chart Layout and/or Chart Style .. 812
Renaming Chart and Axes Titles ... 812
Modifying the Axes and Gridlines .. 813
Defined Names .. 813
Syntax Rules for Names .. 813
Managing Names .. 814
Defining Names .. 814
Spreadsheet References ... 816
DOE Analysis Reports ... 817
Inserting a DOE Analysis Report ... 818
Using DOE Report Profiles ... 818
Chapter 30: Synthesis Dashboards ... 821
Dashboard Viewer .. 822
Resizing Panels .. 822
Showing Details in Charts and Pies ... 823
Drill Downs and Master Filters ... 823
Sorting and Filtering Data in a Grid .. 823
Printing or Exporting the Dashboard .. 824
Viewing Drill Downs .. 824
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEP Dashboards</td>
<td>855</td>
</tr>
<tr>
<td>Actions and Portal Messages</td>
<td>855</td>
</tr>
<tr>
<td>Project Summary, Analysis Summaries and Project Plan</td>
<td>855</td>
</tr>
<tr>
<td>System Hierarchies and FMEAs</td>
<td>855</td>
</tr>
<tr>
<td>Metrics (Key Performance Indicators)</td>
<td>856</td>
</tr>
<tr>
<td>Monitored Reports</td>
<td>856</td>
</tr>
<tr>
<td>SEP Dashboards</td>
<td>856</td>
</tr>
<tr>
<td>Default Dashboard</td>
<td>856</td>
</tr>
<tr>
<td>Add, Delete, Move or Resize a Tile</td>
<td>857</td>
</tr>
<tr>
<td>Tile Settings</td>
<td>857</td>
</tr>
<tr>
<td>Working with Grid Tile Columns</td>
<td>860</td>
</tr>
<tr>
<td>Tiles</td>
<td>862</td>
</tr>
<tr>
<td>Actions and Messages in SEP</td>
<td>875</td>
</tr>
<tr>
<td>My Actions Page</td>
<td>875</td>
</tr>
<tr>
<td>Messages Page</td>
<td>876</td>
</tr>
<tr>
<td>Projects in SEP</td>
<td>877</td>
</tr>
<tr>
<td>Select or Change Projects</td>
<td>877</td>
</tr>
<tr>
<td>Publishing to SEP</td>
<td>878</td>
</tr>
<tr>
<td>Data Sheets or Diagrams</td>
<td>879</td>
</tr>
<tr>
<td>Synthesis Workbooks</td>
<td>880</td>
</tr>
<tr>
<td>Prediction Reports and Plots</td>
<td>880</td>
</tr>
<tr>
<td>XFMEA/RCM++/RBI Reports</td>
<td>881</td>
</tr>
<tr>
<td>FMEAs in SEP</td>
<td>882</td>
</tr>
<tr>
<td>Viewing FMEAs in SEP</td>
<td>882</td>
</tr>
<tr>
<td>FMEA Stats (Web Summary)</td>
<td>884</td>
</tr>
<tr>
<td>FMEA Reports, Dashboards and Queries</td>
<td>885</td>
</tr>
</tbody>
</table>
Contents

FMEA Web Data Source ... 887
FMEA Change Logs .. 890
Reports in SEP .. 891
View Desktop Dashboards and Reports .. 892
Watch This Report ... 892
XFRACAS .. 893
Quick Links in SEP ... 893
Link to a Page in SEP .. 893
Link to an External Website ... 893
Remove or Rename a Link .. 894
SEP and XFRACAS ... 895
XFRACAS Actions and Incidents ... 895
Field Failure Reports (Observed Occurrences) ... 896
XFRACAS Reports and Charts .. 897
Configure SEP ... 897
SEP Admin Page ... 897
SEP User Preferences ... 902
Chapter 1: Getting Started

ReliaSoft XFMEA by HBM Prenscia facilitates data management and reporting for all types of Failure Modes and Effects Analysis - FMEA - and Failure Modes, Effects and Criticality Analysis - FMECA. ReliaSoft RCM++ by HBM Prenscia facilitates the Reliability Centered Maintenance (RCM) analysis approach for creating scheduled maintenance plans, which is an important aspect of an effective asset management program. ReliaSoft RBI by HBM Prenscia facilitates risk based inspection (RBI) analysis to the principles and guidelines presented in the American Petroleum Institute's recommendations in the RP 580 and RP 581 publications, as well as the American Society of Mechanical Engineers' recommendations in the ASME PCC-3-2007 publication.

This help file provides detailed documentation for all three products. The features that are available on your computer will depend on your license.

- This graphic indicates a feature that is available only for users with an RCM++ or RBI license.
- RCM++ & RBI Only
- This graphic indicates a feature that is available only for users with an RBI license.
- RBI Only

These applications are also part of the Synthesis Platform, which provides intelligent integration between reliability program activities and tools, while simultaneously facilitating effective information sharing and cooperation between engineering teams of any size. For information about features that are shared by all (or most) of the ReliaSoft desktop applications, see the Repositories and Projects, Desktop Application Interfaces and ReliaSoft Common Tools chapters.

Other ReliaSoft software by HBM Prenscia includes: Weibull++, ALTA, RGA, BlockSim, RENO, Lambda Predict, MPC, SEP web portal and XFRACAS.

Quick Tour

Quick Tour of XFMEA and RCM++
XFMEA facilitates data management and reporting for all types of FMEA (including Design FMEA, Process FMEA, FMECA, etc.). It also supports related analyses such as P-Diagrams, DVP&Rs (Test Plans), Design Reviews Based on Failure Mode (DRBFMs), Process Flow Diagrams and Process Control Plans.
Chapter 1: Getting Started

RCM++ facilitates the **Reliability Centered Maintenance (RCM)** approach for creating effective scheduled maintenance plans. It supports traditional RCM decision logic diagrams, and also offers simulation/calculation engines to compare maintenance strategies based on cost and availability.

Answer a wide variety of questions such as:

- What is the risk in a product or process?
- Which components or assemblies pose the greatest risk?
- What failure modes might occur? What is the effect of failure?
- What controls are in place to mitigate the risk?
- What tests need to be performed?
- How can we improve the design?
- How should we plan for scheduled inspections and maintenance?

Using Repositories and Projects

File Menu

Use commands on the **File** menu (**New**, **Recent** or **Open Repository**) to create or open a **Synthesis repository** (database). (See **Database Types**.)

Each database supports simultaneous access by multiple users. If you have admin permissions, use **File > Manage Repository** to control user access and manage configurable settings that apply throughout the database. (See **Security Options** and **Backstage View**.)
Use File > Help to access online help and shipped examples.

Project List
Each database can contain multiple projects. Use the project list to create or open a project. (See Project Manager.)

If you have a lot of projects:

- Use the project filter to limit what’s displayed.
Chapter 1: Getting Started

- Use the **project category** to group projects within the list.

System Panel and Analysis Panel

The **System panel** shows the items that may be analyzed in the project.

- It can be a single item or a complex multi-level system configuration.
- It can be physical components/equipment or steps in a process.

http://xfmea.reliasoft.com
The **Analysis panel** shows properties and analyses for the item that is currently selected.

![Analysis panel from XFMEA/RCM++/RBI](image)

These tabs allow you to view different analyses for the item that is currently selected.

Project Properties

FMEA Structure

Each project has an **FMEA structure** that will be the same for all FMEAs and RCMs in the project.

- **Grouped Effects and Causes** (commonly used for FMEA)

 The effects will be entered as separate records but displayed together in the FMEA; the software calculates RPNs based on the highest severity rating.

<table>
<thead>
<tr>
<th>Description</th>
<th>Si</th>
<th>Oi</th>
<th>Di</th>
<th>RPNi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure Mode A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grouped Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effect 1 (2)</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Effect 2 (8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Causes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cause 1</td>
<td>5</td>
<td>5</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Cause 2</td>
<td>5</td>
<td>5</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Cause 3</td>
<td>5</td>
<td>5</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 1: Getting Started

- **Effects Before Causes** (can be used for FMEA or RCM)

<table>
<thead>
<tr>
<th>Description</th>
<th>Si</th>
<th>Oi</th>
<th>Di</th>
<th>RPNi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure Mode A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effect 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cause 1</td>
<td>5</td>
<td>5</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Cause 2</td>
<td>5</td>
<td>5</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Cause 3</td>
<td>5</td>
<td>5</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

- **Causes Before Effects** (sometimes used for RCM)

<table>
<thead>
<tr>
<th>Description</th>
<th>Si</th>
<th>Oi</th>
<th>Di</th>
<th>RPNi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Functional Failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure Mode</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effect</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Configurable Settings
Each project also has its own configurable settings that enable you to customize:

- Data fields and names
- Classifications, categories and other drop-down lists
- Rating scales and preferences for FMEA risk priority metrics
- Logic for risk discovery and RCM decision charts

Use the **Select Profile from Library** option in the project properties to quickly apply a predefined group of settings.
Using FMEAs

Failure Modes and Effects Analysis (FMEA) and Failure Modes, Effects and Criticality Analysis (FMECA) are methodologies designed to identify potential failure modes for a product or process, to assess the risk associated with those failure modes, to rank the issues in terms of importance and to identify and carry out corrective actions to address the most serious concerns.

The basic steps for using an FMEA are:

1. **Create the project and set project properties**

 Choose **Project > Management > Create Project**.

 In the Project Properties window, specify the FMEA Structure and the Profile that will be used to set the configurable settings. (See **Choosing the FMEA Structure** and **Profiles**.)

2. **Add items in the system hierarchy**

 The first item is added to the system hierarchy when you create the project. Use the Properties tab in the Analysis panel to rename it and set other properties.
Chapter 1: Getting Started

To add items, right-click inside the system hierarchy and choose **Add System, Add Next Level Item**, etc. (See [Building the System Hierarchy](http://xfmea.reliasoft.com).)

![Diagram of system hierarchy with options]

3. **Add a new FMEA**

To add an FMEA for an item, right-click the item in the system hierarchy and choose **Analyses > Add FMEA**.

4. **Add records in the FMEA hierarchy**

The [Hierarchy tab](http://xfmea.reliasoft.com) for an FMEA displays the analysis records in a hierarchical tree, which tends to be good for viewing a lot of information in a small amount of space. In this view, you will use properties windows to add or edit FMEA records.
When you add a new FMEA, the Function window will automatically open. Enter the details and click either **Add Function** (to add the next function description), **Add Failure** (to add the first failure mode for this function) or **OK** (to close the window).

![Add Function Window]

5. **Use Select Existing Text utilities**

 The Select Existing Text window provides a list of existing descriptions that might apply to the current text field or analysis. (See [Select Existing Text Window](#).)
Chapter 1: Getting Started

If you want to use this utility to replace or append text in an input field, click the icon next to the field.

The Select Existing Text window can also be used to add multiple records at once. For example, right-click a function record and choose Add Multiple Failures > Select Existing Text.

6. View RPNs and related metrics

You can choose to calculate and display a variety of metrics based on the Severity, Occurrence and Detection ratings that have been assigned for effects and causes in the FMEA: RPN, SxO, SOD, SD or QCPN. (See RPNs and Related Metrics.)

To configure the metrics that are enabled for the current project, choose FMEA > Tools > Configurable Settings.

On the RPNs page, use the Enabled column to specify which metrics will be available in the current project.
Use the **Highlight Priority Based On** area to configure the logic that will be employed when a user turns on the priority highlights feature. (See FMEA > RPNs.)

To choose which metrics will be displayed in the FMEA hierarchy for your computer, right-click a column heading in the FMEA and choose **Customize Columns**.

To turn on priority highlighting, choose **FMEA > Tools > Highlight Priority**.

7. Use the filtered and worksheet views

 a. **Filtered view**

 Click the Filtered tab at the bottom of the FMEA to open the filtered view. This view presents a sortable list of all records of a particular type, such as causes sorted by RPN or actions sorted by due date. (See FMEA Filtered View.)
Use the **Filter By** drop-down list to select which records are displayed. Then click inside the column heading you wish to sort by.

<table>
<thead>
<tr>
<th>Recommended Action(s)</th>
<th>Action Status</th>
<th>Review Status</th>
<th>Priority</th>
<th>Responsibility</th>
<th>Planned Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform Heat Aging test (M-389) on the Focus Rings</td>
<td>Past Due</td>
<td>No Review Required</td>
<td>Medium</td>
<td></td>
<td>8/24/2017</td>
</tr>
<tr>
<td>Conduct tolerance analysis between lamp and casting</td>
<td>Past Due</td>
<td>No Review Required</td>
<td>Medium</td>
<td></td>
<td>6/30/2017</td>
</tr>
<tr>
<td>Investigate the use of metal rather than plastic for rings</td>
<td>In Progress</td>
<td>No Review Required</td>
<td>Medium</td>
<td></td>
<td>5/25/2017</td>
</tr>
<tr>
<td>Add screw bosses to bottom case</td>
<td>Completed - Late</td>
<td>No Review Required</td>
<td>Medium</td>
<td></td>
<td>4/13/2017</td>
</tr>
<tr>
<td>Review different filter designs for drop-inability</td>
<td>Completed - On Time</td>
<td>No Review Required</td>
<td>Medium</td>
<td></td>
<td>4/14/2017</td>
</tr>
<tr>
<td>Conduct a customer maintenance assessment</td>
<td>Past Due</td>
<td>No Review Required</td>
<td>Medium</td>
<td></td>
<td>4/5/2017</td>
</tr>
</tbody>
</table>
b. **FMEA worksheet**

Click the Worksheet tab at the bottom of the FMEA to open the worksheet view. This view allows you to type directly into the worksheet cells and tab through the analysis as you would in a spreadsheet application. (See **FMEA Worksheet**.)

<table>
<thead>
<tr>
<th>Function</th>
<th>Potential Failure Mode</th>
<th>Potential Effect(s) of Failure</th>
<th>SEVi</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Projector provides the 2X zoom capability throughout the life of the projector under all operating conditions as defined in the technical specification</td>
<td>Zoom capability is less than 2X</td>
<td>Unable to enlarge image to required specification. Image is too small for close-up projection. (?)</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>The image is distorted at the maximum zoom of 2X</td>
<td>Image is unclear, difficult to read printed words (?)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>The zoom capability degrades over the life of the project</td>
<td>Unable to enlarge image to required specification. Image is too small for close-up projection. (?)</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

To use the entire workspace for the worksheet view, choose **View > Workspace Layout > Hide System Panel**.

To return to a split workspace, choose **View > Workspace Layout > Split Panels**.

8. **Create plots**

Choose **Home > Reporting > Plots**. (See **FMEA Plots**.)
Select the item(s) that you want to include in the plot. Then use the control panel to select the plot type and other settings.

9. Run a query

Choose **Home > Reporting > Queries**. (See **Query Utility**.)
First use the left panel to specify the data source (selected projects throughout the database or selected items within the current project). Then use the right panel to specify the query criteria and output preferences.

Click Run Query to view the records that match the criteria.

10. View a dashboard

Choose Home > Reporting > Dashboard > Dashboard Viewer. (See FMEA Dashboards.)
In the **Layout** drop-down list, select one of the layouts that have been predefined for FMEA data and then use the dashboard to view the desired information. For example, in the RPN Dashboard you can click an item in the **Item Drill Down** panel to select which item’s data will be displayed in the other 2 panels.

11. **Generate a report**

Choose **Home > Reporting > Reports.** (See **Reports Window**)

http://xfmea.reliasoft.com
Select the items that you want to create a report for, the report forms you want to include in the generated report and the desired output type (Excel or Word).

Click **Generate Report** to create the report.

Using RCMs
Reliability Centered Maintenance (RCM) analysis provides a structured framework for analyzing the functions and potential failures for a physical asset in order to develop a scheduled maintenance plan that will provide an acceptable level of operability, with an acceptable level of risk, in an efficient and cost effective manner.

The basic steps for performing RCM analysis are:
Chapter 1: Getting Started

1. **Create the project and set project properties**

 Choose **Project > Management > Create Project**.

 In the Project Properties window, specify the **FMEA Structure** and the **Profile** that will be used to set the configurable settings. (See **Choosing the FMEA Structure** and **Profiles**.)

 ![Project Properties Window]

2. **Add items in the system hierarchy**

 The first item is added to the system hierarchy when you create the project. Use the Properties tab in the Analysis panel to rename it and set other properties.
To add items, right-click inside the system hierarchy and choose **Add System, Add Next Level Item**, etc. (See **Building the System Hierarchy**.)

3. **Perform equipment selection**

For each system hierarchy item that you want to perform equipment selection for, right-click the item and choose **Analyses > Add Risk Discovery**. (See **Risk Discovery**.)
Depending on the configurable settings for the project, this can be a list of yes/no questions or a set of rating scales.

<table>
<thead>
<tr>
<th>Label</th>
<th>Question</th>
<th>Response</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>Could failure affect safety or have other hazardous consequences?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Detectability</td>
<td>Could failure be undetectable or not likely to be detected during normal operation?</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Operational</td>
<td>Could failure have significant operational impact?</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Economic</td>
<td>Could failure have significant economic impact?</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

4. **Add a new functional failure analysis**

Right-click the system hierarchy item that you want to create a functional failure analysis for and choose **Analyses > Add FMEA**.
5. **Add functional failure analysis records**

When you add the analysis, the Function window will automatically open. Enter the details and click either **Add Function** (to add the next function description), **Add Failure** (to add the first functional failure for this function) or **OK** (to close the window).

Continue adding analysis records as needed. Note that RCM failure modes are described using the cause record type.
6. **Perform failure effect categorization**

Right-click an effect in the functional failure analysis and choose **Effect Categorization**. (See [Failure Effect Categorization](#).)

The questions and categories depend on the configurable settings for the project.
7. Perform maintenance task selection and add a task

Right-click a failure mode (cause) and choose Task Manager. (See Using Maintenance Task Selection Logic.)
In the Task Manager, answer the questions by clicking inside the Yes/No column. These questions may or may not be dependent on the failure effect categorization, depending on the task selection logic defined for the project.
To add a task, click **Add Task**.

- Specify the task name and task type (see *Task Types in RCM++/RBI*), then indicate when the task is to be performed (see *Task Scheduling*).
Chapter 1: Getting Started

- Continue to specify task properties as needed. The configurable fields for traditional RCM are entered under the RCM node. (For information on defining tasks for simulation and cost calculations, see Using Simulation and Cost Calculations.)

![Maintenance Task](image_url)
More Analyses and Tools

Analysis Plans

Analysis Plans allow you to keep track of team members, ground rules, estimated completion dates, scheduled work sessions and other details that will help you to plan and manage your FMEA and RCM projects.
Parameter Diagrams (P-Diagrams)

A Parameter Diagram (P-Diagram) is a structured tool that identifies the inputs from a system and relates those inputs to the desired system outputs, while considering the controlled and uncontrolled factors.
FMEA Block Diagrams

An *FMEA Block Diagram* visually depicts the system assembly that will be analyzed in a Design FMEA. These diagrams help to define the scope of a particular analysis project and also may provide additional information that will be useful to the analysis team when they attempt to identify potential failure modes.
Chapter 1: Getting Started

PFD Worksheets

A PFD worksheet records detailed information, including process characteristics (inputs) and product characteristics (outputs), for each step of the manufacturing or assembly process. The complete PFD worksheet provides a structure for preparing process FMEAs (PFMEAs) and control plans.
Control Plans

Control plans are used to track critical characteristics that must be kept in control during a manufacturing or assembly process, and record the methods for maintaining control.

Test Plans

A test plan displays a list of actions that describe specific tests that need to be performed.
Chapter 1: Getting Started

Technical Support
ReliaSoft reliability software products are renowned for their ease of use and unparalleled after sale support. For users with an active maintenance agreement, we provide technical support for software-related issues via a network of regional offices and partners/distributors throughout the world.

You can request assistance directly from within the software by choosing File > Help > E-mail Support. This creates an e-mail message that is pre-populated with information about your license and operating system, which the technical support representative will need for troubleshooting the issue.

To get contact details for technical support worldwide, choose File > Help > Contact Technical Support or visit https://support.hbmprenscia.com.

When Requesting Support
When you contact us to request technical support, please be prepared to provide the following information:

- Your phone number and e-mail address.
- The product name and the Compile Release Version number of your application. To determine the Compile Release Version (CRV) of the application on your computer, choose File > Help. The CRV is displayed in the About area. Note that the CRV will also indicate whether you are running the 32-Bit version or the 64-Bit version of the software.
- Your product license key.
 - To determine the license for the application on your computer, you can choose File > Application Setup and click any of the main headings in the Application Setup window.
- The operating system (e.g., Windows 7), RAM and hard disk space on your computer.
- Describe what you were doing when the problem occurred and exactly what happened. Please include the specific wording of any message(s) that appeared.

Note: Technical support representatives are not reliability consultants, and their assistance is limited to technical issues that you may encounter with the software tools. To get assistance with your analysis from a subject matter expert, please contact Reliability Consulting Services. HBM Prenscia also offers a comprehensive selection of training courses that cover both the underlying principles and theory, as well as the applicable software tools. For details, visit https://www.reliasoft.com/services/training-courses.
Reliability Consulting

If your organization does not have sufficient time, expertise or objectivity in-house to accomplish specific reliability goals, turning to our expert reliability consultants can prove to be the most effective and economical solution. Whether you need a quick statistical analysis, a complete assessment of your reliability program plan or something in between, Reliability Consulting Services (RCS) is ready to help.

- Our reliability consulting services team has combined expertise in almost all areas of reliability and quality engineering with experience that spans a broad spectrum of product types, from micro-electronics and appliances to advanced weapons systems and off-shore oil well drilling equipment.

- Unlike engaging a consultant who works independently, RCS consultants have direct access to all of ReliaSoft global resources, expertise and contacts.

- Our team-based approach to consulting, combined with ReliaSoft global reliability engineering organization, allows us to provide you with reliability consultants who understand your culture and speak your language while ensuring that the appropriate reliability expertise can be applied to each and every project.

- RCS is structured to accommodate requests of any size or complexity, from short telephone consultations to multiple experts at a client's site for an extended time period.

Please visit https://www.reliasoft.com/services/consulting for more information.

Install and License

System Requirements

In addition to the information below, we provide an automated tool that determines whether your computer and Internet connection meet the requirements for running and activating ReliaSoft desktop applications. It will also determine whether you could install the 64-bit version of these applications, if desired. [Download Requirements and Compatibility Test Tool...]

Operating Systems

32- and 64-bit versions are supported, except where noted. [See our 32-bit vs. 64-bit FAQ...]

- Microsoft Windows® 7 with Service Pack 1, Windows 8, Windows 8.1 or Windows 10.
Chapter 1: Getting Started

- Microsoft Windows Server 2008 R2 SP1 (64-bit version) or newer. (Requires a license that specifically allows server installations/deployments.)

Note: Upgrading your operating system after your ReliaSoft software has already been installed can cause issues with the activation. To prevent this, it is recommended to uninstall ReliaSoft 2019 prior to upgrading your operating system and then reinstall it after the upgrade. For other options, and for information about how to handle the "activated license is corrupt" message that may appear if you upgrade your operating system with live activations, please refer to https://www.reliasoft.com/windows10-reactivation.

Minimum Hardware Requirements
- RAM: 2 GB or more
- Hard disk space: 1 GB (minimum) free space available
- Screen resolution: 1024 x 768 or higher

Additional Software Requirements
- .NET Framework 4.6.1
- Microsoft Office (Excel®, Word and Outlook®) 2010 or higher (non-subscription-based) for automated exports, report generation and e-mail/calendar integration.

Enterprise Database Platforms
32- and 64-bit versions are supported.
- SQL Server® 2008 - 2016
- SQL Server Express Edition 2008 - 2016
- Oracle® 10g - 12c

Although the enterprise database platform (Microsoft SQL Server or Oracle) could be installed on the same computer where the ReliaSoft applications reside, most organizations will choose to set up a separate server to host the database. Both the 32-bit and 64-bit versions of the applications will work with either the 32-bit or 64-bit versions of a back-end database/server. The minimum hardware/software requirements for each server hosting the database should be obtained directly from the selected database vendor (i.e., Microsoft or Oracle). In general, we recommend a minimum CPU speed of 2 GHz and 4 GB of RAM.
Installation and Licensing

There are two alternative ways that ReliaSoft desktop applications may be licensed on your computer:

- If you received a license file (*.lic) and/or a license settings file (*.prnrsl), see Locally Hosted Licensing
- If you received only a license key (a 32-digit alphanumeric code), see ReliaSoft-Hosted Licensing

One or both methods can be used on the same computer. For example, if you have your own single-user license for BlockSim and will share your department’s new multi-user (floating) license for Weibull++/ALTA, you will receive a license key for BlockSim and a license settings file for Weibull++/ALTA.

If you will use both types of licensing on the same computer, use the instructions for locally hosted licenses. When you launch any of the applications that aren’t included in your license settings file, the ReliaSoft License Manager will allow you to perform the activation of your ReliaSoft-hosted license(s) using a product license key.

Requirements for All Installations

- Before running the installation program, make sure your computer meets the system requirements for ReliaSoft desktop applications.
- You must be logged in with a user account that has administrative rights.
- It is strongly recommended that you close all other applications during the installation.

Locally Hosted Licensing

If you received a license file (*.lic) or license settings file (*.prnrsl), you will be using locally hosted licensing. This allows you to manage available license seats or CRS units in-house without the requirement to connect to the ReliaSoft external license server.

The first step is for a license administrator to configure your organization’s license server and provide each individual user with the path to the license server/host (e.g., 6220@servername) and, in some cases, a license settings file (*.prnrsl) that specifies which ReliaSoft applications on your computer will use locally hosted licensing. (For detailed instructions, see https://www.reliasoft.com/locally-hosted-licensing.)

Once the license server has been set up, perform the following steps for each client installation. If you have previously connected the client computer to the appropriate license server, you can start at step 4.

1. Open the ReliaSoft ePack and decompress the *.zip archive in the Locally Hosted Licensing Utility folder
Chapter 1: Getting Started

2. Install the HBM Prenscia Licensing Administration utility by double-clicking licinst.exe and following the prompts. The utility will start as soon as installation is complete.

3. On the Client tab of the license admin utility, click **Set Client License Path** and then click **Add Network Host** or enter the license path directly in the window (use the network host format; e.g., port@serverhostname).

 The client computer will check for available license seats in the specified order (i.e., it will go to the top server listed and if no license seat is available there, it will check the next server down, and so on).

 Note that you can delete a license location by highlighting the line and deleting it.

4. Install the ReliaSoft desktop applications by double-clicking the installation program from the ePack (e.g., ReliaSoft2019.exe) and following the prompts.

5. If you were provided with a *.prnrsl file, open the Import/Export License Settings utility by choosing **ReliaSoft 2019 > ReliaSoft 2019 License Settings Import-Export** (Windows 8 and 10) or **ReliaSoft 2019 > Additional Tools > ReliaSoft 2019 License Settings Import-Export** (Windows 7) in the Windows Start menu. Follow the on-screen instructions to import the *.prnrsl file.

 The first time you launch an application, you may be asked to provide your name and basic contact information. This is required to be eligible for technical support.

 Note: Applications using locally hosted licensing must have an active connection to the license server unless you have **borrowed** a license. If you see a message that indicates that a license could not be obtained, this could be for a variety of reasons (e.g., you are not connected to the license server, the license server is down or there are no seats or CRS units available for the license). In addition, if you lose connection to the license server while you are using an application, you will see a message warning you to save your work before the application closes.

ReliaSoft-Hosted Licensing

If you are requesting a demo or have already received a license key (a 32-digit alphanumeric code), you will be using ReliaSoft-hosted licensing.

If your computer has an active Internet connection and your firewall allows the software to access the ReliaSoft secure external license server at https://validate.reliasoft.org, only a few simple steps are required for activation:

1. Install the ReliaSoft desktop applications by double-clicking the installation program from the ePack (e.g., ReliaSoft2019.exe) and following the prompts.

2. The first time you launch an application, the activation wizard will appear. On the first page, select whether you want to activate a license or request a free demo license.
Chapter 1: Getting Started

3. On the next page, enter a valid e-mail address to serve as your **ReliaSoft ID**. This is the e-mail address where you will receive confirmation e-mails from the ReliaSoft License Server. This must be your company e-mail address — not gmail, hotmail, etc.

 - **Name and Contact Info**: If this is the first time that you have registered a ReliaSoft desktop application on this computer with this e-mail address, the next page will request your name and basic contact information.

 - **Demo License**: If you need a demo license, most requests will be addressed immediately during normal business hours; for some locations, please allow up to 2 business days.

4. On the next page, enter the product license key provided to you. **Tip**: *If you are able to copy the key from a product delivery e-mail, the Paste icon saves time by automatically entering each section into the appropriate input box.*

 ![Product License Key](image)

 - **Confirmation Codes**: If your license type requires a confirmation code, the next page requires you to copy/paste a code that you will receive via e-mail. **Tip**: *If the e-mail does not appear in your Inbox within a few minutes, check your Junk mail or SPAM folders.*

 - **Activate Multiple Applications**: If your license key includes other ReliaSoft desktop applications that have not yet been activated on this computer, the next page gives you the opportunity to activate any or all of them at the same time.

5. When you see the "Your product has been activated" message, click **Finish** to start using the software.

If the computer does not have an active Internet connection, or if you encounter issues with the firewall, there are other ways to complete the activation. Please visit https://www.reliasoft.com/reliasoft-hosted-licensing for details. And, of course, you can always contact us for assistance (https://support.hbmprenscia.com).

Uninstalling ReliaSoft 2019

If you wish to stop using all of the ReliaSoft desktop applications on this computer, you can perform the following steps to uninstall ReliaSoft 2019:

1. Make sure you do not have any ReliaSoft desktop applications currently open.
Chapter 1: Getting Started

2. For locally hosted licenses, if you are uninstalling permanently (i.e., if you are not doing this as part of an uninstall/reinstall), open the Import/Export License Settings utility by choosing ReliaSoft 2019 > ReliaSoft 2019 License Settings Import-Export (Windows 8 and 10) or ReliaSoft 2019 > Additional Tools > ReliaSoft 2019 License Settings Import-Export (Windows 7) in the Windows Start menu. Follow the on-screen instructions to delete the license settings file.

3. Open the Windows Control Panel and click Programs and Features (or use the search box in the Windows Start menu to find and select Add or Remove Programs).

4. In the Uninstall or change a program window, double-click ReliaSoft 2019 and follow the prompts.

5. If you have installed the HBM Prenscia Licensing Administration tool, you can follow similar steps to uninstall it.

Tip: If you are using ReliaSoft-hosted licensing (i.e., if you received a license key and activated specific application(s) on your computer), you also have the option to deactivate one or more applications without performing a complete uninstall. For instructions, see https://www.reliasoft.com/deactivating-applications.

License Manager
The License Manager allows you to view and manage license-related details for the ReliaSoft desktop applications that are currently activated on your computer. You can use this interface to:

- View and, for ReliaSoft-hosted licenses, edit the contact information that is on file with us or change the password associated with your ReliaSoft ID. [Learn more...]
- For ReliaSoft-hosted licenses, deactivate the current application (if you don't plan to continue to use it on this computer or for this user). [Learn more...]
- For ReliaSoft-hosted floating licenses, check out or check in a license. [Learn more...]

To open the License Manager, choose File > Help and click the License Manager link in the Licensing section.

You may be prompted to enter the password that was sent via e-mail when you first registered your ReliaSoft ID. This password is required if you want to modify your contact information. For everything else, you can click Cancel to proceed without it. (If you forgot your password, you can request to have the information sent to the e-mail address on file for your registration by clicking E-mail my password to me.)
Contact Information and Password
The Contact Information page displays the name, phone number and other details that are on file with ReliaSoft. For locally hosted licenses, this information is read-only and can only be edited by uninstalling and reinstalling the software. For ReliaSoft-hosted licenses:

- If you need to download the latest information from the license server, click Synchronize.
- If you want to change your password or any of the current contact information, type the new information into the fields on this page and then click Update Information on Server.

Both actions require authentication. If you have not already entered the current password that's associated with your ReliaSoft ID, you will be prompted again to enter it.

Deactivate the Current Application
For ReliaSoft-hosted licenses, if you don't plan to continue to use the current ReliaSoft application on a particular computer (or for a particular user), you can use the License Manager to deactivate it. This does not require authentication; you can proceed with the deactivation even if you have not entered your password.

Click the Deactivate button in the current product area on the Products page.

The application will shut down immediately after you deactivate, so you will be prompted to confirm that you're ready to continue. If you later try to access this application again for this computer/user, you will be prompted to repeat the activation process.

Borrowing Licenses
For certain license types, your computer must be able to connect to a license server to determine whether shared license seats (or, for token-based licenses, the required number of CRS units) are available when you attempt to launch a ReliaSoft application.

If you need to use the application(s) when your computer is not connected to the license server, you can either "borrow" or "check out" the licenses (depending on the license type). This reduces the number of seats (or CRS units) available to other users until the licenses are
Chapter 1: Getting Started

returned. (For ReliaSoft-hosted licenses, you can also use this feature to make sure a license seat will be available when you need it.)

Borrowing Locally Hosted Licenses

If you have a locally hosted license, you can use the ReliaSoft License Borrowing utility to borrow licenses for selected product(s) for a specified duration.

IMPORTANT: If at least one ReliaSoft product with a locally hosted license is borrowed, you will only be able to start the product(s) that are borrowed. All desired products must be borrowed or returned at the same time. Note that in versions prior to 18.0.3, you must also be disconnected from the license server to use the borrowed product(s).

If any of the ReliaSoft applications on your computer use a ReliaSoft-hosted license (i.e., a license key rather than a license settings file), they will be unaffected by locally hosted license borrowing. For those products, see [Checking Out ReliaSoft-Hosted Licenses](#) below.

Borrow License(s)

Before attempting to borrow licenses, first make sure that your computer is connected to the license server and shut down all ReliaSoft desktop applications.

1. To open the ReliaSoft License Borrowing utility, navigate to the **ReliaSoft 2019 > Additional Tools** folder in the Windows Start menu and click **ReliaSoft 2019 License Borrowing**.

2. The window shows all of the ReliaSoft desktop applications on your computer that use locally hosted licensing. Specify the borrow duration and select which product(s) you want to borrow. (Remember that all desired products must be borrowed or returned at the same time.)

3. Click **Borrow Selected Licenses**.

4. Close the window.

You will only be able to use the product(s) that are borrowed. Additionally, for versions prior to 18.0.3, you can use the borrowed products only when the computer is not connected to the license server. If you need to change which products are borrowed, you can reconnect to the license server (if necessary) and repeat the same steps again (this will restart the borrow duration for all selected products). If you need to be able to use other (unborrowed) applications, you can return the licenses as described below.

What's Changed? Starting in version 18.0.3, you can use the products you have borrowed while you are connected to the license server.
Return License(s)
Before attempting to return licenses, shut down all ReliaSoft desktop applications and make sure your computer is connected to the license server.

1. Open the ReliaSoft License Borrowing utility.
2. Click Return All Licenses.
3. Close the window.

Note: Failure to shut down all ReliaSoft desktop applications prior to borrowing or returning licenses may result in unexpected behavior, such as inability to borrow, applications quitting unexpectedly or double use of license credits.

You can borrow licenses only while your license is valid (e.g., if the annual expiration date of your locally hosted license is 2 days from now, you cannot borrow a license for a duration of 3 days). In addition, you cannot borrow licenses during the 24 hours prior to annual license expiration.

Checking Out ReliaSoft-Hosted Licenses
If you have a ReliaSoft-hosted floating license, you can use the ReliaSoft License Manager to reserve a license.

1. Open the ReliaSoft application.
2. Open the License Manager by choosing File > Help and clicking the License Manager link in the Licensing section.
3. In the current product area on the Products page, click Check Out or Check In.
Chapter 2: Repositories and Projects

With integration into the Synthesis Platform, the ReliaSoft desktop applications have transitioned from a standalone document/file format to a multi-user, database-driven approach. This offers enormous potential to integrate reliability program activities and tools, while simultaneously facilitating effective information sharing and cooperation between engineering teams of any size.

The experience of working in a database-driven, multi-user environment will be a bit different than using prior versions of ReliaSoft applications (Version 7 or older) and other document-centered applications such as Microsoft Excel. For example, your organization (or team) will need to choose the most appropriate database type and security, implement shared settings that will effectively facilitate project management, and establish adequate backups and database maintenance to protect against data loss. In addition, individual users must be aware that changes are saved automatically as they work, and become familiar with the features that facilitate simultaneous access by multiple users.

This chapter discusses some of the basic requirements for using Synthesis repositories and projects. For information about other features, see ReliaSoft Common Tools.

Synthesis Repositories

Database Types
ReliaSoft desktop applications offer two types of databases for storing projects and analysis data. The type of database you choose will depend on the requirements of your organization.

- **Standard repositories** (*.rsr19) are basic database files for single- or multi-user environments. Implementation of a database server is not required; however, there are limits on the amount of data and the number of simultaneous users.

- **Enterprise repositories** require implementation and support of Oracle or Microsoft SQL Server, but they are a more robust platform that can store much more analysis information in the same database and support access by many more simultaneous users. ReliaSoft applications are compatible with Microsoft SQL Server 2008 or later and Oracle 10g or later (including the free Express editions of all of these). They can be accessed via an enterprise repository connection file with the extension *.rserp.
Chapter 2: Repositories and Projects

What's Changed? Starting in Version 2019, Synthesis files (*.rsf) can no longer be created but you can still open Synthesis files created in prior versions. Such files will be converted to standard repositories upon opening.

Standard Repositories

A standard repository is a basic database file for single- or multi-user environments. Implementation of a database server is not required; however, there are limits on the amount of data and the number of simultaneous users. (If you prefer to use a more robust Oracle or SQL Server database, see Enterprise Repositories.)

Creating a New Standard Repository

To create a new standard database, choose **File > New > Standard Repository**.

In the **Repository name** field, specify the filename for the new *.rsr19 file. The path where the file will be saved is shown below this field; to change the location, click the browse icon in the field.

The following options are available when you create a new standard database:

- **Apply login security** configures the new database to be **login secure**. You can then select the **Open security window upon creation** check box if you want to add user accounts as part of the database creation process. Note that you cannot automatically remove security from a database once it has been enabled. However, you can create a new non-secure database and use the **Import from existing repository** check box to automatically import all of the data from the secure database to the non-secure one.

- **Import from existing repository** imports entire projects and other data from an existing database, after the new database is created.

Opening an Existing Standard Repository

If you have opened the file recently, choose **File > Recent** and then select the file in the Recent Repositories list.

Otherwise, choose **File > Open Repository** and then browse for the *.rsr19 file.

If the repository has **login security** enabled and you are unable to connect, you may be encountering one of the following issues:

- **No access to the repository.** If you have not been given access to the repository, you will see a message stating that your account in the repository is not active or not
assigned to at least one security group. You will need assistance from someone who can create and update user accounts (see Managing User Accounts).

- **Windows authentication failed.** If your Windows login (domain and username) is different from what was specified for your user account, you will see a message to connect using alternative credentials. You will need assistance from someone who can enable the use of alternative credentials for your user account.

Upgrading a Standard Repository from a Previous Version

If you have a standard repository that was created in a previous version of the software, you can simply open it like any other standard database (**File > Open Database**). An upgraded copy will be created, with "_V19" appended to the filename. For example, if you open "MyDatabase.rsr10," the Version 2019 database that is created will be called "MyDatabase_V19.rsr19."

It is important to remember that upgrading a standard repository will not automatically upgrade any library or template files that you may have been using in conjunction with that database, as these file types are stored separately. Please refer to the documentation on those files for information on upgrading them.

Enterprise Repositories

Unlike standard repositories, enterprise repositories require an established database server with Oracle or Microsoft SQL Server. This allows you to store more analysis information in the same repository and support access by many more simultaneous users. ReliaSoft applications are compatible with Microsoft SQL Server 2008 or later and Oracle 10g or later (including the free Express editions of all of these).

To establish a database server, you will need to purchase an appropriate license package from Oracle or Microsoft. The license, as well the IT maintenance and support needed to establish the database server, is separate from the license agreement for ReliaSoft software and must be negotiated directly with Oracle or Microsoft.

As an alternative, you may choose to use the free versions of Oracle or SQL Server if the expected load for the database fits within the limited capabilities of the Express edition (as specified by Oracle/Microsoft). With the free editions, you can establish a functioning enterprise database on your own without making a large investment of time and resources. If your organization’s needs grow beyond the capabilities of the Express edition, you can then upgrade to a more robust version with the appropriate IT infrastructure and support.

Tip: Although we cannot provide full documentation and support for third-party database platforms, we do provide a limited number of resources as a convenience for users who wish to explore the
Chapter 2: Repositories and Projects

The following topics will be of interest to database administrators:

- Creating a New Enterprise Repository
- SQL Server Logins or Impersonation
- Upgrading an Enterprise Repository from a Previous Version
- ReliaSoft Admin Tool

The following topics will be of interest to all enterprise repository users:

- Creating an Enterprise Repository Connection File (*.rserp)
- Monitoring Connection Speed

Creating a New Enterprise Repository

If your organization already has established a database server with Oracle or Microsoft SQL Server and you have the permissions necessary to create databases on the server, you can create a new enterprise repository by choosing File > Manage Repository > New Enterprise Repository.

Tip: If you need to be able to create an enterprise database without using a ReliaSoft desktop application (i.e., without taking up one of the available license seats), you can access this same feature from the ReliaSoft Admin tool.

You can choose to create the new database in either Oracle or Microsoft SQL Server.

If you choose SQL Server, you will be required to enter:

- Server Name: The name of the Microsoft SQL Server implementation where the new database will be created. Note that if you are using SQL Server Express, the server name is usually your login for that computer followed by \SQLEXPRESS (e.g., Username\SQLEXPRESS).
- Database Name: The name of the new database that will be created.

Options:
• **Encrypt communication** secures the connection information between the ReliaSoft application and the enterprise database.

• **Trust server certificate.** Select this option if the server has a self-signed certificate.

If you choose **Oracle**, you will be required to enter:

• **Port, Host** and **Service** identifiers for the Oracle server where the new database will be created.

• The **Schema** of the new Enterprise database.

• The **Password** for the new enterprise database schema. If you are including special characters in the password, you must include quotes around each special character when entering the password.

• The administrative username and password for the Oracle server (entered in the **Admin Information** area).

For either server type, select the **Import from existing repository** check box if you want to import entire projects and other data from an existing database.

Click **OK** to create the database. The database will not open automatically; you must connect to it. (See Connecting to an Existing Enterprise Repository.)

Connecting to an Existing Enterprise Repository

If your organization has already created an enterprise database on Oracle or SQL Server and you have an active user account, you can use an enterprise repository connection file (*.rserp) to connect with the database. You can create this file yourself or use a file that has been created by someone else.

Creating a Connection File

To create a connection file, choose **File > New > Enterprise Repository Connection File.**

This command creates an enterprise repository connection file (*.rserp) that is stored locally on your computer; the file contains all of the necessary information for connecting to the enterprise database.

Enter a name for the connection file, then choose the database type and version.

• For a SQL Server database:
Chapter 2: Repositories and Projects

- Select **Encrypt communication** if you want to encrypt the connection between the application and the database.

- Select **Trust server certificate** if the server has a self-signed certificate.

- Select **Use impersonation** if you want the connection file to impersonate a Windows user account with a SQL Server login that can be shared by multiple users. This connection file can then be distributed to any user who does not have his/her own individual SQL Server login and is not part of a Microsoft Active Directory® group that has a login. (See SQL Server Logins or Using Windows Impersonation.)

- For an Oracle database, enter the port, host and service identifiers, the database schema and the password for the enterprise database schema.

- If you are including special characters in the password, you must include quotes around each special character when entering the password.

Note: If you want to encrypt the connection for an Oracle implementation, you must set the encryption type to either "requested" or "required" for the Oracle database. For more information, please consult the Oracle documentation (e.g., https://docs.oracle.com/cd/B19306_01/network.102/b14268/asoconfg.htm#i1007808).

Using an *.rserp File to Connect to an Enterprise Repository

If you have used the connection file recently, choose File > Recent and then select the file in the Recent Repositories list.

Otherwise, choose File > Open Repository and then browse for the *.rserp file.

If you are unable to connect to an enterprise repository, you may be encountering any of the following issues:

- **No access to the repository.** If you have not been given access to the repository, you will see a message stating that your account in the repository is not active or not assigned to at least one security group. You will need assistance from someone who can create and update user accounts (see Managing User Accounts).

- **Windows authentication failed.** If your Windows login (domain and username) is different from what was specified for your user account, you will see a message to connect using alternative credentials. You will need assistance from someone who can enable the use of alternative credentials for your user account.
Chapter 2: Repositories and Projects

- **Cannot connect to the server or login failed.** Server-related issues may occur for several reasons, and you may see various messages pertaining to the situation. Common issues are:

 - You do not have a network connection or you may have entered the incorrect database name or server name in the connection file.

 - The SQL Server database resides in a different domain than the one you have used to log in to Windows and your network cannot recognize the domain name you have entered. Depending on your network configuration, you may be able to connect using either the "fully qualified domain name" (FQDN) or the IP address for the server.

 - In SQL Server databases, a login issue may occur if your username is not associated with a SQL Server Login. (See [SQL Server Logins or Using Windows Impersonation](#).)

 - The server is not configured to allow remote connections, has certain firewall settings or is experiencing other issues.

 Note: If you get an "error occurred when reading the connection file" message, the connection file may be corrupted or is using old encryption. You can create a new connection file by choosing **File > New > Enterprise Repository Connection File.**

SQL Server Logins or Using Windows Impersonation

Connecting with a SQL Server database via Windows authentication requires a "SQL Server login" that allows the database platform to recognize the user and gives access to the Synthesis repository. There are three ways that a user account may be recognized by SQL Server:

- **Individual Login:** The user has an individual SQL Server login that is associated directly with his/her Windows username.

- **Group Login:** The user belongs to an Active Directory group that has a SQL Server login shared by all members of the group.

- **Use Impersonation for Connection File:** The user does not have an individual or group login but he/she connects to the database with an enterprise connection file (*.rserp) that impersonates another Windows user account that does have a SQL Server login.

Your organization may choose to use any or all of these methods for your implementation (e.g., some users may have their own individual logins, while other users connect using Windows identity impersonation). This document provides an overview of all three options.
Chapter 2: Repositories and Projects

Option 1: Creating Individual SQL Server Logins
If you choose to create individual SQL Server logins for some or all of the user accounts, you have two options. (For details and instructions on performing these tasks in SQL Server, see https://www.reliasoft.com/using-sql-enterprise-databases.)

1. A database administrator for SQL Server can create SQL Server logins in advance for every potential user and give the logins access to the application database (at least the db_datareader and db_datawriter roles are required). This would be performed directly in SQL Server (not via one of the ReliaSoft applications).

2. A database administrator for SQL Server can grant the appropriate level of database authority for creating SQL Server logins and database roles (e.g., securityadmin or sysadmin) to any user who has the ability to create user accounts in the Synthesis repository. The additional authority would be added directly in SQL Server. Then, when any of these administrative users creates a new user account via the ReliaSoft application, the required SQL Server login can be created and the application database roles can be assigned automatically at the same time.

If you are using the first approach, clear the Create SQL Server login check box that is displayed when you are adding or importing a user account. If you are using the second approach, you must select this check box.
Tip: If the user already has a SQL Server login and access to the application database, it does not matter whether you select or clear the Create SQL Server login check box because the application attempts to create the login only if one does not already exist.

Furthermore, if the user who is creating the user account does not have the necessary level of database authority in SQL Server, the login will not be created even if the check box is selected.

Option 2: Using a Group Login

If the user belongs to an Active Directory group that has a SQL Server login shared by all members of the group and that group has access to the application database, you can clear the Create SQL Server login check box that is displayed when you are adding or importing a user account.
For example, base installations of Microsoft SQL Server Express 2008 include the "BuiltIn\Users" Active Directory group as a SQL Server login by default. This means all users with a Windows account for that domain will be able to log in to the enterprise database with no need to create individual SQL Server logins in SQL Server Express. However, it will still be necessary to grant access for this group login to the application database (at least the db_datareader and db_datawriter roles are required).

Option 3: Using Windows Impersonation for the Connection File

If you choose to have some (or all) users connect to the SQL Server database with a connection file that impersonates a shared Windows user account that has a SQL Server login, you must do the following:

- A Windows network administrator must establish the shared user account on Windows.
- A database administrator for SQL Server must create a SQL Server login for the shared Windows user account and grant this login access to the application database (at least the db_datareader and db_datawriter roles are required).
- A user must create an enterprise repository connection file that impersonates the shared Windows user account:
 1. Choose **File > New** then click **Enterprise Repository Connection File**.
 2. Under **Repository Connection Settings**, select **Microsoft SQL Server (2008 or later)** from the drop-down list and then select the **Use impersonation** check box.
 3. Enter the server and database name for the SQL Server database, then enter the domain, username and password for the shared Windows account that users will need to impersonate.
 4. Click **OK** to create the connection file (*.rserp). It will be stored in the location specified under **Connection File Name**. Note that the default filename will be “SQL_(Server Name)_(Database Name),” but you can assign any name that fits the process your organization will use for distributing the file to users. (Note that while the window shown next is for Weibull++, the settings are the same for all ReliaSoft applications.)
Once you have created a connection file that impersonates the shared Windows user account, you can distribute the file to any user who needs it. To connect to the repository using this file, the user can:

1. Choose **File > Open Repository** and browse for the connection file.
2. Click **Open** to connect with the repository.

After the first connection, this *.rserp file will be saved in the list of recent repositories, which can be accessed by choosing **File > Recent**.
Chapter 2: Repositories and Projects

Note: For the purpose of being recognized by SQL Server and accessing the application database, the user will be impersonating the shared Windows login. For the purpose of performing actions via the ReliaSoft applications, the user’s actions will be governed by his/her own user account in Synthesis. In other words, multiple users can connect with the database using the same enterprise connection file, but their activities within the ReliaSoft applications will be governed by the permissions established in their own individual user accounts, and any changes made to the analysis data will be recorded in the application under their own usernames.

Enterprise Repository Connection Speed

If the ReliaSoft desktop application is exhibiting slow performance when you’re connected to an enterprise repository, the issue may be related to your network connection. The MDI status bar displays a connection speed indicator on the lower right side of the window.

![Connection Speed Icon](image)

The following icons are used to indicate the connection speed. In cases of poor network performance, you will need to request assistance from the IT support group responsible for the server.

- **< 30 ms:** Good (acceptable performance)
- **30 - 70 ms:** OK (may exhibit some delays in operations, opening/closing windows, etc.)
- **70 - 110 ms:** Slow (will exhibit some delays in operations, opening/closing windows, etc.)
- **110 - 150 ms:** Very slow (will exhibit significant delays in operations, opening/closing windows, etc.)
- **> 150 ms:** Extremely slow (will result in unacceptable performance and usability)

Upgrading an Enterprise Repository from a Previous Version

If you have an existing enterprise database that was created in Version 8 or later of the ReliaSoft applications, you can transfer or convert all of the existing data into a new database that is compatible with the latest version.

All of the same requirements for [creating a new enterprise database](http://xfmea.reliasoft.com) apply here (e.g., you must have an established database server and the necessary permissions to create a database on the server). In addition, you must be a member of the [Admin group](http://xfmea.reliasoft.com) in the database to perform the task.
Upgrading an enterprise repository will also upgrade any library files and/or templates that are stored within that database.

Tip: If you need to be able to upgrade an enterprise database without using a ReliaSoft desktop application (i.e., without taking up one of the available license seats), you can access this same feature from the ReliaSoft Admin tool.

Upgrading from Version 9 or Above
It is strongly recommended that you create a backup of the enterprise repository to be upgraded. The upgrade process converts the database itself to the latest version. This change cannot be undone.

To upgrade the database, choose File > Manage Repository > Upgrade Enterprise Repository.

In the window, specify the enterprise database that you wish to upgrade. Click OK to start the process.

Upgrading from Version 8
You do not need to create a backup before upgrading a Version 8 enterprise repository. The upgrade process does not involve a direct conversion of data, but rather copies over all existing data into a new database. This complete switch to a new database is required in order to support the exclusive features in the latest version.

To upgrade the database, open the latest version of the ReliaSoft application and choose File > Manage Repository > Upgrade Version 8 Repository.

Use the left side of the window to specify the Version 8 enterprise database that you wish to upgrade. Use the right side of the window to define the new Version 2019 enterprise database that the existing data will be copied into. Click OK to start the upgrade.

ReliaSoft Admin Tool
The Synthesis Platform includes an admin tool that allows a database administrator to set up and manage enterprise databases without requiring a software user license or an activated ReliaSoft desktop application.

To use the ReliaSoft Admin tool, your organization must have already established a database server with Oracle or Microsoft SQL Server, and you must have the permissions necessary to create databases on the server.
Chapter 2: Repositories and Projects

To access the tool, open the Windows Start menu and choose ReliaSoft 2019 > Additional Tools > ReliaSoft 2019 Admin from the programs list. Alternatively, you can open the Windows Start menu and type ReliaSoft 2019 Admin in the search bar.

The following features from the ReliaSoft desktop applications are available in the admin tool.

- Creating a new enterprise repository
- Upgrading an enterprise repository from a previous version

Manage user accounts:

- Adding and editing user accounts
- Importing users from Active Directory
- Creating alternative credentials
- Editing user login and contact info
- Managing security groups

- Configuring the XFRACAS or SEP applications on a web server. For details, please consult the implementation guides for those web applications.

Projects

In Synthesis repositories, projects serve as a way to keep related analyses together. Each project can contain analyses (e.g., folios, diagrams, plots, FMEAs, etc.), a Project Planner, resources that can be shared between analyses (e.g., models, tasks, actions, etc.) and attachments.

Any project can be opened in any ReliaSoft application; however, application-specific analyses (e.g., folios in Weibull++, diagrams in BlockSim, etc.) are visible only in the application(s) that can edit them.

Creating and Managing Projects

This topic describes how to create and manage the projects that are accessible to you via the project list (View > Project Manager > Show Project Manager). This depends on your permissions in the database and any security that has been defined at the project level.
There are three types of projects: **private, public or reference**. In addition, a project may be **locked** or **checked out** at any given time. Each type of project is displayed under the appropriate heading in the project list:

![Project List]

Tip: The Manage Projects window (**Project > Management > Manage Projects**) allows you to perform administrative tasks for multiple projects all at once, and to manage the private projects of other users. (See [Manage Projects Window](#).)

Creating a New Project

When you create a new project, you must specify whether it will be public, private or reference. Select or right-click the appropriate heading in the project list and (i.e., Private, Public or Reference), and then choose **Project > Management > Create Project**.

The selected project type will be displayed at the bottom of the **Project Properties window**. If desired, you can change the selection before clicking **OK** to create the project.
Tip: If you later need to change the project type, select the project and choose Project > Security > [Make Private, Make Public, or Make Reference]. The same commands are also available in the Manage Projects window.

Duplicating Projects
To duplicate an existing project, select it and choose Project > Management > Duplicate Project.

This command will create an exact duplicate of the original project with a name that contains an increment number (e.g., Project_1, Project_2, etc.). Note that duplicate projects do not retain the security settings of the original project.

Deleting Projects
To delete a project, select it and press DELETE or choose Project > Management > Delete Project.

To make sure that your analysis information is not deleted by mistake, you will always be prompted to confirm before proceeding. By default, the project will be moved to the recycle bin, which will give you a chance to recover it later if needed. If you want to permanently delete the project now (no way to undo unless you have a backup or restore point), clear the Send project to recycle bin check box in the confirmation window.

Note: You cannot delete a reference project if any of its resources are in use, including by projects in the recycle bin.

Project Properties
The Project Properties window will be displayed when you create a new project or when you choose Project > Management > Edit Project Properties.

The options available in this window will vary depending on which application you are using and whether the database has login security enabled. For MPC, see MPC’s Project Properties (below). For all other ReliaSoft desktop applications, this may include:

- General Tab
Chapter 2: Repositories and Projects

- **Security Tab** (available only for public/reference projects in secure databases)
- **Configurable Settings Tab** (only in XFMEA/RCM++/RBI)

In addition, the status bar at the bottom of the window always displays the following information:

Project Owner: The user who has been identified as the project owner. In a secure database, the ability to edit the project properties is restricted to the project owner and to users with the relevant "manage all projects" permissions.

Last Update: The time and date the project was last changed/updated, and the user who made the change. This considers any change to any of the analysis data in the project (not just the project properties).

General Tab
The General tab contains the following options:

- **Name** is the identifier for the project that will appear in the current project explorer and in many other windows and reports throughout the software. This field is required and cannot contain any of the following characters: \ / : " * ? < > |.

- **Description** and **Remarks** can contain more detailed notes or information about the project.

- **Proprietary Label** can contain a copyright or distribution statement, if desired. This label may appear in the footer of some reports generated in XFMEA/RCM++/RBI or MPC.

- **Project Category** allows you to assign a project category that can be used to filter the projects displayed in the project list and in many other windows throughout the software.

In XFMEA/RCM++/RBI, this tab also contains:

- **FMEA Structure** determines how the software will display the effect and cause records in the FMEA hierarchy. This is applicable only in XFMEA/RCM++/RBI. (See Choosing the FMEA Structure in the XFMEA/RCM++/RBI documentation.)

- **Select Profile from Library** displays a list of all profiles that have been defined in the active library. When you choose a profile from the list, all of the configurable settings for the project will be set/reset based on the settings that have been predefined for that profile. If you are editing a project, the current profile is shown in brackets. (In a secure database, the ability to add and edit a profile is available only for users with the "Manage profiles and templates in XFMEA/RCM++/RBI" permission.)
Chapter 2: Repositories and Projects

Security Tab

The Security tab is available only when you are working with a public or reference project in a secure database. For a full discussion on how to use these settings, see *Planning Your Security Approach*.

For quick access to the Security tab, you can select the project in the project list and choose *Project > Security > Project Security*.

Configurable Settings Tab

The Configurable Settings tab is available for XFMEA/RCM++/RBI only. It provides access to all of the configurable settings that have been defined for the current project, based on the profile that was selected on the General tab.

This tab allows you to make specific changes that will apply to the current project only. For example, if you are using a predefined profile but want to make a change to the interface style for this particular project only, you could click the **Edit** icon associated with the **Interface Style** drop-down list in the **Interface Settings** area.

It is important to note that any change to the Configurable Settings page will update the settings for the current project, but it will not alter the original profile. If you want the project’s current settings to be available as a new profile in the active library, click the **Send Settings to Library** button and then type the name and description for the new profile that will be created.

In the **Enable Legacy Analyses** section, you can choose whether to allow users to create and use DVP&R or DRBFM analyses in the project. These settings are not part of the profile and may be different for each project. (See *Design Verification Plans (DVP&Rs)* and *Design Reviews Based on Failure Mode (DRBFMs)* in the XFMEA/RCM++/RBI documentation.)

MPC’s Project Properties

For users of MPC, the interface has been customized to display only the information that is directly relevant for MSG-3 analyses. This includes the **Name**, **Description**, **Remarks** and **Project Category**. In addition, you will be able to define the following:

- **Short Description** appears in the header of the Standard report template. It is not applicable for Dassault or Sukhoi reports.
• **Proprietary Label** appears in the footer of the Standard report template. It is not applicable for Dassault or Sukhoi reports.

• **MSG-3 Guidelines** displays a list of the available MSG-3 guidelines that can be used for the systems and powerplant analysis.

 • In most cases, the version that you select will not have any impact on the MSG-3 logic displayed in the interface and print-ready reports.

 • The only substantive difference occurs when you select MSG-3 Revision 2002.1 because this older version of the guideline uses slightly different titles for two of the maintenance significant item (MSI) questions, and lists the questions in a different order.

• **Model/Equipment/Effectivity** allows you to enter the information that will appear on the title page of the Dassault and Sukhoi templates.

Project Owner

For each project in a Synthesis repository, one user will be assigned as the *project owner*. By default, the owner will be the user who created the project, but this can be changed when needed.

In a **secure database**, being the project owner means that you have full permissions over the project. This includes the ability to edit the project properties, add/edit/delete project items and resources, lock and unlock, set security settings, create restore points and delete the project. These permissions are always in effect regardless of the **project security settings** or **item permissions** that may be in place.

Changing the Project Owner

To change the owner, select the project in the project list and choose **Project > Security > Change Owner**.

In a secure database, this is available only for users with the applicable *"manage all projects" permissions*.

Identifying the Project Owner

There are three ways to identify the current owner of a project:

• Use the filters in the **project list** to filter and/or group projects based on the project owner. For example:
Chapter 2: Repositories and Projects

- The Project Properties window (Project > Management > Edit Project Properties) displays the name of the current owner in the status bar at the bottom of the window.

- The Manage Projects window (Project > Management > Manage Projects) displays a list of all projects and their owners in a table format. You can use custom filters to filter, sort and/or group the list based on the project owner.

Public, Private and Reference Projects
In Synthesis repositories, there are three types of projects you can create:

- A **public** project may be accessible to any user who has access to the database, depending on the security settings that have been implemented.

- A **private** project can be viewed and edited only by the project owner. The project list shows only your own private projects, while the Manage Projects window provides the
ability to manage all users’ private projects (including delete, lock/unlock or changing the project type).

- A **reference** project is like any regular public project, except that you can share its resources and FMEAs with other projects in the database. This gives you a pool of resources that can be used throughout the database by specified users (based on the security settings for the reference project), while allowing you to maintain fully functional analyses within the reference project itself. (For more information, see Local, Global and Reference Resources, and Linked FMEAs in the XFMEA/RCM++/RBI documentation.)

In the project list, each type of project is displayed under the appropriate heading, as shown in the following example.

![Project List](image)

Note: In MPC, the Reference heading will appear only if reference projects already exist in the database (created by another ReliaSoft desktop application). You cannot create a new reference project or convert an existing project into a reference project in MPC.

Setting the Initial Project Type

When you create a new project, you must specify whether it will be public, private or reference. Select or right-click the appropriate heading in the project list and (i.e., Private, Public or Reference), and then choose **Project > Management > Create Project.**
The selected project type will be displayed at the bottom of the Project Properties window. If desired, you can change the selection before clicking OK to create the project.

<table>
<thead>
<tr>
<th>Public Project</th>
<th>Private Project</th>
<th>Public Project</th>
<th>Reference Project</th>
</tr>
</thead>
</table>

Changing the Project Type
To change the project type for one project, select it in the project list and choose Project > Security and then one of the following options:

- ![Make Private](image)
- ![Make Public](image)
- ![Make Reference](image)

To change the project type for multiple projects simultaneously, use the Manage Projects window instead.

Locked and Unlocked Projects
In all Synthesis repositories, a project can be locked to prevent users from editing the data. If a project is locked, it will be moved to the Locked heading in the project list and it cannot be edited by any database user unless it is unlocked again.

In a secure database, locking and unlocking a project are available only if the user a) is the project owner, b) has the "Lock or check out project" permission for the project or c) has the applicable "manage all projects" permissions.

Locking a Project
To lock a project, select it in the project list and choose Project > Security > Lock Project.

When a project is locked, all database users (including the user who locked the project) will have read-only access to the project. In addition, a locked project cannot be deleted or have its properties and public/private/reference status edited.
Unlocking a Project
To unlock a project, select it in the project list and choose Project > Security > Unlock Project.

Tip: The Manage Projects window allows you to select multiple projects and lock or unlock them all at once.

Check In and Check Out Projects
In all Synthesis repositories, both private and public projects can be checked out to temporarily allow one particular user to work on a project independently for a period of time and/or to work on a computer that is not connected to the network where the shared database resides (e.g., if you need to work on the project while you’re out of the office). When a project is checked out, two things happen:

- An editable copy of the project will be saved into a standard database (*.rsr19) in the specified "Checked Out" folder on your local computer. This database will have the same name as the project.

- The original project will be set to read-only and moved under the Checked Out heading in the project list. This allows other users who would normally be able to access the project to see that it is currently being edited exclusively by one particular user. It also provides read-only access to the latest version of the project at the time it was checked out so those users can query, copy data, etc. while you’re editing the project "offline."

You can then edit the project as needed in the standard database and check the project back in when you’re finished.

IMPORTANT: If the project uses resources or FMEAs from a reference project (e.g., linked FMEAs, models, URDs) the links won’t be maintained when you check out the project. Any linked resources/FMEAs will be replaced with local copies of the resources/FMEAs and stored directly within the project. See also Local, Global and Reference Resources.

Specifying the "Checked Out" Folder
By default, projects will be checked out to the default Documents folder on your computer (e.g., My Documents\ReliaSoft\Files\Checked Out).

To change this location, open the Backup/Check Out Options page of the Application Setup window and browse for a new default path under Check In/Out. Keep in mind that anyone who
has access to the folder will have full access to the checked out project; however, only the user who has the project checked out will have the ability to check in the project.

Tip: If you need to work on the project from a different computer after it has been checked out to the local folder, you will simply need to make sure that the latest copy of the standard database file is saved back to the exact same check-out location and filename before you check the project back in.

Checking Out a Project

To check out a project, select it in the project list then choose **Project > Management > Check In/Out > Check Out**.

In a secure database, this is available only if the user a) is the project owner, b) has the "Lock or check out project" permission for the project or c) has the applicable "manage all projects" permissions.

Checking in a Project

To check in a project, select it under the Checked Out heading in the project list and choose **Project > Management > Check In/Out > Check In**.

Note that when you check in a project, the software creates a restore point, which is an exact replica (i.e., a backup) of the project before it was checked out. This allows you to restore the project to its prior state when and if needed. The restore point will include a description of the user who checked out the project, as well as the date and time of the check out. (See **Restore Points**.)

Undo Check Out

To discard changes and restore the project to the state it was in before it was checked out, select the project under the Checked Out heading in the project list and choose **Project > Management > Check In/Out > Undo Check Out**.

In a secure database, this is available only if the user a) is the user who checked out the project, b) is the project owner or c) has the applicable “manage all projects” permissions.
Manage Projects Window

The Manage Project window displays a list of all the projects that currently exist for the database and allows you to perform administrative tasks for multiple projects all at once. If you have created custom project filters, you can apply those same filters in this window.

To open the Manage Projects window, choose Project > Management > Manage Projects.

In a secure database, this is available only to users with the applicable "manage all projects" permissions. Only the type of project that you have permissions for will be displayed. Projects that are under the Locked, Checked Out and Recycle Bin headings will be visible only if you have permissions for all three project types.

Tasks You Can Perform

Some of the tasks you can perform in this window include:

- See a list of private projects created by other users (and perform any administrative tasks that may be needed for those projects).
- Change multiple public projects to private all at once, and vice versa.
- Change the owner for multiple projects all at once.
- Apply the same changes to the project properties for multiple projects all at once.
- Review and edit the security settings (if applicable) for multiple projects all at once.
- Delete, restore, lock and unlock, or undo check out for multiple projects all at once.
- Review and sort projects based on the user who made the last change to a project, the date/time of the last change and the last application that was used to make the change.

Tip: The Manage Projects window allows you to edit the properties of a project that is currently open or in use. When you make a change, the user who has the project open will see the change you have made when the database refreshes (the refresh happens automatically whenever the user makes a change, such as closing a window, selecting a different item, etc.).

Tools

The Manage Project window contains the following commands:

Project

Close closes the Manage Projects window.
Edit Project Properties allows you to view and edit the properties of the selected project(s).

Delete Project permanently deletes the selected project(s) and bypasses the recycle bin. There is no undo for delete unless you have a stored backup or restore point.

Restore Project is available only when you have selected project(s) under the Recycle Bin heading. Each selected project will be recovered from the recycle bin and restored to its original location in the project list.

Security

Change Owner assigns a different database user to be the owner for the selected project(s). (See Project Owner.)

Project Security is available only for public and reference projects in secure databases. It opens the Project Properties window with the Security tab active, where you can specify the user accounts that can view/modify the selected project. (See Planning Your Security Approach.)

Lock Project moves the selected project(s) into the Locked heading of the project list. When a project is locked, all database users (including the user who locked the project) will have read-only access to the project. In addition, a locked project cannot be deleted or have its properties and public/private/reference status edited. To unlock project(s), choose Unlock Project. (See Locked and Unlocked Projects.)

Make Private moves the selected project(s) into the Private heading of the project list. To move private project(s) to the Public heading, choose Make Public. (See Public, Private and Reference Projects.)

Make Reference moves the selected project(s) into the Reference heading of the project list. To move reference project(s) to the Public heading, choose Make Public.

Check Out

Undo Check Out discards all changes made to a checked out project and restores it to the state it was in at the time it was checked out. (See Check In and Check Out Projects.)

Excel

Send to Excel exports the data currently displayed in the Manage Projects window to an Excel spreadsheet.
Recycle Bin
The recycle bin is a temporary storage location for projects that have been deleted. It gives you a chance to restore the deleted project to its original location, if needed. Projects in the recycle bin are stored until you either empty the recycle bin or delete each individual project from the recycle bin.

Sending Projects to the Recycle Bin
Whenever you delete a project from a database, a confirmation window like the one shown next will appear.

If you want to move the project to the recycle bin, make sure the Send project to recycle bin check box is selected. If you want to immediately and permanently delete the project, clear the check box. Remember that once you empty or delete a particular project from the recycle bin, there will be no way to get it back unless you have previously created a backup or restore point.

Restoring and Deleting Projects from the Recycle Bin
In a secure database, the ability to restore and delete projects from the recycle bin is available only if the user a) is the project owner, b) has the "Delete project" permission, or c) has the applicable "manage all projects" permissions).

To restore a project from the recycle bin, select it and choose Project > Management > Recycle Bin > Restore Project.

To permanently delete a project in the recycle bin (no way to undo unless you have a backup or restore point), select it in the recycle bin and choose Project > Management > Recycle Bin > Delete Project.
To permanently delete all projects currently in the recycle bin (no way to undo unless you have a backup or restore point), select the Recycle Bin heading in the project list and choose Project > Management > Recycle Bin > Empty Recycle Bin.

Security

All enterprise databases use login security, meaning that the ReliaSoft applications use Windows authentication (or alternative credentials) to identify each user and control the user’s access via security groups. For a standard database, you can choose whether to apply login security; if you don’t, any user who has read/write access to the file will have full permissions throughout the database.

By default, each user in a secure database will have the same set of permissions for every public/reference project in the database (e.g., Jane Engineer has read-write access to all projects, Bill User has read-only access to all projects, and so on). Alternatively, you can configure the database to provide different permissions for different public/reference projects, if desired (e.g., Jane Engineer has read-write access to all of Department A’s projects, but she has read-only access to other projects). With either approach, you also have the option to further limit access for specific project items (e.g., folios, diagrams, system hierarchy items, etc.) if needed. There are many different ways these options can be configured depending on your organization’s particular needs.

Tip: If you need to be able to manage an enterprise database without using a ReliaSoft desktop application (i.e., without taking up one of the available license seats), you can access the same security features from the ReliaSoft Admin tool.

Applying Login Security

All enterprise databases use login security. For standard databases, there are two ways to apply login security if desired:

- Upon creating a new standard database (File > New), you can make it login secure by selecting the Apply login security check box.
• For an existing standard database, you can apply login security at any time by choosing File > Manage Repository > Users and Security and then clicking the Apply Login Security button at the lower left corner of the window.

When you create an enterprise database or apply login security to a standard database, you will automatically be a member of the Admin security group, which has full permissions throughout the database. You can then use the Users and Security window to add/edit/delete other user accounts and assign them to appropriate security groups.

Note: You cannot automatically remove security from a database once it has been enabled. However, you can create a new non-secure database and use the Import from existing repository check box to automatically import all of the data from the secure database to the non-secure one.

Planning Your Security Approach
In secure databases, there are two basic factors that determine what a typical user can see and do in the database: the security group(s) that the user account belongs to and the public/reference project security settings.

This topic discusses two general approaches you can use to configure the security groups and project security settings to fit your organization’s specific needs:

• Same permissions for all public/reference projects
• Different permissions for different public/reference projects
Tip: In addition to these considerations, it is also important to note the following: a) Users with the applicable "manage all projects" permissions (in any of the security groups that they belong to) will always have full project-level permissions for all public or reference projects in the database; b) The project owner will always have full project-level permissions within that particular project; and c) The item permissions can be used to further limit access to specific items within a project (e.g., folios, diagrams, system hierarchy items, etc.).

Same Permissions for All Public/Reference Projects

If you want each user to have the same set of permissions for all public/reference projects in the database (e.g., Jane Engineer has read-write access to all projects, Bill User has read-only access to all projects, and so on), follow these steps:

1. **User Accounts and Security Groups**: Assign each user account to an appropriate security group. This can be one of the four security groups that are created by default in each new Synthesis repository — Admin, Power, User (Read/Write) or View (Read-Only) — or you can configure new or existing security groups to meet your particular needs.

Select or clear the **Allow access to projects with repository-level security** check box. If some of the projects in the database will continue to use repository-level security, this allows you to specify whether each user will be able to access those projects.

- If the option is selected (default), the user will be able to access any public/reference project that is set to use repository-level security, with the combined permissions from any of the assigned security groups.

- If the option is cleared, the user will only be able to access a project if it is specifically assigned to a security group that he/she belongs to, or if the user account is specifically assigned to the project.
2. **Project Security**: Accept the default option on the Security tab of the Project Properties for all public and reference projects (Project > Security > Project Security). Note that if a user belongs to more than one security group (and the Allow access to projects with repository-level security check box is selected for his/her user account), that user will have the combined permissions of those groups in any project that is set to repository-level security.
Different Permissions for Different Public/Reference Projects

If you want the same user to have different permissions for different public/reference projects (e.g., Jane Engineer has read-write access to all of Department A’s projects, but she has read-only access to other projects), follow these steps:

1. **Security Groups**: Create a security group for each distinct type of access that users might need in any particular public/reference project. Here’s a simple example:
2. **User Accounts**: Assign the appropriate security group(s) to each user account. For the example shown below, the user will have read/write permissions in projects that are assigned to "Department A," and read-only access in projects that are assigned to "Read-Only."

If some of the projects in the database will continue to use repository-level security, the **Allow access to projects with repository-level security** check box gives you the option to decide whether each user will be able to access those projects.

- If the option is selected (default), the user will be able to access any public/reference project that is set to use repository-level security, with the combined permissions from any of the assigned security groups.
Chapter 2: Repositories and Projects

- If the option is cleared, the user will only be able to access a project if it is specifically assigned to a security group that he/she belongs to, or if the user account is specifically assigned to the project.

3. **Project Security**: Assign the appropriate security group(s) and/or specific user(s) for every public/reference project in the database.

- When you assign a security group, every user who belongs to that group will be able to access the project with the permissions that are specified in the group.

- When you assign a specific user, the combined permissions from all of the security groups that the user belongs to will be displayed. Use the check boxes to select which of those permissions will be in effect for that user in this particular project.

For the example shown below, users from Department A will have read/write access (because they belong to the "Department A" security group), users from Departments B and C will have read-only access (because they belong to the "Read-Only" security group) and Fred Consultant will have read/write access (because he belongs to the "Consultants" security group and has been specifically assigned to have those permissions in this project).
User Accounts

Every person who will access a Synthesis repository, be assigned to some role in an assigned action, and/or receive alerts via e-mail or SMS message must have a personalized user account in the database.

- **In non-secure databases**, the software automatically creates an account for anyone who opens the file. Every user has full permissions throughout the database, including the ability to create, edit or delete other user accounts (e.g., so you can modify contact information or send alerts to someone who has not yet had an account created automatically).

- **In secure databases**, the accounts must be created and managed by users with the "Manage users and logins" permission. The security group(s) assigned to each account determines what the user can see and do in the database.

To view and manage the user accounts in a database, choose **File > Manage Repository > Users and Security**.
This topic describes how to use the Users and Security window to create, edit or delete/deactivate user accounts. The same window can also be used to enable login security for a standard database, and to manage security groups (permissions) for a secure database.

Built-in Find/Filter, Configuration and Grouping Tools
The Users tab of the Users and Security window offers the same filter, column configuration and grouping tools that are built in to other utilities that use a similar grid (e.g., the **Synthesis Explorer**, **Actions Explorer**, etc.). For details about how to use each feature, see:

- Finding and Filtering Records
- Configuring Columns
- Grouping Panel

Creating and Editing User Accounts
The Users tab of the Users and Security window displays a table of all user accounts that have been created in the database. You can use the **Add** or **Edit** buttons below the table to create or modify individual accounts.

You can also import user accounts from Microsoft Active Directory by clicking the **Active Directory** button. (See **Importing Users from Active Directory**.)

Keep in mind the following requirements when creating new user accounts for a secure database:

- In order to use Windows authentication, the user must be logged in to a computer with the same domain/username that is defined in the user account. If a user needs to connect to a database from a different domain, you can set up alternative credentials that will allow access without domain authentication. (See **Creating Alternative Credentials**.)

- In order to access the database, the user account must be assigned to at least one **security group**. (If you simply wish to send e-mail alerts to the user, a security group is not required.)

- For SQL Server databases, the username must be associated with a "SQL Server Login" that allows the database platform to recognize the user and give access to the application database. This can be accomplished with an individual login, a group login or Windows impersonation. (See **SQL Server Logins or Using Windows Impersonation**.)

The **Run As** button below the table allows you to change your current connection to run as the user currently selected in the table. This allows you to test that user's permissions to be sure
that they are set as you intended. Depending on the permissions that user has, you may have to close the repository and reconnect to it in order to change back to your own account.

Deleting or Deactivating User Accounts

If an account has never been used and you want to permanently remove it, select the account name from the list and click **Delete**.

If an account has already been logged in at least once (the **Last Login** column shows this information), attempting to delete the account will deactivate it instead. A deactivated account will not have access to the database.

You can manually deactivate an account by clearing the check box in the **Active** column for the account. To reactivate the account and give the user access to the database again, select the check box in the **Active** column.

User Login and Contact Information

The User Login and Contact Information window contains the contact information, alerts preferences and action resource details for an individual user. In a secure database, it also includes access settings (security groups and alternative credentials).

To view or edit your own user account, double-click your name in the MDI status bar or choose **My Portal > Users > My Profile**.
Chapter 2: Repositories and Projects

To view or edit any user account in the database, choose **File > Manage Repository > Users and Security**, then double-click any row in the Users table. (In a secure database, this is available only for users with the "Manage users and logins permission.")

All of the user account options are described below. Some of these settings cannot be modified when you are editing your own profile.

User Info Tab
- **Domain** and **Username** contain the credentials used by Windows authentication to identify the user and give him/her access to the database.

- **Contact Details.** Each user can update his/her own contact details, if desired. Note that the Display Name will appear in all projects, analyses and plots you create or modify in the database. Click the **Active Directory** button to update the contact details based on information stored in Active Directory.

- **User Image.** Each user can save a profile photo, which will appear in locations such as the **User Page** of My Portal. Saved images are resized to 100 x 100 pixels.

- **Security Groups** control the user’s access to the database. (See **Managing Security Groups**.)

- **Allow access to projects with repository-level security**
 - If the option is selected (default), the user will be able to access any public/reference project that is set to use repository-level security, with the combined permissions from any of the assigned security groups.

 - If the option is cleared, the user will only be able to access a project if it is specifically assigned to a security group that he/she belongs to, or if the user account is specifically assigned to the project.

For more information, see **Planning Your Security Approach**.

- **Update security groups upon login (if associated with Active Directory)**
 - If the option is selected (default), the user’s security groups will be assigned automatically based on his/her security group in Active Directory. (See **Associating Security Groups with Active Directory**.)

 - If the option is cleared, the user can be manually assigned to any of the available security groups.

- **Active.** Clear or select the check box to deactivate or activate the account. A deactivated account will not have access to the database.
Chapter 2: Repositories and Projects

Alerts/Actions Tab

- **Receive automated alerts.** Each user can choose to receive alerts via e-mail, SMS text message or ReliaSoft portal messages. (See *Watches and Alerts* and *What is Your SMS Address?*) Note that alerts via e-mail and SMS text are available only if a valid SMTP server has been defined for the database and the user account has an e-mail address/SMS contact defined.

- **When assigned to actions.** When a user account is assigned to an action (either as the Person Responsible or as part of the Team resource), the **Cost Category** and **Hours per Day** are used to calculate resource utilization and costs. (See *Costs and Man Hours.*

Alternative Credentials Tab

The Alternative Credentials tab is available only for secure databases. Select the check box to allow the user to bypass Windows authentication and connect to the database using an alternative username and password. (See *Creating Alternative Credentials.*

Importing Users from Active Directory

If your organization uses Microsoft Active Directory, this topic explains how to import username and contact information from the directory to create new user accounts in the Synthesis repository. (If you also wish to use Active Directory to manage the membership in security groups, see *Associating Security Groups with Active Directory.*

To import users from Active Directory, choose **File > Manage Repository > Users and Security,** click the **Active Directory** button, and then follow these steps:

1. Enter or select the domain name in the **Domains** field. If your organization’s directory is large, you may also choose to limit the search to specific groups by clicking **Load Groups** and then choosing an option from the drop-down list. You can also use the **Filter By** field to further limit the search. When you have specified the desired filters, click **Load Users** to update the table.
2. In the table of user accounts that match the filter criteria, select the check box for each user you want to create a account for. (The names of users who already have an account in the current database will appear grayed out.)

3. For secure databases only, use the **Import as Members Of** field to select the security group(s) that will be assigned to the new user account(s). If you skip this option now, you can assign security groups later for each individual account. (See **Managing Security Groups**.)

4. For SQL Server databases only, select the **Create SQL Server login** check box if you want to create an individual SQL Server login for each new user account. (See **SQL Server Logins or Using Windows Impersonation**.)

5. Click **Import** to create the account(s). After the process completes, the window will remain open to allow you to import additional users, if desired.

Creating Alternative Credentials

Secure databases use Windows authentication by default. This means that users must be logged in to a computer using the same domain and username specified for their user accounts. You can, however, allow specific users to bypass Windows authentication as needed. This may be useful for situations where:

- A user needs to work on a copy of a secure standard database on a computer that is not connected to the company’s network.

- A user needs to connect to an enterprise database from a different domain.

For these situations, you can set up alternative credentials for a user’s account that will allow that user to access the database without domain authentication. These credentials must be set up in advance, before the user attempts the connection.

If you have the "**Manage users and logins**" permission, you can create alternative credentials for a user account by following these steps:

1. Open the Users and Security window (**File > Manage Repository > Users and Security**). On the Users tab, select the account name from the list and click **Edit**.
2. In the User Login and Contact Information window, click the **Alternative Credentials** tab and then select the check box to enable alternative credentials.

3. With the setting enabled, create an alternative username and password for the account. The username and password must be unique within the database, and the password is Case Sensitive.

![Alternative Credentials](image)

Once you have created the credentials, instruct the user to enter this login whenever the database prompts for it. The database will ask for the alternative credentials whenever the user account cannot be matched based on domain authentication.

Tip: The first time you connect to a database using alternative credentials, the application will automatically remember the login information on your computer. If you wish to clear the saved login, you can click the **Clear Alternative Credentials** link on the **Other Synthesis Settings page** of the Application Setup.

User Groups

The User Groups window (formerly called “Notification Groups”) allows you to create and manage groups of users that can be assigned throughout the current database for:

- Recipients for [portal messages](#)
- Monitors for [assigned actions](#)
- Team members in the [Project Planning Resources](#)

To access the window, choose **File > Manage Repository > User Groups**.

In a secure database, this is available only for users with the “Manage users and logins” permission.
Adding or Editing a Group
The table displays a list of the user groups that have already been defined in the current database.

To add a new group, click Add.

To view or edit an existing group, double-click the row or select the row and click Edit.

The Available Users list shows all of the user accounts in the current database that are not yet assigned to the group. Double-click or use the buttons to move at least one user into the Selected Users list.

Deleting a Group
To delete an existing group, select a row and click Delete or press the DELETE key.

If the user group has been assigned to any existing actions, messages or project planning teams, the group will be removed automatically and those users will no longer be assigned in the affected records. There is no undo for delete.

Managing Security Groups
In a secure database, security groups control what users can see and do in the database. By default, the software includes four predefined security groups: Admin, Power, User and View. The Admin group, which has full permissions throughout the database, can neither be deleted nor have its permissions modified. For the other predefined groups, you can edit their permissions or replace them with new groups that fit the specific way the database will be used.

As discussed in Planning Your Security Approach, there are two basic approaches you can use:

- **Same permissions for all public/reference projects** – each user account is assigned to one security group and all public/reference projects use the default security option (repository-level security).

- **Different permissions for different public/reference projects** – each user account may be assigned to multiple security groups and each public/reference project may be accessed only by specific security groups and/or users.

Note: If your organization has implemented an SEP web portal for an enterprise repository and the site is configured to enable access by nCode Aqira users, a special "Aqira" security group will be created. This security group cannot be deleted, but you can modify the permissions that will be available to Aqira users. (See Allow Aqira Users to Access SEP.)
Creating, Editing or Deleting Security Groups
You can manage the security groups by choosing **File > Manage Repository > Users and Security**. (In a secure database, this is available only to users with the "Manage users and logins" permission.)

In the Users and Security window, click the **Security Groups** tab to see all the security groups that have been created in the database. Use the **Add**, **Edit** or **Delete** buttons below the table to manage the groups.

When you edit a security group, the left side of the Security Group window allows you to choose the permissions, while the right side shows all the users currently assigned to the group.

If you have selected to **Associate this security group with an Active Directory group**, the list of assigned users can be updated automatically, or you will only be able to manually import/assign users who belong to the designated Active Directory group. (See [Associating Security Groups with Active Directory](#).)
Permissions
Here is a summary of all the permissions that can be granted to a particular security group.

Basic permissions throughout repository
These permissions apply throughout the database if they are in any of the security groups that the user belongs to. These permissions do not depend on the security settings for a particular project.

<table>
<thead>
<tr>
<th>Permission</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create and own private projects</td>
<td>You can create and own private projects in the database that are accessible only to you. (Users with the "Manage all private projects" permission can still perform administrative tasks on all private projects, such as editing their properties, locking them, converting them to public projects, etc.)</td>
</tr>
<tr>
<td>Create and own public projects</td>
<td>You can create and own public projects that other users can view and edit (depending on the project security settings).</td>
</tr>
<tr>
<td>Create and own reference projects</td>
<td>You can create and own reference projects for sharing resources and FMEAs with other projects in the database (depending on the project security settings).</td>
</tr>
<tr>
<td>Create portal messages</td>
<td>You can create new messages and edit or delete the messages you have personally created via the Messages page in My Portal.</td>
</tr>
<tr>
<td>Export to another repository</td>
<td>You can export projects from the current repository as new projects in another repository.</td>
</tr>
<tr>
<td>Publish to SEP web portal</td>
<td>You can publish your progress, results and analyses from a given project to the SEP web portal, making the information accessible from any web-enabled device.</td>
</tr>
<tr>
<td>Open desktop apps from SEP web portal</td>
<td>You can use the Open buttons on the FMEAs and analysis summary pages in the SEP web portal to open those applications using Remote ReliaSoft.</td>
</tr>
<tr>
<td>Create/edit/delete SDW data collections</td>
<td>You can create, edit and delete data collections in the Synthesis Data Warehouse (SDW). This includes data extraction from XFRACAS as well as custom connections, and confers the ability to create dashboard layouts for custom connections.</td>
</tr>
</tbody>
</table>
Basic and advanced permissions at project level

A user can have these permissions in some projects but not others, depending on the project security settings. Regardless of the project security settings, these permissions are always automatically granted to the current project owner and anyone else that can manage the project.

<table>
<thead>
<tr>
<th>Permission</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>You can perform tasks that do not modify the data in the project (e.g., view the analysis, calculate metrics in a Quick Calculation Pad, export data, etc.).</td>
</tr>
<tr>
<td>Create/edit project items</td>
<td>You can create and edit items in a given project such as folios in Weibull++/ALTA, diagrams in BlockSim, system hierarchy items in XFMEA/RCM++/RBI, etc., as well as update the item properties.</td>
</tr>
<tr>
<td>Create/edit/delete own resources</td>
<td>You can create resources (e.g., URDs, models, etc.) and edit or delete any existing resources you have created.</td>
</tr>
<tr>
<td>Delete project items</td>
<td>You can delete any item in a given project (e.g., folios in Weibull++/ALTA, diagrams in BlockSim, system hierarchy items in XFMEA/RCM++/RBI, etc.).</td>
</tr>
<tr>
<td></td>
<td>This permission cannot be assigned unless you also have the "Create/edit project items" permission.</td>
</tr>
<tr>
<td>Create/edit project plans</td>
<td>You can create and edit project plans for a given project.</td>
</tr>
<tr>
<td>Create/edit/delete local resources</td>
<td>You can create, edit and delete any local resources in the project (not just the ones that you created).</td>
</tr>
<tr>
<td>Set project security</td>
<td>You can control who can view and edit a given project. This permission allows you to configure both project security settings and item permissions.</td>
</tr>
<tr>
<td>Edit project properties</td>
<td>You can use the Project Properties window to edit the name, description, category and other settings of a given project.</td>
</tr>
<tr>
<td>Lock or check out project</td>
<td>You can:</td>
</tr>
<tr>
<td></td>
<td>• Lock and unlock a given project.</td>
</tr>
<tr>
<td></td>
<td>• Check in and check out a given project.</td>
</tr>
</tbody>
</table>
Chapter 2: Repositories and Projects

Create restore points	You can utilize [restore points](http://xfmea.reliasoft.com) for a given project, which are exact replicas of the project at a particular point in time (i.e., backups).
Delete project	You can delete a given project.
Manage change logs in XFMEA/RCM++/RBI	You can enable and manage change logs within a given project. Change logs can be created for FMEAs, DVP&R, Control Plan and P-Diagram analyses in XFMEA, RCM++ and RBI. See [Change Logs](http://xfmea.reliasoft.com) in the XFMEA/RCM++/RBI documentation.
Review change logs in XFMEA/RCM++/RBI	You can implement electronic approval tracking for change logs within a given project. See [Electronic Approval Tracking](http://xfmea.reliasoft.com) in the XFMEA/RCM++/RBI documentation.
Administrative permissions throughout repository
These permissions apply throughout the database if they are in any of the security groups that the user belongs to. These permissions do not depend on the security settings for a particular project.

<table>
<thead>
<tr>
<th>Manage users and logins</th>
<th>You can:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Use the Users and Security window to add user accounts to the database and define security groups, as well as create alternative credentials for user accounts.</td>
</tr>
<tr>
<td></td>
<td>• Use the User Groups window to add and manage distribution groups for e-mail alerts, portal messages, action alerts and projecting planning resources.</td>
</tr>
<tr>
<td></td>
<td>• Use the Repository Logins window to view and export a history of database logins.</td>
</tr>
<tr>
<td></td>
<td>• Use the Reset "In Use" Flags window to clear the "in use" status for selected database users (not just your own).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manage project planning resources and working days</th>
<th>You can:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Use the Project Planning Resources window to manage the cost categories, teams, materials and facilities that are used for tracking resource utilization in Project Planner gates and actions.</td>
</tr>
<tr>
<td></td>
<td>• Use the Working Days/Holidays window to specify the business days that will be used for Project Planner gates and actions.</td>
</tr>
</tbody>
</table>

| Manage project/item categories | You can use the [Project/Item Categories window](#) to define the project and item categories that can be used for grouping and filtering projects and items in the database. |
Chapter 2: Repositories and Projects

<table>
<thead>
<tr>
<th>Manage other repository settings</th>
<th>You can:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Use the Unit Settings window to define the unit and measurement settings available for use in any project within the database.</td>
</tr>
<tr>
<td></td>
<td>• Use the Default Name Formats window to specify how default names for resources and blocks are created.</td>
</tr>
<tr>
<td></td>
<td>• Use the Task Types window in RCM++, RBI and MPC.</td>
</tr>
<tr>
<td></td>
<td>• In RCM++ and RBI, you can map the task types that are used only in RCM++/RBI to the task classes in the universal reliability definition (URD). See Task Types in RCM++/RBI in the RCM++/RBI documentation.</td>
</tr>
<tr>
<td></td>
<td>• In MPC, you can modify the abbreviations used for MSG-3 task types. See Task Type Abbreviations in MPC in the MPC documentation.</td>
</tr>
<tr>
<td></td>
<td>• Use the Repository Settings window to set some default settings for existing and new databases. This includes enabling e-mail alerts for the database, activating history logs, etc.</td>
</tr>
<tr>
<td></td>
<td>• Set up XFRACAS connection settings that allow ReliaSoft desktop applications to access the XFRACAS data stored in the database. This is available only for standard databases (*.rsr19).</td>
</tr>
</tbody>
</table>

Create/edit/delete global resources	You can create, edit and delete any [global resources](#) in the project (not just the ones that you created). In addition, you can transfer data from [XFRACAS to the SDW](#).
Approve actions	You can review and approve [actions](#), which are resources that allow you to track progress made in a project.
Manage all portal messages	You can edit or delete any messages that are visible to you via the Messages page in [My Portal](#). This includes any messages for which you are the creator or one of the recipients.
Manage dashboard layouts	You can create and save layouts for use in the [Dashboard Viewer](#) in Weibull++, BlockSim and RGA.
Manage profiles and templates in XFMEA/RCM++/RBI

This permission is available only in enterprise databases. You can:

- Use the Profiles/Library Manager window in XFMEA/RCM++/RBI to configure the predefined settings stored in the active library of the enterprise database. See Profiles/Library Manager in the XFMEA/RCM++/RBI documentation.

- Use the Templates Manager window in XFMEA/RCM++/RBI to configure report templates stored in the enterprise database. See Templates Manager in the XFMEA/RCM++/RBI documentation.

Manage Lambda Predict repository settings

You can:

- Use the FIDES Settings Manager window in Lambda Predict to configure the FIDES-related settings stored in the database. This applies to the FIDES prediction standard only (see FIDES Settings Manager in the Lambda Predict documentation).

- Use the Custom Derating Standards Manager window in Lambda Predict to create, edit or delete user-defined derating standards stored in the database. See Creating Custom Derating Standards in the Lambda Predict documentation.

- Use the MIL-217 Custom Connections window in Lambda Predict to define failure rates for user-defined connectors stored in the database. This applies to the MIL-217 prediction standard only. See MIL-217 Custom Connection Types in the Lambda Predict documentation.
Manage MPC Settings

You can:

- Use the Manage ATA Chapters window in MPC to define the systems and subsystems that are available for use in the database. See [Managing ATA Chapters](#) in the MPC documentation.

- Use the Manage Major Zones window in MPC to define the zones and major sub-zones that are available for use in the database. See [Managing Major Zones](#) in the MPC documentation.

- Use the Configurable Options for Systems and Powerplant Analysis window in MPC to enable or disable the display of some item properties and task properties fields. See [Configurable Options for Systems and Powerplant Analysis](#) in the MPC documentation.

- Use the Configurable Options for Structural Analysis window in MPC to customize the settings for environmental deterioration (ED) and accidental damage (AD) analyses that can be performed for any structural item in MPC Plus. See [Configurable Options for Structural Analysis](#) in the MPC documentation.

- Use the Configurable Options for Zonal and L/HIRF Analysis window in MPC to customize the settings for the standard zonal, enhanced zonal and L/HIRF analyses that can be performed for any zonal item in MPC Plus. See [Configurable Options for Zonal and L/HIRF Analysis](#) in the MPC documentation.

Manage all public projects

You have all the basic and advanced project-level permissions for public projects in the database. You can also change the [project owner](#) for any public project in the database.

Manage all reference projects

You have all the basic and advanced project-level permissions for reference projects in the database. You can also change the [project owner](#) for any reference project in the database.

Manage all private projects

You have all the basic and advanced project-level permissions for private projects in the database. You can also change the [project owner](#) for any private project in the database.
Associating Security Groups with Active Directory

If your organization uses Microsoft Active Directory (AD), you can give an AD group a specific set of permissions in the Synthesis repository. The members of the AD group can then access the database based on the set of permissions associated with the group.

In addition, the software offers the option to automatically update the permissions of a user whenever that user is added or removed from an AD group. For example, if a user is moved from AD group A to AD group B, his/her user account can be automatically updated with the permissions associated with AD group B. The changes will take effect the next time the user connects to the database via any of the ReliaSoft desktop applications. (Note that for users who will connect only via the SEP web portal, you’ll need to update their permissions manually either via a desktop application or the ReliaSoft Admin tool on the web server.)

Tip: Multiple security groups can be assigned to the same user account, if appropriate. For example, a user can be assigned to the "ABC Team" group (which is associated with Active Directory) and the "Read-Only" group (which is not). (See Planning Your Security Approach.)

Assigning Permissions to an Active Directory Group

To associate a security group with an Active Directory group, choose File > Manage Repository > Users and Security and click the Security tab. Then double-click the security group you want to edit.

In the Edit Security Group window, select the Associate this security group with Active Directory check box, and then specify the domain name and Active Directory group to use. There are two additional options, which apply only when users log in from a ReliaSoft desktop application:

- **Automatically update this security group's members.** If a user is added to the AD group, his/her user account will automatically have this set of permissions the next time the user logs in to the database via any of the ReliaSoft desktop applications. Likewise, if the user leaves the AD group, his/her user account will no longer have this set of permissions.

 If you do not want the changes in Active Directory to be automatically applied to a particular user, clear the Update security groups upon login check box in that user's account in the Synthesis repository.

- **Automatically create new user accounts on first login.** If a member of the AD group does not already have a user account, it will be created automatically (and assigned to this security group) the first time he/she tries to connect via any of the ReliaSoft desktop applications.
Creating/Updating Accounts Now
If you don’t want to wait for all users to log in before creating/updating their user accounts, click the Assign button at the bottom of the window.

- To create new accounts, choose Import users who are members of this Active Directory group. This opens the Import Users from Active Directory window, but you can only choose users from the associated Active Directory group.

- To update the security groups for existing accounts, choose Assign existing repository users who are members of this Active Directory group. This shows a list of existing users who also belong to the associated Active Directory group; you can select to update any or all of their accounts.

Setting Item Permissions
In a secure database, all project items (e.g., folios, diagrams, system hierarchy items, etc.) are, by default, set to inherit their permissions from the project. This means that if a user has the
"Create/edit items" permission for the project, he or she will be able to edit all of the items by default. If you want to prevent some or all of those users from editing a particular item (i.e., lock or limit access to the item), you can use the Item Permissions window.

The window functions a little differently depending on whether you’re working with items in a project explorer (e.g., folios, diagrams, etc.) or items in a system hierarchy.

Project Explorer Items

In Weibull++, ALTA, BlockSim, RENO, RGA or Lambda Predict, select the item in the current project explorer and choose **Project > Current Item > Item Properties**. (In a secure database, this is available only if the user a) is the **project owner**, b) has the "Set project security" permission, or c) has the applicable "manage all projects" permissions.)

The settings are displayed on the Permissions tab of the properties window.

In the Item Permissions window, select the **Restrict editing to selected project users** option and then select which specific users will be able to edit this particular item. All others can view, but not edit, the item. Only users with editing rights to the project will appear in the list.

To remove item permissions and change the security settings back to the defaults, select the **Inherit from project** option.

System Hierarchy Items

In XFMEA, RCM++ or RBI, select the item and choose **System Hierarchy > Current Item > Item Permissions**. In MPC, select an item and choose **Security > Item Permissions** on the relevant ribbon tab. (In a secure database, this is available only if the user a) is the **project owner**, b) has the "Set project security" permission, or c) has the applicable "manage all projects" permissions.)

In the Item Permissions window, you can choose to:

- Define the permissions for the item by selecting the **Restrict editing to selected project users** option and then selecting which specific users will be able to edit this particular item. All others can view, but not edit, the item. Only users with editing rights to the project will appear in the list.

- Set the item to inherit the same permissions as the next item above it in the system hierarchy by selecting the **Inherit from parent item** option.

- Remove item permissions and change the security settings back to the defaults by selecting the **Inherit from project** option.
If you select the **Apply to all dependents** check box, the software will automatically set the permissions for all next-level items in this branch of the hierarchy to match the item you are currently editing. For example, consider a case where each item in an XFMEA system hierarchy has different permissions, as shown next.

![Sample Project](image)

For a quick way to reset all of the item permissions to the defaults, you can open the Item Permissions window for SubSystem 1, set to **Inherit from parent item** and select the **Apply to all dependents** check box. The resulting system hierarchy is shown next.

![Sample Project](image)

Status Indicators

ReliaSoft desktop applications include status indicators that tell you which project items (e.g., folios, diagrams, system hierarchy items, etc.) are in use or restricted.

When you encounter an item that is read-only (e.g., OK button is disabled in the window or you are unable to type in the cells of a worksheet or table), you can check the status of the item to see if it is currently **in use** (i.e., you can’t edit the item until the user closes the folio/diagram or selects a different item in the hierarchy) or **restricted** (i.e., you don’t have permissions to edit the item). If the item is in use, move the pointer over the icon to identify the user.
The location of these status icons will vary depending on which ReliaSoft application you are using:

- In projects that use a current project explorer to manage analysis data, the status icons are displayed next to the item’s name in the current project explorer, as in the example shown next.

- In projects that use hierarchical trees to manage analysis data (as seen in the XFMEA, RCM++, RBI and MPC applications), the status icons are displayed in the User Access column of the system hierarchy. (To hide or display columns, right-click the column headings, then click **Customize Columns** to select which columns you want to display.)

Tip: The application interface refreshes automatically whenever you make a change (e.g., close a project, create a resource, select a different item, etc.). If your computer will not let you edit an item that is in fact not currently being edited by another user, it could be because your computer has not been recently refreshed with the latest changes made by other database users. You can initiate the refresh manually by choosing **View > Refresh**.

In addition, the software employs "in use" flags within the database to record when an analysis is
Chapter 2: Repositories and Projects

currently being edited by a particular user. If the refresh still does not show that the item has been released, then something might have occurred to prevent the flags from being reset correctly (e.g., a network interruption or if the software closes unexpectedly). Refer to the Reset “In Use” Flags topic for instructions on how to reset the flags throughout the database if this problem occurs.

Reset "In Use" Flags

Because Synthesis repositories allow simultaneous access by multiple users, it is necessary to store “in use” flags within the database to indicate when a particular portion of the analysis is currently being edited by a particular user. There are some circumstances when these flags might not be reset correctly when a user stops editing an analysis (e.g., if there is a network interruption or if the software closes unexpectedly). If that occurs, then the analysis will be locked for editing because the software receives an erroneous indication that it is still in use by another user.

To correct the problem, it is necessary to reset some or all of the “in use” flags within the database. To reset the flags, choose File > Manage Repository > Reset ‘In Use’ Flags.

(In a secure database, this is available only for users with the "Manage users and logins" permission.)

This opens the Reset 'In Use' Flags window, which shows all users who have an account in the database. (If you are working in a non-secure database, any user who has ever opened the database will have an account created automatically and will be shown in this list.) A status light is displayed for each user; if it is "lit up" (i.e., green), the user is currently logged in to the database. In addition, the Connections column shows the ReliaSoft application(s) that the user currently has connected to the database. You can select the check box for each user for whom you want to reset "in use" flags, then click OK to reset the flags.

IMPORTANT: It is important to make sure that no selected user is currently logged in to the database when you use this command. Users currently logged into the database can be viewed on the Users Page of My Portal.

Repository Logins

The Repository Logins window displays a record of the date and time the users in the database logged in. To open the Repository Logins window, choose File > Manage Repository > Repository Logins. (In a secure database, this is available only for users with the "Manage users and logins" permission.)
The following options are available:

- **Use the Most Recent filter** to display in the table the last 10; 100; 10,00 or 10,000 users who logged in to the database.

- **Use the User filter** to specify whether the table will display the logs for all users or display only the logs for a selected database user.

- **Click the Send to Excel button** to export the data currently displayed in the table to an Excel spreadsheet.

- **Click the Clear Logins button** to clear the entire history of users who logged in to the database. Since this action cannot be undone, you will be prompted to confirm that you want to proceed before the records are erased.

Users currently logged into the database can be viewed on the Users page of My Portal.

Repository Settings

The Repository Settings window contains settings that are shared by all users and analysis projects in the database. To access this window, choose File > Manage Repository > Repository Settings. (In a secure database, this is available only for users with the "Manage other repository settings" permission.)

In a standard database, you can save the current settings as the default for each new standard database that you create from this computer by clicking the Set as Default button at the bottom of the window.

What's Changed? In prior versions, these preferences were defined in the E-mail and Other Settings window.

E-mail Settings Page

- **Enable Alerts via E-mail or SMS** configures the database to enable alerts via e-mail or SMS text message. (See Enable Alerts via E-mail or SMS.)

- **Action Alerts** apply to action resources. The database can be configured to auto-subscribe a "watch" for users based on their role(s) for a particular action. You can also specify the default text that will be used at the beginning of each action alert. (See Action Alert Preferences.)
Other Settings Page

- **FMEA Structure (XFMEA/RCM++/RBI)** allows you to select the default FMEA structure for new projects created in the database, which determines how the software will display the effect and cause records in the FMEAs. If you don't specify a default, users will be prompted to select the structure for each new project they create in XFMEA/RCM++/RBI. (See Choosing the FMEA Structure in the XFMEA/RCM++/RBI documentation.)

- **History Logs** allows you to turn the log on (or off) for all active projects, and stores a preference for whether the log should be activated by default for each new project. (See History Logs.)

- **Actions** allows you to automatically set the person who created an action to be the person responsible for it. (See Person Responsible and Resources.)

- **Enable publish to SEP web portal** is available only in enterprise databases. If your organization has established an SEP web portal for the current database, select this check box to enable users to publish analysis summaries, Synthesis Workbooks and other information to the portal.

- **Delete Portal Messages** deletes all portal messages for all users in the database. There is no undo for deleting portal messages.

Unit Settings

Synthesis repositories are pre-configured with a set of units for use with any analysis in any project within the repository. The conversion factors are predefined, allowing you to easily express results in terms of other units. For example, you can enter data into a Weibull++ data sheet in terms of hours and then obtain results from the QCP in terms of years. Similarly, in RCM++, RBI or BlockSim, you can define the duration of a maintenance task in terms of hours and specify the total operating time of a system in terms of months. In MPC, the units can be used to define task intervals.

IMPORTANT: Making changes to the existing units can have implications for all analyses throughout the database; therefore, it is best to set up units once, upon creation of the database.

To define units, choose File > Manage Repository > Unit Settings. (In a secure database, this is available only to users with the "Manage other repository settings" permission.)

If you're working in Weibull++, the Warranty Units tab will be available. It allows you to specify which of the configurable repository units are equivalent to the built-in (not configurable)
"warranty time units" used in some warranty folio formats. For details, see Manage Warranty Units in the Weibull++/ALTA documentation.

Setting SBU Equivalencies

The conversion factor of a unit is defined in relation to a system base unit (SBU). A base unit is a standard unit of measurement upon which other units can be based. Base units always have a conversion factor of 1. All other related units are converted back to the base unit.

For example, say that we choose kilograms (kg) as our SBU for mass. The conversion factor of related units, such as pounds (lb) and metric tons (T), must be entered in terms of the SBU:

<table>
<thead>
<tr>
<th>Unit</th>
<th>SBU Equivalency (using kg as the base unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kg</td>
<td>1 kg</td>
</tr>
<tr>
<td>1 lb</td>
<td>0.4536 kg</td>
</tr>
<tr>
<td>1 T</td>
<td>1000 kg</td>
</tr>
</tbody>
</table>

Similarly, if we change the base unit to pounds (lb), the conversion factors must reflect the change:

<table>
<thead>
<tr>
<th>Unit</th>
<th>SBU Equivalency (using lb as the base unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 kg</td>
<td>2.2046 lb</td>
</tr>
<tr>
<td>1 lb</td>
<td>1 lb</td>
</tr>
<tr>
<td>1 T</td>
<td>2204.62 lb</td>
</tr>
</tbody>
</table>

By default, Synthesis repositories use hours (hr) as the SBU for time, and miles (mi) as the SBU for length. To ensure that you obtain correct results when converting units, it is recommended that you set an SBU for each type of measurement (e.g., time, length, frequency, force, etc.) and define the conversion factors of all other units in terms of the relevant SBU.
Chapter 2: Repositories and Projects

Changing the Default Unit
You can set any unit as the default by selecting it in the **Use as Default** column. The software will automatically use the new default unit when you create a new analysis or resource in any project in the repository. The change will not affect existing analyses and resources.

Creating and Deleting Units
To add a new unit, click the **Add** button below the table and follow the on-screen prompts to create the unit. The wizard will automatically calculate and apply the appropriate SBU equivalency based on your inputs.

To delete a unit, click the **Delete** button below the table. **There is no undo for delete.**

Editing Existing Units
Click a cell to edit a unit’s name, abbreviation, SBU equivalency and category. To apply your changes, click the **Save** button at the bottom of the window.

Note that if you will be using the usage format of the Weibull++ warranty folio, only the units assigned to the Usage category will be available for those analyses; units assigned in the Time category are not available in the warranty usage format.

Built-in Find/Filter, Configuration and Grouping Tools
You can move a unit up or down its current position by dragging the row to the desired position, or by selecting it and using the **Move Up** or **Move Down** buttons.

To show more tools, right-click any column heading. The window offers the same filter, column configuration and grouping tools that are built in to other utilities that use a similar grid (e.g., the Resource Manager). For details about each feature, see:

- Finding and Filtering Records
- Configuring Columns
- Grouping Panel

Default Name Formats
In all ReliaSoft desktop applications except MPC, the Default Name Formats window specifies the default names for new resources, as well as new blocks in BlockSim RBDs, fault trees, phase diagrams and PFS diagrams. For example, when you create a new model, the default name will be the word "Model" plus an increment to make the name unique (e.g., "Model," "Model_1," etc.). You can configure the database to use a different default name format if desired.
To open the window, choose **File > Manage Repository > Default Name Formats.** (In a secure database, this is available only for users with the *Manage other repository settings* permission.)

The **Item Name** column displays the basic name label for each type of resource or block. This will be represented by the \N code in the name format.

The **Name Format** column allows you to use any of the following elements to define the default name format for each type of resource or block:

- \N returns the label from the Resource Name column plus an increment to make the name unique (e.g., "Model," "Model_1," etc.).
- \U returns the name of the user who created the resource or block.
- \D returns the date when the resource or block was created.
- \S adds a sequential number that reflects the order in which the resource/block was added to the database.
- \T returns the ReliaSoft application ("tool") used to create the resource or block.
- \F returns the contents of all of the identifier fields except the category and comments fields.
- \G returns a summary of the properties of the resource or block. For example, for a node in a BlockSim diagram, \G returns the "k out of n" paths that are required.
- \I is only applicable for resources. It functions the same as \N unless there is another window, resource or analysis that it can "inherit" part of the name from. Some examples:
 - If you create a URD from BlockSim’s block properties window, the default name will be "[Block Name]_URD."
 - If you create a metric based on a model, the default name will be "[Model Name]_Metric."
 - If you push a metric from a Project Planner gate, the default name will be "[Gate Name]_[Property Name]_Metric."

Tip: In BlockSim diagrams, you can use an asterisk (*) to insert the default block name. For example, if you enter *System for the block name, the diagram will display the default name for the block followed by the word "System." The asterisk also allows the block name to be updated dynamically when relevant properties change.
Chapter 2: Repositories and Projects

Project Planning Resources
In all ReliaSoft desktop applications except MPC, project planning resources can be assigned to actions in order to track the required costs and time in the Project Planner and anywhere else that actions are used. Because project planning resources are shared throughout the database, any change made to one is automatically applied to all actions in the database that use it.

- **Cost Categories** specify direct and/or per instance costs that can be assigned to any team member, facility or material.
- **Teams** identify groups of users who will work together on any given action.
- **Facilities** specify the cost and maximum utilization for facilities (e.g., test lab) or other resources for which the cost depends on the duration of use (e.g., rented test equipment).
- **Materials** specify the cost and quantity for materials (e.g., test units) or other resources for which the cost depends on the amount used rather than the duration (e.g., purchased usage data).

To open the Project Planning Resources window, choose File > Manage Repository > Project Planning Resources. (In a secure database, only users with the "Manage project planning resources and working days" permission will be able to create and edit these resources; other users can select from the resources that have already been predefined.)

Cost Categories
Cost categories can be created from the Project Planning Resources window, or when you are creating/editing a facility, material or individual user account. Enter the **Currency Symbol** to use for displayed costs at the bottom of the window.

- The **Direct Cost per Hour or Unit** is the per-hour cost when assigned to a team member or facility, or the per-unit cost when assigned to a material (e.g., the cost of a single light bulb).
- The **Cost per Instance** is a one-time cost that applies every time a team, facility or material is used.

Teams
Teams can be created from the Project Planning Resources window, or when you are defining an action. A team can include:

- Individual **Users** who have active user accounts in the database.
• **Groups** of active user accounts that have been predefined in the database.

Note that you cannot assign a cost category directly to a team. Instead, the team's cost/utilization is based on the cost category and maximum hours per day for each team member. Both of these properties are set on the **Alerts/Actions** tab of the **User Login and Contact Information window**.

Facilities
Facilities can be created from the Project Planning Resources window, or when you are defining an action.

• The **Cost Category** specifies the facility's hourly and/or per-use costs.

• The **Max Hours Per Day** is the number of hours of use if the facility is set to be 100% utilized for a given action (as specified in the action properties).

Materials
Materials can be created from the Project Planning Resources window, or when you are defining an action.

• The **Cost Category** specifies the cost per unit (e.g., the cost for each test prototype), as well as any additional fixed cost (e.g., the cost for manufacturing a sufficient number of test prototypes).

• The **Quantity** that will be used (e.g., 100 light bulbs).

Working Days/Holidays
In all ReliaSoft desktop applications except MPC, **actions** and **Project Planner gates** contain important dates like start dates and due dates. You can specify which dates will be considered working days for all actions and gates in the repository. This way, an **action's cost/time estimates**, as well as its duration, will be based solely on working days.

To define the working days for the repository, choose **File > Manage Repository > Working Days/Holidays**. (In a secure database, this is available only for users with the "Manage project planning resources and working days" permission.)

In the window that appears, use the **Define Work Week** area on the left side to specify which days of the week will be considered regular working days (e.g., Monday-Friday).
Define Holidays
On the Define Holidays tab, you can define three different types of holidays.

- **Fixed Date - Recurring** holidays occur every year on the same calendar date (e.g., New Year’s Day is always January 1).
- **Variable Date - Recurring** holidays occur every year, but not always on the same date (e.g., Thanksgiving is always the fourth Thursday of November).
- **Fixed Date - Non-recurring** holidays occur once and do not happen again. For example, a specific Monday could become a non-working day due to weather conditions.

In the Holiday Properties window, select Move to adjacent working day if necessary to make sure the holiday will be observed when a) it occurs outside the work week, but b) there is a regular working day immediately before/after it. In this case, the holiday is observed on the nearest working day. (If there is a working day immediately before and after the holiday, it is observed on the following day.)

View Observed Holidays
The View Observed Holidays tab allows you to easily examine the names and dates of all holidays that will be observed during the work week, and can also help you make sure your working days/holidays settings are correct. Specify the years you want to view in the Displayed Range in Years area.

XFRACAS Connection
XFRACAS is a web-based, closed-loop, incident (failure) reporting, analysis and corrective action system designed for the acquisition, management and analysis of product quality and reliability data from multiple sources. There are several ways in which you might wish to share data between XFRACAS and the analyses that you perform in ReliaSoft desktop applications:

- Use the Synthesis Data Warehouse in Weibull++/ALTA or RGA to extract data from XFRACAS incidents. (See Synthesis Data Warehouse.)
- Share system configuration and failure mode data between XFRACAS and XFMEA/RCM++/RBI. (See Import or Sync from XFRACAS in the XFMEA/RCM++/RBI documentation.)

When you are working with an enterprise database, the data from XFRACAS and ReliaSoft desktop applications can be stored in the same SQL Server or Oracle database.

When you are working with a standard database (*.rsr19), you will need to establish a connection to an enterprise database that contains XFRACAS data. To do this, choose File >
Manage Repository > XFRACAS Connection. (In a secure database, this is available only for users with the "Manage other repository settings" permission.)

In the XFRACAS Connection Settings Window, select Connect to an enterprise repository with XFRACAS data then choose Microsoft SQL Server or Oracle.

- For a SQL Server database, enter the server name and database name.
 - **Encrypt communication.** Secures the connection information between the ReliaSoft application and the enterprise database.
 - **Trust server certificate.** Select this option if the server has a self-signed certificate.
 - **Use impersonation.** Configures the connection setting to impersonate a Windows user account with a SQL Server login that is shared by multiple users. (See SQL Server Logins or Using Windows Impersonation.) If you do not use impersonation, then each user who uses the features that utilize XFRACAS must have an account in the external database that contains the XFRACAS data.

- For an Oracle database, enter the port, host and service identifiers and the database schema. Your Windows login credentials are used for access to the database; enter your Windows password.

Managing and Restoring Data

Since each database may contain a large amount of valuable information that would be difficult to re-create, it is essential to make sure that you are diligent about storing adequate backups and performing the necessary maintenance activities to keep the database operating smoothly. The necessary procedures vary depending on the type of database.

Enterprise Database Maintenance

When you choose to store analysis information in an enterprise database, a database administrator must perform backups and database maintenance activities using the data management tools that are packaged with and/or designed for the database platform (e.g., SQL Server Enterprise Manager for SQL Server). Each individual organization typically establishes its own procedures for protecting the data stored in the Oracle or SQL Server databases. As a convenience for users who wish to explore the possibilities of an enterprise database implementation without making a large investment of time and resources, instructions on how to perform the minimum database maintenance recommendations are posted on the ReliaSoft website:
Chapter 2: Repositories and Projects

Standard Database Maintenance

When you choose to store analysis information in a standard database, it will be subject to the same limitations and vulnerabilities as any other file that uses the Microsoft Access® database file format. For example, the maximum file size is ~ 2GB, maximum number of concurrent users is 255, etc. In addition, some specific database vulnerabilities are discussed in a Microsoft publication at http://support.microsoft.com/kb/283849/EN-US/. As this publication states:

"Microsoft Jet, the database engine that is used in Microsoft Access, is a file sharing database system. When Microsoft Jet is used in a multi-user environment, multiple client processes are using file read, write, and locking operations on a shared database. Because multiple client processes are reading and writing to the same database and because Jet does not use a transaction log (as do the more advanced database systems, such as SQL Server), it is not possible to reliably prevent any and all database corruption." [emphasis added]

Although our developers have made every effort to reduce or eliminate the possibility that the software will induce a database error, there is no way to absolutely prevent corruption that might be caused by other factors, such as faulty network hardware, an unexpected "crash" on your computer or a network interruption. Therefore, this section provides some recommendations for standard precautions that all users can take to protect the data in their standard databases from this type of corruption and reduce the impact of the data loss if corruption is unavoidable.

1. **Create backups regularly.** As with any resource that contains a large amount of valuable information that would be difficult to re-create, it is essential to make sure that you are diligent about creating and storing backup files. There are a number of ways this can be accomplished:

 - If you select **Automatically back up database upon closing** from the Backup/Check Out Options page of the Application Setup, the ReliaSoft desktop application that you use to open the database will back up the database every time you close the file.
 - If you have a database open and choose **File > Save As**, the application will create a copy of the database to a pathname/filename of your choosing.
 - If you browse to the database file (*.rsr19) in one of the Windows file management tools (such as My Computer or Windows Explorer), you can copy and paste the database file as needed.
Chapter 2: Repositories and Projects

2. **Compact and repair regularly.** Using the "Compact and Repair" feature will help to reduce the size of the database file and help to protect against problems with the operation of the database. If you have the database open and it is not currently in use by another user, you can initiate the process by at any time by choosing **File > Manage Repository > Compact and Repair.**

3. **Do not store the database in a shared network location if you suspect that your network connection and/or hardware may be unreliable.** According to Microsoft, faulty network hardware is one of the main reasons why a file that uses the Microsoft Access database file format may become corrupted. As the Microsoft publication at http://support.microsoft.com/kb/283849/EN-US/ states:

 "The cause can be one or more links in the hardware chain between the computer that the database resides on and the computer that has the database open. This list includes, but is not limited to, network interface cards, network cabling, routers, and hubs.

 Hardware-based corruption is typically indicated by .mdb files that cannot be restored through the use of compacting, repairing, or Jetcomp. **Hardware corruption will typically recur until the responsible hardware is repaired or replaced.**" [emphasis added]

 If you have experienced this type of corruption for a standard database file, it is recommended that you take steps to correct the network problem or refrain from accessing database files over the network. In such cases, you may choose to use an enterprise database instead (i.e., Oracle or SQL Server), which would be less vulnerable to network interruptions. Alternatively, you could keep multiple analysis projects together in a single shared standard database file but ask users to export the analysis to a separate "working" database on their own computers when there is a need to make substantial modifications. Users could then import the data back into the shared database after the modifications have been completed.

4. **Do not allow the file size of the database to grow too large.** Performance will be affected by the size of the database and the number of simultaneous users. Therefore, it is important for users to monitor the sizes of their database files and take steps to export the data into several smaller and more manageable files if they become too large. Please be aware of the following factors, which can lead to very large database files:

 - Failure to compact and repair the database on a regular basis.
Chapter 2: Repositories and Projects

- Using a very large number of attached documents. In some cases, using a link instead of an attachment may provide equivalent functionality with a much smaller impact on the size of the database file.

If you try to open a standard database via the software and receive a message that says "Unable to open the database," this is an indication that the database file may have become corrupted. Please contact Technical Support and provide as much information as possible about exactly what you were doing when the corruption occurred. Whenever possible, please provide a copy of the corrupted file. In some cases, we may be able to provide assistance with salvaging some or all of the affected data. However, in many cases, the best recourse may be to restore the latest backup from before the corruption occurred.

Restore Points

In all ReliaSoft desktop applications, you can create and manage *restore points* (formerly called "project baselines") for any analysis project. Within the context of these applications, the phrase "restore point" refers to an exact replica of the project at a particular point in time (i.e., a backup) that can be restored when and if it is needed. A restore point will include all the data that the project contained at the time the restore point was created, including information about the project properties, security settings and project owner.

There are a variety of ways that this functionality could be used, depending on your particular analysis process and data management requirements. For example, if you are about to begin a major revision to an existing project, you could choose to archive the original version as a restore point and then proceed with updating the project. This would ensure that the active projects in the database contain only the most recent information but also provide easy access to a fully editable copy of the previous version of the analysis if it is ever needed.

Create a Restore Point

You can create a restore point for a project at any time by choosing Project > Management > Restore Point > Create Restore Point or by right-clicking the name of the project in the project list and choosing the command on the shortcut menu.

In a secure database, this is available only if the user is the project owner or has the "Create restore points" permission.

IMPORTANT: When you create a restore point, any global, reference and FMEA resources used in the project are converted to local resources and stored with the backup. This ensures that you will have access to these resources upon restoration, regardless of what may have happened to those resources in the interim.
Restore a Project

To restore all data from an existing restore point, use the **Restore Project** command. This opens the Restore Project window, which displays a list of all existing restore points for the project, if any. You have two options:

- **Overwrite existing project** uses the restore point to roll back the current project to the earlier state. The restore process will complete as long as the project is not currently in use by another user. There is no undo for project overwrites. Therefore, it would be prudent to create a new restore point for the project before you overwrite it with one of the older restore points.

- **Create new project** uses the restore point to create a new project. You may enter a unique name for the new project. When the restore process completes, the new project will be accessible from the project list.

Manage all Restore Points in the Database

To manage all the restore points that have been created in the database, choose **File > Manage Repository > Restore Points**. (In a secure database, this is available only for users who have all three "manage all projects" permissions.)

This opens the Restore Points window, which displays the details for each of the restore points.

- To create a new restore point, click the **Create** button then select the project you want to back up. Enter any notes that are appropriate to describe the purpose or the circumstances of the restore point and click **OK**.

- To delete an existing restore point, select the row and click the **Delete** button or press DELETE. **There is no undo for delete.**

- To create a new project that restores all of the data from an existing restore point, select the row and click the **Restore Project** button. You will be prompted to specify a unique name for the new project.
Chapter 3: Desktop Application Interfaces

Most ReliaSoft desktop applications have their own Multiple Document Interfaces (MDIs) that provide full-featured support for the relevant analysis methods. (The exceptions are Weibull++/ALTA and BlockSim/RENO, which can display both applications in a shared MDI.)

When you are using multiple ReliaSoft applications simultaneously, different applications will open in separate MDIs but they can all connect to the same database, and even to the same analysis project.

All ReliaSoft MDIs share a common structure, which includes the following elements.

Ribbon and Backstage View
The ribbon at the top of the MDI replaces the toolbars and menus of previous versions of the software. The ribbon is divided into tabs that organize commands into logical groups. Some tabs will always be available (such as File, Home, etc.) while others are contextual and will appear only when you are working on a particular task.

The first tab, the File tab, provides access to a special type of interface called the Backstage view. This is where you will create and open databases, manage settings that apply to the entire database, access the Help Center, etc.

Project Manager and My Portal
The Project Manager allows you to manage the projects within the current database and, for many ReliaSoft applications, it also allows you to manage all of the folios, diagrams, reports, attachments, etc. in the currently open project(s). This panel is docked on the left side of the MDI and pinned by default. ("Pinned" means that the entire panel is always visible unless you decide to hide or "unpin" it.)

My Portal provides quick access to messages, assigned actions and other information that may be of personal interest to you while working in the Synthesis Platform. This panel is docked on the right side of the MDI and unpinned by default. ("Unpinned" means that only a small tab will be visible in the interface unless you move the pointer over the tab to make the entire panel visible.)

For both of these MDI features, you can decide whether the panel will be visible and how it will be positioned in the interface. (See Show, Tile, Dock and Pin Panels.)
Tip: If desired, you can change the overall color scheme used in the MDIs for all ReliaSoft desktop applications on your computer. Use the Skins drop-down list on the Synthesis Settings page of the Application Setup to select the style you prefer.

Status Bar
As an example, the following picture shows the status bar at the bottom of the MDI for an enterprise database:

For more information about the connection speed indicator, see Enterprise Repository Connection Speed.

Show, Tile, Dock and Pin Panels
In all ReliaSoft desktop applications, the MDI includes a Project Manager panel and a My Portal panel. You can decide whether each panel will be displayed and how it will be positioned in the interface at any given time.

Show or Hide
To show or hide the Project Manager panel, choose View > Project Manager and toggle the Show Project Manager command on or off.

You can also hide either panel by clicking the X at the top of the window.

Tile or View One Page at a Time
In all ReliaSoft desktop applications, My Portal consists of four pages. You have the option to view one page at a time (and use large buttons or small icons at the bottom of the panel to switch between pages) or tile the pages so that more than one page can be visible at the same time. To specify your preference, choose View > My Portal and toggle the Tile My Portal command on or off.
When applicable, these same options are available for the Project Manager panel. Choose View > Project Manager and toggle the Tile Project Manager command on or off. (This command is not available in applications such as XFMEA, RCM++, RBI and MPC, which have only a single page in the Project Manager.)

As an example, the first picture shows the My Portal panel when it is not tiled. The second picture shows the tiled panel, with two of the four pages expanded to be visible at the same time.

When the panel is not tiled, you can drag the horizontal splitter bar up to display large buttons or down to display small icons.

When the panel is tiled, you can use the handle buttons to expand or collapse each page.
Dock or Float

For both panels, you have the option to dock the panel on the left, right, top or bottom side of the MDI. When the panel is docked, it cannot be moved but you can change the width (if docked left or right) or height (if docked top or bottom) by dragging the edge to the desired position.

Alternatively, you can choose to float the panel as a window that can be resized and dragged to any location on the desktop.

There are several ways to set the docking position:

- Choose View > Project Manager > Dock Project Manager and then choose the desired option.

- If the panel is currently floating:

 - Double-click the window's title bar to return it to the most recent docked position.

 OR

 - Click the window's title bar and drag it onto one of the location icons that become visible while you are moving the window. When the window is correctly positioned, blue shading will show where the window will be docked when you release the mouse button. (Note that the window's title bar must be exactly positioned above one of these location icons before the blue shading appears. If you don't see blue shading, the panel will not be docked when you release the mouse button.)
If you prefer to float the window, you can:

- Choose either:
 - View > Project Manager > Dock Project Manager > Floating Project Manager
- Double-click the title bar of the docked panel.
Pinned or Unpinned

When docked, both panels can also be toggled between pinned and unpinned states by clicking the pushpin icon in the panel's title bar. When the pushpin in the icon is vertical ⬇️, the panel is pinned and will be displayed at all times.

When the pushpin is horizontal ⬆️, the panel is unpinned. A tab will be displayed at the docking location for each unpinned panel.

The behavior for unpinned panels is as follows:

- If you point to the tab, the panel displays only until you point to something else.
- If you click the tab, the panel stays displayed until you click something else.
- When a panel is unpinned, it cannot be undocked or moved.

As an example, the following picture shows the Project Manager panel docked on the left side of the MDI, unpinned and hidden, while the My Portal panel is docked on the right side of the MDI, unpinned and visible (either because the user moved the pointer over or clicked the tab).
Project Manager

The Project Manager provides the tools you need to browse or search for a particular project or analysis folio in a Synthesis repository. Depending on the application, the Project Manager consists of either one or two pages:

- In all ReliaSoft desktop applications, the project list displays all the projects in the current database. (For XFMEA, RCM++, RBI and MPC, this is the only page available in the Project Manager).
- In Weibull++, ALTA, BlockSim, RENO, RGA and Lambda Predict, the Open Project(s) page of the Project Manager (i.e., the current project explorer) displays all the analysis folios, reports and other items in the current project(s) that apply to the software you are using.

There may be up to five nodes in the project list, indicating the sharing status of the projects: Private, Public or Reference projects, Locked projects and Checked Out projects. Additionally, the Recycle Bin is shown in the project list.

Each node may be further broken down by project category and/or by project owner. This ensures that projects will be organized in a logical, manageable way within the project list.

Opening a Project
To open an existing project, double-click the project name or select the project and choose Project > Management > Open Project.

Note: Remember that each project may contain items from any ReliaSoft application but you will see only the items that are relevant for the application you are currently working with (e.g., Weibull++ analysis folios are visible only when the project is opened in Weibull++). Common items, such as project attachments, are visible from all applications.

Filtering the List of Projects
The project list can utilize the same project filters that are available in many other locations throughout ReliaSoft desktop applications. For example, with the filter shown below, the project list will show only projects belonging to Department B.
This feature might be particularly useful for an enterprise database that may be used to store analysis projects for the entire organization in a single centralized location. In such cases, the number of projects displayed in the project list could become overwhelming and these filters provide the ability to display only those projects that are of interest to you at any given time.

To remove the filter, select **Show All** from the drop-down list.

Searching for a Particular Project

You can also search for projects by entering text in the **Find** field. The project list updates dynamically to show only the projects with names that contain the text that you have entered. As an example, the following picture shows a quick way to find all of the projects for a particular product line by using the project names instead of predefined categories or other filter criteria.

![Search for a Particular Project](image)

Current Project Explorer

In all ReliaSoft desktop applications except XFMEA, RCM++, RBI and MPC (which use the system hierarchy to manage all of the different analyses in a given project), the Open Project(s) page of the Project Manager allows you to manage all of the relevant project items (e.g., folios, diagrams, etc.) in the project(s) that are currently open.

Applications that use the current project explorer can have multiple projects open at the same time. (See [Working with Multiple Projects](#).)

Note: Remember that each project may contain items from any ReliaSoft desktop application but you will see only the items that are relevant for the application you are currently working with (e.g., Weibull++ analysis folios are visible only when the project is opened in Weibull++). Common items, such as project attachments, are visible from all applications.
Filtering the Project Items
The current project explorer can utilize the same item filters that are now available in many other locations throughout ReliaSoft desktop applications. (This provides more flexibility than the Filter based on creator feature in prior versions.)

For example, with the filter shown below, the current project explorer will show only items created by Joe User and updated within the current month.

To remove the filter, select Show All from the drop-down list.

Opening Items
Double-click an item to open that item in the MDI or to bring that item to the front of the MDI if it is already open. (Note that if you double-click an attachment that appears in the current project explorer, it will open in its corresponding application, as long as that application is installed on your computer.)

Tip: In all ReliaSoft applications, projects can be shared by multiple users and the current project explorer may display an "in-use" icon to indicate the status of an item that can't be edited because it is currently locked or being edited by another user. (See Status Indicators.)

Adding Items
You can add items to the project by right-clicking the relevant folder and choose an appropriate command on the shortcut menu that appears.

Editing, Renaming, Duplicating or Deleting Items
To manage existing items within the project (i.e., Edit Item, Rename Item, Duplicate Item and Delete Item), right-click the item and choose a command from the shortcut menu or select the item and use the commands in the Current Item group on the Project tab of the ribbon.
Chapter 3: Desktop Application Interfaces

Sub-Folders and Drag and Drop

In addition to the top-level folders that are fixed for each application, you also have the ability to create your own custom sub-folders to organize project items (the exception being the Attachments folder, which you cannot add sub-folders to). To add a custom sub-folder, right click any existing folder and choose **Add Folder** on the shortcut menu.

You can also arrange custom sub-folders and project items by dragging them to the desired location. Dragging a folder or project item onto a folder will place it into the bottom of that folder. Dragging a folder or project item onto a project item will place it in the same level above that item.

Working with Multiple Projects

ReliaSoft desktop applications that use the current project explorer (i.e., Weibull++, ALTA, BlockSim, RENO, RGA and Lambda Predict) can have multiple projects open at the same time. To enable this functionality, select the **Allow multiple projects (project explorer)** check box on the **Synthesis Settings page** of the Application Setup.

Tip: There is a separate setting that controls the ability to have multiple projects open in XFMEA/RCM++/RBI.

When you have more than one project open, the projects will be shown in the current project explorer with the most recently opened project at the top. Note that the icon shown beside each project indicates whether it is a public, private or reference project and, when applicable, whether it is locked or checked out.

<table>
<thead>
<tr>
<th>Unlocked, Not Checked Out</th>
<th>Locked</th>
<th>Checked Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference Project</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

122 http://xfmea.reliasoft.com
In addition to the convenience of being able to view analyses from multiple projects, having multiple projects open allows you to transfer data between the projects quickly and easily. Specifically:

- For any item that can be imported/exported between projects, you can simply drag the item (analysis, multiplot, report, etc.) from the source project to the appropriate folder in the destination project. This opens the Export window, where you can just click Export to finish the export, or add more items to export before you finish the process.
- In Weibull++, ALTA and RGA, data can be copied from an analysis in one project and pasted to an analysis in another project.
- In BlockSim and RENO, blocks can be copied from a diagram in one project and pasted to a diagram in another project, according to the following rules:
 - If the block uses resources that are local to the source project, they will also be copied and added to the destination project.
 - If a resource of the same name exists in the destination project, the name of the copy will be incremented (e.g., if "Model1" already exists, the new copy might be renamed to "Model1_1").
 - If a model is associated with a data source (e.g., a model published from a Weibull++ folio), the model is copied into the destination project as a model with the association removed.
 - If the block uses resources that are global or in a reference project, they will not be duplicated. They will retain their original reference to that global/reference resource.
 - Subdiagram blocks cannot be copied and pasted across projects.

Note: The FMRA view is not available in BlockSim when you have multiple projects open.

My Portal

In all ReliaSoft desktop applications, My Portal provides quick access to messages, assigned actions and other information that may be of personal interest to you while working in the Synthesis Platform. (When you first activate the software, My Portal will be "docked" on the right side of the MDI and "unpinned." Move your mouse pointer over the tab to make the panel visible at any time. For other options, see Show, Tile, Dock and Pin Panels.)
Chapter 3: Desktop Application Interfaces

If your organization chooses to implement a web-based SEP portal for an enterprise database, you can also access many of these same features — as well as selected metrics, reports and other details from specific analyses — from any web-enabled device.

Portal Messages
The Synthesis Platform’s messages feature provides a convenient way to communicate with other database users. Messages are displayed in a "timeline" format similar to social media websites like Facebook®.

These messages are displayed both in My Portal (in any ReliaSoft desktop application) and in the SEP web portal (if it is implemented for your database).

All database users will be able to view their own messages. In a secure database, the following permissions are required to create, edit or delete messages:

- **Create portal messages** allows you to create new messages, and edit or delete the messages you have personally created.
- **Manage all portal messages** allows you to edit or delete any messages that are visible to you. This includes any message for which you are the creator or one of the recipients.

Message Display Options
The messages timeline will display all messages that were created by or addressed to you. You can sort the message threads in two ways:

- **Newest Active** considers the dates/times of both the main messages and the replies.
- **Newest Message** considers only the dates/times of the main messages.

Create, Edit, Delete or Reply to Messages
In ReliaSoft desktop applications, you can access the message commands from the My Portal tab of the ribbon, and by right-clicking inside the Messages page of the panel.
Note that the purpose of the **Refresh Messages** command is to update the display with any new messages that were recently added or changed by another database user.

Message Recipients
You can specify whether a message will be visible to all database users or only to specific users or groups. If you select Selected Groups/Users, you can choose from two lists: user groups that have been predefined in the database and/or individual user accounts.

If a valid SMTP server has been defined for the database, you can select the **Also send this via e-mail** check box to send an e-mail copy of the message to the recipient(s). (See **Enable Alerts via E-mail or SMS**.)

Actions in My Portal
Your team can use actions to track specific assignments that need to be performed. These versatile resources can be used multiple times in different locations, if appropriate. This may include actions in Project Plans, FMEAs or Test Plans, as well as actions that are independent of any particular analysis or plan.

This topic discusses how to view and manage actions via My Portal in any ReliaSoft desktop application. If you want to view/manage all action records, see **Actions Explorer** or **Resource Manager**. For information about the action properties and other general considerations that apply wherever the action may be used, see **Action Resources**.

Actions Displayed in My Portal
The Actions page in **My Portal** (and in the **SEP** web portal) display action records that:

- Need to be reviewed by you.
• Are relevant to you in some way and are:
 • **Past Due** – the completion date has passed.
 • **Due Next 7 Days** – the completion date occurs within the next 7 days.
 • **Past Start Date** – the start date has passed.
 • **Start Today** – the start date is today.
 • **Start Tomorrow** – the start date is tomorrow.
 • **Start Next 7 Days** – the start date occurs within the next 7 days.
 • **In Progress** – the actual start date has been entered and the action is not yet "Past Due" or "Due Next 7 Days."

If the action is not used in the Project Planner, this will be based on the planned start/completion dates. But if the action is used in a plan, it’s based on the expected dates (which can shift automatically if there are recorded delays in prior gates/actions).

Also note that if an action fits under more than one heading, it will display under the more urgent one. For example, if the action is both due in the next 7 days and past the planned start date, it will show under "Due Next 7 Days."

Create, Edit or Delete Actions from My Portal

In ReliaSoft desktop applications, you can access the portal actions commands from the My Portal tab of the ribbon, and by right-clicking inside the Actions page of the panel.

Tip: If an action doesn’t fit the My Portal display criteria for your computer/username (see details below), the new record won’t be displayed in your portal after you create or edit it. In such cases, you can use the Actions Explorer or Resource Manager to access the record.
Add to Outlook Calendar
The **Add to Outlook Calendar** command will be enabled if Microsoft Outlook is installed on your computer.

It launches Outlook’s interface for creating a new calendar event and automatically populates the subject and date. You can modify the details as needed before saving the new event to your calendar.

Note that you may need to give focus to the Outlook application in order to see the window.

Refresh Actions
The **Refresh Actions** command updates the display with any new actions that were recently added or changed by another database user.

Action Display Settings
To specify your personal preferences for displaying actions in My Portal (stored per computer/username), right-click inside the panel and choose **Action Display Settings**.

An action may be relevant to you in one or more of the following ways. Use **Show Actions** to specify which actions to display.

- **I am responsible for**
 - You are assigned in the **Person Responsible** field.

- **I am a team member in**
 - You belong to the team assigned in the **Team** field.

- **I need to review/approve**
 - You are assigned in the **Reviewer** field.

- **I am monitoring**
 - You are assigned in the Action Monitors window, or you have personally **subscribed to “watch”** the action.

- **I am the creator**
 - You are listed in the **Created By** field.
Chapter 3: Desktop Application Interfaces

If you select **Display 'Show Actions' labels in portal**, the panel will also include headings that indicate how the action is relevant to you.

![Actions with 'Show Actions' labels](image1)

![Actions without 'Show Actions' labels](image2)

Finally, you can choose to **Sort by Start Date** or **Sort by Due Date** within each node of the display.

Tip: If an action is relevant to you in more than one way, it will display if any applicable relevance check box is selected. If you are using relevance headings, the action will display under the first selected heading that fits. For example, if you are both the person responsible and the creator, and all relevance options are selected, the action will display under "I am responsible for." Alternatively, if only the creator relevance is selected, it will display under "I am the creator."

Action Explorer

The **Actions Explorer** command opens a flexibility utility that allows you to explore all of the action resources that are stored in the current database. You can use it to filter, sort, add, edit or delete actions. (See **Actions Explorer**.)

Note that when you return to the Actions page in My Portal, you will need to use the **Refresh Actions** command to view any changes.

Repository Users List

The repository users list shows all active user accounts in the database, and identifies which of those users are currently connected to the database with any of the ReliaSoft applications.

This list is displayed both in **My Portal** (in any ReliaSoft desktop application) and in the **SEP web portal** (if it is implemented for your database).

In ReliaSoft desktop applications, you can access the users list commands from the **My Portal** tab of the ribbon, and by right-clicking inside the **Users** page of the panel. Similar commands are available in the SEP web portal, if applicable.
My Profile opens the User Login and Contact Information window, which allows you to edit the contact information associated with your user account.

Refresh Users updates the list to reflect any recent changes in user activity.

Project Plan Summary in My Portal
In all ReliaSoft desktop applications except MPC, the Project Plan Summary page in My Portal provides a summary of the plan for the current project, if applicable.

The summary in My Portal always reflects the entire plan for the current project, based on the actual date/time from your computer. If you want to see the summary for a particular gate or action, or to estimate what the statuses would be for a different date, you must use the Project Planner window.

- Choose Project > Management > Project Planner.

- Click the link in the project name bar at the top of the summary in My Portal.
How to Read the Summary

The plan summary in My Portal provides the following information at-a-glance. (For details, see [Project Plan Summary Panel](http://xfmea.reliasoft.com).)

<table>
<thead>
<tr>
<th>Project Current Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto: Tuesday, March 24, 2015</td>
</tr>
</tbody>
</table>

By default, this shows the current date, which is used to determine the status (e.g., "Missed Start Date"), resource usage to date, etc. Use **Refresh** to obtain the latest information from the Project Planner.

<table>
<thead>
<tr>
<th>FMEA (Chandelier)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPECTED 3/23/2015 4/10/2015</td>
</tr>
<tr>
<td>ACTUAL 3/23/2015 -</td>
</tr>
</tbody>
</table>

The top bar displays name of the project that the summary applies to. Click the link to open the project in the Project Planner.

The next two rows show the expected dates and any actual dates, and the last row shows the status.

<table>
<thead>
<tr>
<th>Progress</th>
</tr>
</thead>
<tbody>
<tr>
<td>33%</td>
</tr>
</tbody>
</table>

This is the percentage of the total duration of dependent actions/gates that is complete. For example, if Action 1 (duration = 3 days) is complete and Action 2 (duration = 1 day) is incomplete, the progress is 75%.

<table>
<thead>
<tr>
<th>Resource Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Man Hours 112.0</td>
</tr>
<tr>
<td>Planned: 112.0</td>
</tr>
<tr>
<td>Actual: 34.0</td>
</tr>
<tr>
<td>Costs 5,500.00</td>
</tr>
<tr>
<td>Planned: $5,500.00</td>
</tr>
<tr>
<td>Actual: $2,300.00</td>
</tr>
</tbody>
</table>

For resource usage, the black bars show the planned man hours and costs. The colored bars show either the expected usage to date (estimated based on the number of days in progress), or the actual usage if complete. (See [Costs and Man Hours](http://xfmea.reliasoft.com).)

- **Yellow** = In progress and usage to date is still within plan
- **Orange** = In progress and usage to date has exceeded plan
- **Green** = Complete and actual usage was within plan
- **Red** = Complete and actual usage exceeded plan
Displays only if actions have been assigned to the project or gate (either directly or via dependent gates).

- **Not Started** = Actions that have not started and can complete on time
- **In Progress** = Actions that are in progress and can complete on time
- **Completed** = Completed actions that have been approved, or don't require approval
- **Past Due** = Actions that have not completed and can no longer complete on time

Folios

Data Sheets
The data sheets in Weibull++/ALTA and RGA folios share some common components and features. The following picture shows the basic components of a data sheet using one particular format as an example.
Chapter 3: Desktop Application Interfaces

- **Caption** shows the name of the folio and the name of the sheet that is currently displayed.

- **Name Box** shows the location of the currently selected cell by listing the column letter and row number that intersect at the cell's location.

- **Data Entry Bar** shows the contents of the selected cell, which may be text, a numerical value or a formula. For text or numerical values, you can enter/edit the information directly inside the cell or inside the data entry bar. For a formula, you must use the data entry bar for editing; the cell will display only the calculated value.

- **Row Headings** identify the row numbers. Each data sheet contains up to 65,536 rows. The application's speed of execution is inversely proportional to the number of data rows in the current data set.

- **Column Headings** indicate the titles of the columns. To rename a heading, right-click it and choose **Rename Column**. When applicable, you can save the column titles and use them as the default headings for all new data sheets of the current type. (See **Default Column Headings**.)

- **Sheet Tabs** represent the different sheets within the folio. To rename a sheet, double-click the tab. The number of folios that can be opened at once depends on the amount of memory of your system (up to a maximum of 256 for some folio types).

Default Column Headings

In life data (Weibull++), life-stress (ALTA) and growth data (RGA) folios, creating a new data sheet automatically applies default column headings that are generally appropriate for the
analysis. If there are certain types of data that you frequently use (e.g., miles-to-failure, cycles-to-failure, etc.), you can customize the column headings to always use your preferred column titles.

To modify the defaults for a particular data type, first rename the column headings in an existing data sheet. Right-click the heading and choose Rename Column on the shortcut menu. Then save the new titles as the defaults. In Weibull++, choose Life Data > Format and View > Set Headers as Default. (In ALTA, the command is in the Life-Stress Data tab; in RGA, it's in the Growth tab.)

These preferences are saved for the current computer/username, and will be applied the next time you create a new data sheet for that particular data type.

To apply the new default headings to an existing analysis, open the data sheet and choose [Life Data/Life-Stress Data/Growth Data] > Format and View > Apply Default Headers.

If you ever need to restore the default column headings back to the shipped settings, choose File > Application Setup, then click Reset Application Settings or Reset All Settings on the Reset Settings page.

Resizing Columns
Column widths are set to span evenly by default. If you want to resize and have the changes saved with the folio, right-click a column heading and choose Column Width Style > Default.

To resize a column, drag the edge of the heading to the desired position, or right-click it and choose Column Width.

Entering Formulas in the Data Sheet
Data sheets in Weibull++, ALTA and RGA allow you to enter formulas in columns that do not require entries to be dates, times or text (e.g., you cannot use formulas in the State F or S column in a Weibull++ life data folio, or in the Classification column in an RGA growth data folio). For example, in a Weibull++ life data folio, if you have a data set where the units were inspected every 24 hours, you can speed up data entry by creating a formula to add 24 hours to the previous inspection time, as shown next.
There are two types of cell references (locations) when inputting a formula: absolute and relative. By default, the cell reference is relative, meaning that as a formula is copied and pasted to other cells, the cell references in the formula will be adjusted to reflect the new relative location. In the previous figure, the formula in cell C2 is copied and pasted into cell C4. This changes the cell reference in the formula from ";=C1+24" to ";=C3+24"; therefore, the time value in C4 is 72+24 = 96.

In contrast, an absolute reference does not change when the formula is copied to other cells. Absolute references are designated by placing a dollar sign ($) in front of the row and/or column to be made absolute. If the formula in the example were rewritten to "=#C$1+24", then copying the formula to cell C4 would retain the cell reference to C1 and the time value in C4 would be 24+24 = 48.

Change Units

In Weibull++, ALTA and RGA, you have the ability to define the units used for the data set and calculations. For example, if your data set contains failure times in hours, you now have the option to perform calculations using different time units such as years, months, days, etc. The software performs the unit conversion automatically. Authorized users can define the units that will be available for use in any project within the database and set up the conversion factors.

The units are displayed in the heading of the relevant column in the data sheet. If you wish to change the units of an existing data sheet, click the Change Units icon on the Main page of the control panel.
In the Change Units window, the units that are currently being used in the data sheet will be displayed at the top of the window. In the Change Units To field, you can choose any other defined unit to be used in the data sheet. In the Conversion Options area, specify what will happen when the units are changed:

- You can convert the existing data to the new units. For example, if you had a time of 10 in a data sheet that was using hours, that time would become 600 if you converted the data to minutes (10 hours x 60 minutes per hour = 600 minutes). For Weibull++ life data, ALTA life-stress data and RGA growth data folios, when this option is selected, you can select whether you want to copy the data to a new sheet in the folio and then perform the conversion, leaving the original data sheet unchanged, or convert the data in the current sheet.

- You can leave the data unchanged and just apply the new units. This would be appropriate if, for example, you had entered all of your data and then realized that the data sheet was using different units from the original units in which the times were measured.

General Spreadsheets

General Spreadsheets can be inserted into a Weibull++ life data folio, ALTA life-stress data folio or RGA growth data folio. They provide the same spreadsheet capabilities that are available in the spreadsheet module in Synthesis Workbooks, but are stored together with an analysis folio. You may prefer to use this reporting tool if you are performing custom calculations based on the data sheets in the same folio and you wish to keep the analyses together with their source data.

To add a General Spreadsheet to a folio, right-click the data sheet tab area (the area at the bottom of the window that shows the name of the data sheets in the folio) and choose Insert General Spreadsheet on the shortcut menu. This command also appears on the ribbon tab for the particular type of data folio. For example, to insert a general spreadsheet into a Weibull++ life data folio, you can choose Life Data > Folio Sheets > Insert General Spreadsheet.

Inserting Data Source Functions

To build and insert functions that utilize a referenced analysis (data source), click a cell in the general spreadsheet and choose Sheet > Sheet Actions > Function Wizard.
Chapter 3: Desktop Application Interfaces

The following picture shows the most complex configuration as an example:

For the function arguments:

- Brackets [] indicate that the input is optional.
- You can use cell references as inputs. For example, instead of entering 1000 for the Age input, you could specify to use whatever time is currently entered into cell A10, using either the relative reference (A10) or the absolute reference (A10). (See Cell References.)
- You can also use variable names as inputs. (See Defined Names.)

For the data source:

- Click the Select button and then select which data sheet in the folio to use as the data source.
- Any time you make changes to the data source, the general spreadsheet will need to be recalculated to reflect the most current results. Choose Sheet > Format and View > More Settings > Recalculate Formulas. The general spreadsheet may return "N/C" if the data source needs to be recalculated.
Inserting Math Functions
To add math, date, logic and other functions, click a cell in the general spreadsheet and choose Sheet > Sheet Actions > Insert Function.

Select a function from the drop-down list and click OK. You can enter inputs for the function arguments by either selecting the cells in the sheet or typing them directly into the appropriate field.

Referencing a Data Source
Some functions (e.g., AMEAN, D_COUNT, etc.) require you to reference a particular data source.

To reference a data source, use the following syntax, with the quotes and exclamation marks (!). You can only reference sheets in the same folio.

"Application!Folio!DataSheet"

In the following example, the data source is a data sheet called "Data1" in the Weibull++ folio called "Folio1".

Control Panels
Many of the analysis folios, diagram sheets and other interfaces in ReliaSoft desktop applications utilize a control panel that allows you to make required inputs, initiate the desired analysis or simulation and view/access applicable results. This topic describes some features that are common to most control panels. (For XFMEA, RCM++, RBI, MPC and Lambda Predict, see System Panel and Analysis panel instead.)
Switching Between Pages
Many control panels and navigation panels contain multiple pages that vary depending on the type of analysis. You can switch between pages by clicking either the large buttons or the small icons at the bottom of the panel.

If you drag the horizontal splitter bar to the bottom of the control panel, all of the pages will be accessed by small icons. If you drag it as far up as it will go, all of the pages will be accessed by large buttons.

Hiding or Displaying a Control Panel
The control panel can be toggled between hidden and displayed states by clicking the Hide or Show icon in its title bar.

When the control panel is hidden, only the title bar and page icons will be visible on the right side of the window (as shown next using a Weibull++ folio as an example). When you click the bar, the active page will be displayed temporarily. When you click anywhere outside of the control panel page, it will be automatically hidden again.
Identifiers Page
The Identifiers page of the control panel allows you to enter identifying details (e.g., category, name, part number, etc.) that will be associated with the analysis and any models or SEP summaries that are published from the analysis. This will help you to find, filter and group analyses and resources throughout the repository.

In folios that can have multiple data sheets, the Folio Identifiers are edited via the Item Properties window, and the Data Sheet Identifiers can be entered directly in the control panel. Use an asterisk (*) if you want the data sheet’s identifiers to be the same as the folio’s (see Identifiers).

Publishing Page
The Publishing page allows you to view and manage information from the current analysis that is shared throughout the Synthesis Platform.

- **Model/Fitted Model** – publishes a model based on the current analysis. See Publishing Models.
Chapter 3: Desktop Application Interfaces

- **SEP Summary** – publishes a summary of the current analysis to the SEP web portal. This is visible only if the enterprise database is configured for SEP and you have the "Publish to SEP web portal" permission. See Publishing to SEP.

- **Metrics** – shows all of the metric resources that are associated with the current analysis. See Showing Metrics in Folios/Diagrams.

Notifications Page

When applicable, the Notifications page provides information on the **Current Status** of the analysis, along with any warnings or errors. A green light indicates that the folio has been analyzed, and a red light indicates that the folio has not been analyzed since changes were last made. The **Latest Notifications** area displays any warnings and errors generated during analysis.

Utilized Resources Page

In BlockSim only, the Utilized Resources page displays a grouped list of all of the **resources** that are used directly by blocks in the diagram (i.e., not applied via any other resource or tool).

For example, a **URD** that is assigned to a block will be displayed in this list, but the **model** assigned to the URD will not be shown, nor will any **tasks** assigned to the URD. Similarly, if a block belongs to a maintenance group, that maintenance group will be shown in the list. However, if a block has a state change trigger, the maintenance group(s) used for that trigger will not be shown unless some block in the diagram belongs to them.

This list is not updated automatically; if you have made changes to the diagram, click the **Refresh** icon to update the list.
Double-click a resource in the list to open its properties window for viewing or editing. Click the Resource Manager icon to view/manage all of the resources available in the project.

System Panel and Analysis Panel
Some ReliaSoft applications use two convenient panels to manage all of the analysis information in a particular project (XFMEA, RCM++, RBI and MPC) or in a particular prediction folio within the project (Lambda Predict).

The first panel (called the System panel or the System Hierarchy panel) allows you to build simple or complex multi-level configurations that contain the items you plan to analyze. The second panel (called the Analysis panel or the Properties panel) contains all of the properties and analyses for the item that is currently selected.

This topic discusses the ways in which you can configure the layout of these two panels to fit your particular workspace preferences.

Change Orientation
You can display the panels side-by-side or with one panel above the other.

To switch between layouts, choose View > Workspace Layout > Change Orientation.

Resize a Panel
You can resize the panels by dragging and dropping the vertical (or horizontal) separator into the desired position.
Chapter 3: Desktop Application Interfaces

Hide a Panel
You can also completely hide either panel so that the other can fill the available space. Choose *View > Workspace Layout > Hide [System Panel/System Hierarchy] or [Analysis Panel/Properties]*.

![Hide Panel](image)

When you wish to return to the two-panel layout, choose the *Split Panels* command.

![Split Panels](image)

Expand or Collapse Nodes
When the panel presents data in a hierarchical tree configuration (e.g., the system hierarchy, FMEA hierarchy, etc.), the View tab provides several flexible options for expanding and collapsing the nodes (branches) that are currently displayed.

To expand or collapse all branches at the same time, choose *Expand Tree* or *Collapse Tree*.

![Expand/Collapse Tree](image)

To expand or collapse a specific branch, you can click the + or - icons, or select the item and choose *Expand Node* or *Collapse Node*.

![Expand/Collapse Node](image)

To collapse all branches in the tree to a specific level, select any item at the desired level and choose *Collapse to Level*.

![Collapse to Level](image)
As an example, the following pictures show how the hierarchy collapses to the second (subsystem) level.

![Hierarchy Diagram]

Selecting Which Columns to Display
When applicable, you can hide, display or reorder the columns shown in a particular type of hierarchy by right-clicking any column heading and choosing **Customize Columns**. These settings are stored per computer/username, and different users may have different display preferences without affecting the stored data. The same preferences can also be managed from the relevant page of the Application Setup.

Printing
ReliaSoft desktop applications offer different printing utilities for data sheets, diagrams, plots and Synthesis Workbooks.

Data Sheets and Diagrams
To print a data sheet or diagram, choose **File > Print** or press **CTRL+P** on the keyboard. You will see a preview of the printed page, and can choose to print or to access page setup options.

When printing an RBD or fault tree in BlockSim, clicking the **Print** button on this page will open the Print Diagrams window, where you will be able to choose whether to print only the **Current** diagram (and possibly its subdiagrams on separate pages) or to **Choose multiple** diagrams from the current project to print. If you choose to print the current diagram and its subdiagrams, you can select **Print subdiagram page number** to include the starting page number for each subdiagram in the caption of the relevant subdiagram block.

To print an XFMEA, RCM++ or RBI diagram (e.g., FMEA block diagrams, etc.), choose **Home > Print > Print**.
Plots
To print a plot, choose File > Print or press CTRL+P on the keyboard.

To print a plot displayed in the Plot Viewer (as seen in XFMEA, RCM++, RBI and Lambda Predict), click the Print icon on the plot control panel.

Synthesis Workbooks
To print Synthesis Workbooks, choose View > Print > Print Preview. For more printing options, you can send the report to Microsoft Word or Excel and use the print utilities in those applications. Choose Home > Report > Send to Excel or Send to Word.

Reports Generated in Word or Excel
In XFMEA, RCM++, RBI, MPC and Lambda Predict, reports are generated in Microsoft Word or Excel. You will need to use the print utilities built in to those applications.

Other Features
For other features that offer the print functionality (e.g., RS Draw, Resource Manager, etc.), the Print icon will be displayed in the window itself.

Page Setup - Plots and Diagrams
The Page Setup for plots and diagrams is accessible via the print window (see Printing).

Maximize Printing Space
The following options are available on the Page tab or Margins tab of the Page Setup.

- **Orientation**. The Portrait orientation works best for small charts and diagrams. If the image is wider than it is tall (which is the case for most plots), select the Landscape orientation.

- **Keep aspect ratio** (available for plots). Select this option to maintain the proportional relationship between the width and height of the image. Clear the check box if you want to stretch the image to fill the paper.

- **Scaling** (available for diagrams) allows you to shrink or enlarge a diagram to fit a specified number of pages. For example, to print a diagram to four pages in a rectangle, you would enter the values 2 by 2 pages. The software will automatically adjust the size of the diagram image to fit to the specified pages.

 - **Print without interior margins** is used for printing images that span multiple pages, so that the pages can be assembled into a whole picture. It removes as
much margin space as possible from the interior edges of each page, where it meets the other pages.

- **Print empty pages** prints any blank pages within the print area; otherwise, the blank pages are omitted from the printout.

- **Margins.** By default, the margins will be printed based on the System’s default option, which is the measurement system specified in your computer’s region and language settings. You can change the unit to inches or centimeters as desired.

Headers/Footers

To add custom headers/footers for printing, click the **Header/Footer** tab of the Page Setup.

To insert variable information such as date, time, number of pages, etc., use the command icons in the window to insert the appropriate field codes (or use the codes shown in the table below).

<table>
<thead>
<tr>
<th>Field Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&A</td>
<td>Inserts the sheet name. (Does not apply to plots in XFMEA, RCM++, RBI and Lambda Predict.)</td>
</tr>
<tr>
<td>&D</td>
<td>Inserts the current date.</td>
</tr>
<tr>
<td>&T</td>
<td>Inserts the current time.</td>
</tr>
<tr>
<td>&P</td>
<td>Inserts the page number.</td>
</tr>
<tr>
<td>&N</td>
<td>Inserts the total number of pages.</td>
</tr>
<tr>
<td>&ZA</td>
<td>Inserts the name of the application (e.g., Weibull++).</td>
</tr>
<tr>
<td>&ZC</td>
<td>Inserts the company name.</td>
</tr>
<tr>
<td>&ZU</td>
<td>Inserts the user name.</td>
</tr>
<tr>
<td>&ZP</td>
<td>Inserts the project name.</td>
</tr>
<tr>
<td>&ZI</td>
<td>Inserts the name of the item. (Does not apply to plots in XFMEA, RCM++, RBI and Lambda Predict.)</td>
</tr>
<tr>
<td>&ZL</td>
<td>Inserts the path to the current repository.</td>
</tr>
</tbody>
</table>
Page Setup - Data Sheets
The Page Setup for data sheets is accessible via the print window (see Printing). For the spreadsheet module in Synthesis Workbooks, choose View > Print > Page Setup.

Maximize Printing Space
The following options are available on the Page tab or Margins tab of the Page Setup.

- **Orientation.** The Portrait orientation works best when the data has more rows than columns. If the data sheet is wider than it is tall, select the Landscape orientation.

- **Scaling** allows you to shrink the font size by a certain percentage to fit the data sheet into one page, or enlarge it to span the data sheet across multiple pages.

- **Paper size** and **Print quality.** The options depend on the type of printer you use.

- **First page number** allows you to specify any number to be the starting page number.

- **Margins** adjusts the widths of the margins on the paper.

- **Center on page** allows you to center the data sheet in the printout horizontally, vertically or both.

Print Order and Other Options
The Sheet tab of the Page Setup provides more printing options:

- **Print area** allows to specify a range of cells to print. Recommended if you want to print only a specific selection of data and not the entire data sheet. For example, you could enter the range A1:B10 to print only cells A1 through B10. To print the entire data sheet, clear this field.

- **Print titles.** If your data sheet is more than one page long, you can repeat row or column titles on each printed page to make it easier to read your data. For example, to repeat the column titles of a data table that has several rows spanning multiple pages, you could enter the range $1:$1 into the **Rows to repeat at top** field, where $1:$1 is the location of the column title in the table.

- **Gridlines** prints the gridlines of a data sheet.

- **Draft quality** prints the data sheet at a lower quality for faster printing.

- **Row and column headings** prints the row numbers and column headings of the data sheet.
• **Comments.** If you’ve added comments to the data sheet, you can choose to print them along with the data sheet. Choose whether to print the comments at the end of the sheet or as they are displayed in the sheet.

• **Cell errors as** allows you to specify how any cell errors in the data sheet should be displayed in the printouts. Choose whether to print them as displayed, <blank>, dashes (--) or as #/NA

• **Page order.** If your data sheet spans multiple pages, you can specify the order in which the pages are numbered and printed.
 - **Down, then over** prints from the top down, then left to right.
 - **Over, then down** prints from left to right, then from the top down.

Headers/Footers
The Header/Footer tab of the Page Setup provides several options for adding custom headers/footers to the printed page.

• **Header** and **Footer** drop-down lists allow you to select a predefined header/footer format. The software includes several predefined formats to choose from.

• **Different odd and even pages** and **Different first page** gives you the option to apply different headers/footers for odd and even pages, or choose to apply a different header/footer to the first page only. Select the check box for the desired option and then click the **Custom Header/Footer** button to edit the headers (see the section below). To apply the same header/footer to all pages in the document, clear the check boxes for both options.

• **Scale with document** auto-adjusts the font size to scale with the data sheet.

• **Align with page margins** auto-adjust the position of the header/footer to be consistent with the page margins.

Edit the Headers/Footers
You can edit the headers/footers for the current printing session. Note that the edits are discarded when you switch to different header/footer format or when you exit the print preview.

To edit an existing header/footer, choose it from the drop-down list and click the **Custom Header/Footer** button. Alternatively, you can select none from the drop-down list and then click the button.

To insert variable information such as date, time, number of pages, etc., use the command icons in the window to insert the appropriate field codes (or use the codes shown in the table below).
Format Code

<table>
<thead>
<tr>
<th>Format Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>&[Page]</td>
<td>Inserts the page number.</td>
</tr>
<tr>
<td>&[Pages]</td>
<td>Inserts the number of pages.</td>
</tr>
<tr>
<td>&[Date]</td>
<td>Inserts date.</td>
</tr>
<tr>
<td>&[Time]</td>
<td>Inserts time.</td>
</tr>
<tr>
<td>&[Path]&[File]</td>
<td>Inserts the file path.</td>
</tr>
<tr>
<td>&[File]</td>
<td>Inserts the file name.</td>
</tr>
<tr>
<td>&[Tab]</td>
<td>Inserts the sheet name.</td>
</tr>
<tr>
<td>&[Picture]</td>
<td>Inserts a selected picture. Click the Format Picture icon on the Header/Footer window to set the image size and other properties.</td>
</tr>
</tbody>
</table>

Page Setup - Word Processing Module

To access the Page Setup for the word processing module in Synthesis Workbooks, choose View > Print > Page Setup.

Maximize Printing Space

The following options are available on the Margins tab or Paper tab of the Page Setup:

- **Margins** adjusts the widths of the margins on the paper.

- **Orientation**. The Portrait orientation works best when the data has more rows than columns. If the data sheet is wider than it is tall, select the Landscape orientation.

- **Paper size**. The options depend on the type of printer you use.

Layout

The Layout tab of the Print Setup provides more printing options:

- **Section** divides the report into several sections, where each section can have different formatting elements such as the page orientation, margins, headers/footers, etc. The easiest way to insert section breaks is to exit the Page Setup and choose Page Layout > Page Setup > Breaks.
• **Headers and footers.** You can choose to apply different headers/footers for odd and even pages, or choose to apply a different header/footer to the first page only. To apply the same header/footer to all pages in the document, clear the check boxes for both options.

To configure and save header/footer information into the report, exit the Page Setup and choose **Document > Header & Footer > Header** or **Footer**.

To set up a header/footer that applies only to the current printing session (i.e., the information will be lost when you exit the preview), exit the Page Setup and choose **View > Print > Print Preview**. In the preview window, click the **Header/Footer** icon on the ribbon. To insert variable information such as date, time, number of pages, etc., use the command icons in the window to insert the appropriate field codes (or use the codes shown in the table below).

<table>
<thead>
<tr>
<th>Format Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Page #]</td>
<td>Inserts the page number.</td>
</tr>
<tr>
<td>[Pages #]</td>
<td>Inserts the number of pages.</td>
</tr>
<tr>
<td>[Page # of Pages#]</td>
<td>Inserts date.</td>
</tr>
<tr>
<td>[Date Printed]</td>
<td>Inserts the current date.</td>
</tr>
<tr>
<td>[Time Printed]</td>
<td>Inserts the current time.</td>
</tr>
<tr>
<td>[User Name]</td>
<td>Inserts the username of the current user.</td>
</tr>
</tbody>
</table>
Chapter 4: Xfmea, RCM++ and RBI Ribbons

In ReliaSoft desktop applications, the ribbon replaces the toolbars and menus used in older software. The ribbon is divided into tabs that relate to a task or activity, such as managing the projects in a database or performing a specific type of analysis. Depending on the current activity, some commands may appear dimmed or will not appear at all.

Note that many features in the application also have a shortcut menu (accessed by right-clicking) that gives access to commands that are commonly used for that feature. All commands available in the shortcut menus are also available on the ribbon.

To minimize the ribbon and maximize your workspace, click the arrow on the right-side of the ribbon (labeled "Minimize Ribbon" in the picture below). The ribbon will be expanded when you click a tab and then minimized after you click a command.

Quick Access Toolbar
The Quick Access Toolbar is a customizable feature of the ribbon that allows you to access frequently used commands without changing tabs.

To add your favorite ribbon commands to the Quick Access Toolbar, right-click the command and select Add to Quick Access Toolbar.

To remove a command from the Quick Access Toolbar, right-click the command and select Remove from Quick Access Toolbar, or click the Customize Quick Access Toolbar icon and clear the check box for the command.

To reposition the Quick Access Toolbar, click the Customize Quick Access Toolbar icon and select to show it either below the ribbon or above the ribbon.
To reset the Quick Access Toolbar to default settings, click the Reset All Settings button in the Application Setup (File > Application Setup).

Backstage View (File Tab)

The *Backstage view* (File tab) is the first view you will see when you start a ReliaSoft desktop application.

- **Save As** *(available only when a standard database is currently open)* saves a copy of the standard database to another pathname/filename and/or file type. You can save the file as a new standard database (*.rsr19) or compressed standard database (*.rsgz19).

- **Pack and E-mail** *(available only when a standard database is currently open)* sends a compressed version of the standard database via e-mail.

- **Open Repository** opens an existing standard database, enterprise database or compressed standard database, from the current version or any previous version. You can also open even earlier file types, depending on the application you are currently using.

- **Close Repository** closes the database. You also can close the database by opening another database or by exiting the application.

- **Recent** shows a list of recently opened database files (*.rsr19 and *.rserp) and a list of recently accessed locations. Clicking a database will open it, and clicking a location will allow you to browse for databases in that location. The number of items in these lists is set in the *Synthesis Settings page* of the Application Setup. You can pin items to a list by clicking the pushpin icon associated with the item; when the pin is vertical, the item will not roll off the list.

- **New** allows you to create a new standard database (*.rsr19) or connection file for access to an enterprise database (*.rserp).

- **Manage Repository** provides a variety of tools and configurable settings for the repository. The settings are shared by all users and all analysis projects in a database.

- **Print** *(available only in Weibull++, ALTA, RGA, BlockSim and RENO)* generates a print preview of the current data sheet, diagram or plot, and sends it to the printer.

- **Help** provides a variety of resources to help you use the application more effectively. In addition, it displays information about the application, including the Compile Release Version (CRV) and License information.
Application Setup allows you to set your personal preferences for working with analyses, such as the math precision, default plot settings and the like. The settings apply only to the current computer/username, and they do not affect the results of the analyses.

Exit closes the current database (if any) and shuts down the application.

Manage Repository
The Manage Repository section of the Backstage View contains the following commands. The available commands depend on the current application and the database type.

Users
Users and Security controls which users can access the repository and their permissions.

User Groups create and manage groups of users that can be assigned to actions, messages, etc. throughout the current database.

Repository Logins displays a list of users who have connected to the repository and allows you to export this information to Excel.

Reset "In Use" Flags allows you to reset the flags that indicate the "in use" status of projects or items within a project.

Lambda Predict Repository Settings
Available only in Lambda Predict:

FIDES Settings Manager defines the settings related to the FIDES prediction standard such as process audits, pi factors, categories, etc. (See FIDES Settings Manager in the Lambda Predict documentation.)

Custom Derating Standards Manager allows you to add, edit, delete or import/export custom derating standards. (See Creating Custom Derating Standards in the Lambda Predict documentation.)

MIL-217 Custom Connections defines custom connection types for use with the MIL-HDBK-217F prediction standard. (See MIL-217 Custom Connection Types in the Lambda Predict documentation.)
XFMEA/RCM++/RBI Libraries
Available only in XFMEA, RCM++ and RBI:

Profiles/Library Manager configures the predefined settings of the profiles stored in the software library. Profiles allow you to customize the look, drop-down lists, rating scales and other settings of a particular project in order to fit the needs of the analysis. (See Profiles/Library Manager in the XFMEA/RCM++/RBI documentation.)

Templates Manager allows you to manage the configurable templates that can be used for customized reports, saved queries or importing/exporting data via Excel. (See Templates Manager in the XFMEA/RCM++/RBI documentation.)

Settings and Predefined Options

Repository Settings allows you to enable alerts via e-mail or SMS, activate history logs, and other settings.

Unit Settings defines the unit and measurement settings that will be available for use in any project within the database.

Project/Item Categories defines the categories that can be used to filter and group data throughout the database.

Default Name Formats (not applicable for MPC) specifies the default names for new resources, as well as new blocks in BlockSim RBDs, fault trees and phase diagrams.

Project Planning Resources (not applicable for MPC) defines the cost categories, teams, materials and facilities that are used for tracking costs, man hours and resource utilization in actions and Project Planner gates.

Working Days/Holidays (not applicable for MPC) specifies the business days when project planning resources can be utilized.

Dashboard Layout Manager (not applicable for MPC) shows all of the predefined dashboard layouts that will be available for any user to view for a particular data set.

Task Types (applicable only in RCM++, RBI and MPC) maps the task types used in RCM++ and RBI (e.g., Restoration, Failure Finding, etc.) to the corresponding task classes in the universal reliability definition (e.g., Preventive, Inspection, etc.) so that simulation and cost calculation results are accurate. (See Task Types in RCM++/RBI in the XFMEA/RCM++/RBI documentation.) In MPC, it allows you to modify the abbreviations
used for the MSG-3 task types. (See Task Type Abbreviations in MPC in the MPC documentation.)

XFRACAS Connection is available only for standard databases (*.rsr19) in Weibull++/ALTA, RGA, and XFMEA/RCM++/RBI. It allows you to define connection settings for an enterprise repository.

Database Tools

- **New Enterprise Repository** opens a wizard that leads you through the steps to create a new enterprise repository (SQL Server or Oracle database). To use this option, you must have access to a server with a supported version of SQL Server or Oracle and you must have the appropriate permissions to create a new database on the server.

- **Upgrade Enterprise Repository** converts an existing Version 9 or later enterprise database to a Version 2019 enterprise database. *This cannot be undone.* It is recommended that you create a backup of the database before performing the upgrade.

- **Upgrade Version 8 Repository** copies all of the existing data from a Version 8 enterprise database to a new Version 2019 enterprise database.

- **Restore Points** manages all of the project backups that are stored in the current database.

- **Compact and Repair** is available only in a standard database (*.rsr19). It helps to reduce the size of the database and protect against data loss and corruption. (See Backups and Database Maintenance.)

- **Import from Version 5** is available only in XFMEA, RCM++ and RBI. It allows you to import data from a Version 5 XFMEA/RCM++ database. This command is available only when you are connected to an enterprise database and have the "Manage users and logins" permission and the applicable "manage all projects" permissions.

Help Center

The Help Center, which is part of the Backstage view, is intended to help you use the application more effectively by providing quick access to a variety of support tools. To access the Help Center, choose File > Help.
Chapter 4: Xfmea, RCM++ and RBI Ribbons

Using This Application

Help File opens the application's help file. If you have an active Internet connection, the help topics that you see will always be the most up-to-date versions available. If you do not have an active Internet connection, the help topics that you see will be the local copy that was installed on your computer.

User Guide opens the application's User's Guide (in PDF format) if you have an active Internet connection.

Quick Tour opens the Quick Tour within the application's help file. The Quick Tour provides a brief overview of the application's features, including basic steps for performing the most common analysis types. This command is available only if the current application offers a Quick Tour.

Online Resources

reliasoft.com opens the main page of the reliasoft.com website.

weibull.com opens the weibull.com website, which is devoted entirely to the topic of reliability engineering, reliability theory and reliability data analysis and modeling.

reliawiki.org opens the ReliaWiki website, which is both a resource portal and a wiki for professionals in reliability engineering and related fields.

Examples

Open Examples Folder provides access to a set of example projects that are designed to help you explore various software features.

Technical Support

E-mail Support generates an e-mail to request technical support. The e-mail is pre-populated with information about your license and operating system, which the technical support representative will need for troubleshooting the issue.

Contact Technical Support provides the contact information you will need to obtain technical support.

Check for Update allows you to download the latest free service release for the software.

- Licensing displays your license and registration details. To view or edit additional information, click License Manager. The License Manager displays additional
information about which products you have currently registered and/or your contact information on file with us.

- **About** displays the application's Compile Release Version (CRV) (sometimes called a "build number"), which allows you to determine whether you have the latest version of the software.

Home Tab

The Home tab contains the following commands:

Clipboard

- **Paste** pastes the contents of the Clipboard into the current item or record.

 For items in the System panel, the pasted item(s) will be placed into the level below the currently selected item and will include any lower level items and associated analyses. If you want to paste the items to the same level or system level — or if you want to paste the item without associated information — use the **Paste Special** command.

 For records in the FMEA hierarchy view in the Analysis panel, the pasted data will include any dependent records (e.g., if you copied a cause that has associated actions or controls, the actions and controls will be pasted also). If you want to paste the record only, use the **Paste Without Dependents** command.

- **Paste As Top Level** pastes each cut/copied item as a system.

- **Paste Special** is available only when working in the System panel and opens the Paste Special window.

- **Paste Without Dependents** is available only when working with an FMEA. For example, if you cut/copy a function, it pastes only the function without associated failures, effects, etc.

- **Paste as Unique** is available only when working with controls or actions in an FMEA, or with actions in a test plan. It pastes the selected control or action as a new resource that is not associated with (linked to) the original. The description of the new record will be incremented automatically so it remains unique. For example, if the original description is "Do this and that," then the description of the new record might be "Do this and that_1." After you break the association,
changes that are made to one resource will not be applied automatically to the other.

Cut cuts the selected item or record (along with any associated analyses or dependent records) to the Clipboard. You can then paste this information into another location within the same database.

Copy copies the selected item or record (along with any associated analyses or dependent records) to the Clipboard. You can then paste this information into another location within the same database.

Copy Active View (formerly called "Copy Current View to Graphic") copies the currently visible contents of the System panel or Analysis panel to the Clipboard as a graphic that can be pasted into other applications. The entire visible area within the active panel/tab will be copied but any information that is not currently visible will be excluded.

Copy Analysis and Paste Analysis allow you to copy and paste the analysis (FMEA, control plan, etc.) that currently has focus in the Analysis panel. Note that you will only be able to copy/paste FMEA analyses between projects that have the same FMEA structure.

Delete Analysis deletes the analysis that currently has focus in the Analysis panel.

Edit

Delete deletes the selected item or record and all associated data.

Spelling allows you to automatically spell check the entire analysis displayed in the table or worksheet that is currently displayed (e.g., FMEA worksheet, control plan worksheet, etc.). If you want to use spell check for the records in the FMEA hierarchy, use the command that appears in each separate record properties window.

Find and Replace allows you to find or replace specified text, dates, numbers or drop-down list options within the current project.

Undo Last Delete cancels the last delete action you performed within the project.

Move Record

Promote and Demote move the selected item to the next higher or lower level in the system hierarchy.
An item can be demoted only if there is another item on the same level and above the selected item that it can be demoted under.

↑ Up and ↓ Down move the selected record up or down in a branch of the system hierarchy or FMEA hierarchy view.

Reporting

- **Reports** allows you to generate predefined reports in Microsoft Word or Excel.
- **Queries** allows you to search the project or database for the records that meet your specific query criteria. The results can be exported to Excel and you also have the option to save and reuse queries.
- **Plots** allows you to create graphical charts based on analysis data. First, you will be prompted to select the item(s) from the current project that will be the source of the data. Then you can choose the chart type and make any other required inputs.

Dashboard

- **Dashboard Viewer** opens the Dashboard Viewer so you can view dashboards based on predefined layouts.
- **Dashboard Manager** opens the Dashboard Layout Manager so you can create, edit and delete the predefined layouts that will be available for any user to view for any analysis in the database.

MIL-1629A Criticality will be visible only if you have selected the option on the Settings page of the Application Setup window. If there is at least one criticality analysis field enabled in the project, this command opens the MIL-1629A Criticality Analysis window, which provides an alternative to the standard criticality analysis performed directly in the FMRA.

Synthesis

- **Resource Manager** opens the Resource Manager window, which allows you to view and edit all of the resources (URDs, models, tasks, etc.) available to the selected project. This command is not available in MPC.
- **Synthesis Explorer** allows you to explore all of the different analyses that are stored in the current database. You can filter, group and sort the analyses in a flexible grid, and
also present the information in a wide variety of dashboard charts. (See Synthesis Explorer.)

Actions Explorer allows you to explore all of the action resources that are stored in the current database. You can filter and sort by date, status, person responsible, relevancy to you, etc. (See Actions Explorer.)

Batch Properties Editor opens the Batch Properties Editor, which allows you to perform batch editing of most types of local resources in the current project. In BlockSim, it also allows you to edit the blocks used in the diagrams. This command is not available in MPC.

Launch Application provides a drop-down list of the other ReliaSoft desktop applications that are installed on your computer. When you click an icon, the same database will be opened automatically in the new application.

My Portal Tab

Messages
Create Message opens the Message window, which allows you to compose and send messages within the database.

Edit Message opens the Message window, which allows you to view and edit all of the properties of the message.

Reply to Message opens Message Reply window, which allows you to respond to a message sent to you.

Delete Message deletes the current message.

Actions
Create Action opens the Action window and adds an action to the project.

Edit Action opens the Action window, which allows you to view and edit all of the properties of the action record.

Delete Action deletes the current action record.
Add to Outlook Calendar adds an event, on the Action's due date, to your Outlook calendar.

Users

My Profile opens the User Login and Contact Information window where you change your contact details for your user account in the current database.

Project Tab

Unless otherwise indicated, these commands apply to the project that is currently selected in the project list. There are three ways to select a project and apply a command:

- By right-clicking the project in the project list and choosing the command from the shortcut menu.
- By selecting the project in the project list and then clicking the command on the ribbon.
- By clicking anywhere inside the project that is currently open/visible and then clicking the command on the ribbon.

Note: For secure databases, access to the commands on this tab may be restricted based on the permissions assigned to the user account.

Management

Create Project adds a new project to the current database. At a minimum, you must specify the project name.

Open Project opens the selected project.

Close Project closes the project that is currently open/visible and all of the analyses it contains.

Edit Project Properties allows you to view and edit the properties of the selected project.

Duplicate Project creates a copy of the selected project. The new project will have the same name as the original with an increment number added to the end (e.g., Project_1, Project_2, etc.).
Chapter 4: Xfmea, RCM++ and RBI Ribbons

Delete Project moves the selected project to the [recycle bin](http://xfmea.reliasoft.com).

Transfer Project is available only in XFMEA/RCM++/RBI. It allows you to create a new project with data transferred from the selected project. (See [Transfer Projects](http://xfmea.reliasoft.com) in the XFMEA/RCM++/RBI documentation.)

Task Numbering is available only in MPC. It allows you to specify whether or not you want to reuse task numbers within the project. (See [Task Numbering in MPC](http://xfmea.reliasoft.com) in the MPC documentation.)

Manage Projects opens the [Manage Projects window](http://xfmea.reliasoft.com), which allows you to edit the security settings and properties of all projects in the database in one location.

Import/Export gives you the option to open either the Import or Export wizard. The Import wizard allows you to import projects, resources or items from an existing database into the current database, while the Export wizard allows you to export to a new or existing database. (See [Import, Export and Data Conversion](http://xfmea.reliasoft.com).)

Configurable Settings is available only in XFMEA/RCM++/RBI. It allows you to view/modify the configurable settings for the current project. (See [Configurable Settings](http://xfmea.reliasoft.com) in the XFMEA/RCM++/RBI documentation.)

Restore Point gives you the option to utilize restore points, which are exact replicas of the project at a particular point in time (i.e., backups). To create a restore point for the selected project, use the [Create Restore Point](http://xfmea.reliasoft.com) command. To restore all data from an existing restore point, use the [Restore Project](http://xfmea.reliasoft.com) command.

Check In/Out allows you to [check out](http://xfmea.reliasoft.com) the selected project and make it available for editing only to you, while all other users in the database have read-only access to the project. No other user can edit the project unless you check in the project or undo the check out.

Recycle Bin

Empty Recycle Bin permanently deletes all projects under the [Recycle Bin](http://xfmea.reliasoft.com) heading in the project list. *There is no undo for emptying the recycle bin.*

Restore Project is available only when you have selected a project under the Recycle Bin heading. The selected project will be recovered from the recycle bin and restored to its original location in the project list.
Delete Project permanently deletes the selected project. There is no undo for delete unless you have a stored backup or restore point.

History Log is available only if you are the project owner or have the applicable "manage all projects" permissions. It opens the Project History Log window, which allows you to activate and deactivate the history log for the project and, if the history log is currently activated, to view changes that have been performed throughout the entire project, with any ReliaSoft application.

Project Planner opens the Project Planner, which provides full project planning and management capabilities for the current project. This command is not available in MPC.

Attachments is available only in XFMEA/RCM++/RBI and MPC. It adds linked or attached files to the selected project. In other ReliaSoft desktop applications, attachments commands are available in the current project explorer.

E-mail Project

Pack and E-mail compresses a copy of the selected project to a *.rsgz19 file and attaches it to a new e-mail message. If no e-mail program is installed or no default e-mail program is defined on the computer, a message notifying you of this will be shown.

Security

Project Security is available only for public projects in secure databases. It opens the Project Properties window with the Security tab active, where you can specify the user accounts that can view/modify the selected project.

Change Owner allows you to assign a different database user to be the owner for the selected project.

Lock Project moves the project into the Locked heading of the project list. When a project is locked, all database users (including the user who locked the project) will have read-only access to the project. In addition, a locked project cannot be deleted or have its properties and public/private status edited. To unlock a project, choose Unlock Project. (See Locked and Unlocked Projects.)

Make Private moves the selected public project into the Private heading of the project list. (See Public, Private and Reference Projects.)
Make Public moves the selected private or reference project into the Public heading of the project list.

Make Reference moves the selected public project into the Reference heading of the project list. This command is not available in MPC.

Current Item
The following commands are available when you select a specific item (a diagram, report, multiplot, etc.) in the current project explorer. This group is not available in XFMEA/RCM++/RBI or in MPC.

Edit brings the selected item to the front of the windows and activates it as the current control. If an attachment is selected, the command opens the attachment in the appropriate application, if that application is installed on your computer.

Rename allows you to rename the selected item.

Duplicate creates a copy of the selected item within the project. The duplicate will have the same name as the original with an increment number added to the end (e.g., RBD1_1, RBD1_2, etc.). In BlockSim, you can choose to Duplicate With Resources, which also creates duplicate resources in the Resource Manager window.

Delete deletes the selected item. There is no undo for delete.

Item Properties is available only for project explorer items (e.g., folios, diagrams, plots, etc.). It opens the Item Properties window, which allows you to view and edit the item's Identifiers, item settings (if applicable) and item permissions (in secure databases).

Save Locator Link is a link file (similar to a Windows shortcut) that provides quick access to the specific analysis. In an enterprise database, you can choose to Save or E-mail the file. In a standard database, the only option is to save the file. In XFMEA/RCM++/RBI, these commands are available in the System Hierarchy tab. In MPC, they are in the Systems, Structures or Zones tab.

Data Management
The following commands are available only in BlockSim.

Mirror Group Manager opens the Mirror Group Manager window, which allows you to add, view and edit groups of mirrored blocks within the project that is currently
open/visible. (See Mirroring (Using Blocks in Multiple Locations) in the BlockSim documentation.)

Maintenance Group Manager opens the Maintenance Group Manager window, which allows you to add, view and edit the maintenance task groups available to the project that is currently open/visible. (See Maintenance Groups.)

Flow Group Manager opens the Flow Group Manager window, which allows you to add, view and edit the flow groups available to the project that is currently open/visible. (See Flow Groups in the BlockSim documentation.)

Reports

MRBR is available only in MPC. It allows you to generate a maintenance review board report in Microsoft Word. (See Maintenance Review Board Reports in the MPC documentation.)

System Hierarchy Tab

The System Hierarchy tab contains commands related to using the System panel.

Add Items

Add System adds a new top level (system) item to the System panel at the bottom of the list.

Add Next Level Item adds a new item to the next level below the item that is currently selected in the System panel. The new item will be added to the bottom of the list for that level.

Add Same Level Item adds a new item to the same level as the item that is currently selected in the System panel. The new item will be added to the bottom of the list for that level.

Insert Same Level Item adds a new item to the same level as the item that is currently selected in the System panel. The new item will be inserted above the selected item.

Smart Add Items allows you to quickly find and copy item names from other similar analyses.
Chapter 4: Xfmea, RCM++ and RBI Ribbons

Import

- **Import Items (Query)** allows you to query for items that you wish to import.
- **Import Items (Browse)** allows you to browse for items and/or FMEA information that you wish to import.
- **Import from Excel** allows you to import data from an Excel spreadsheet.
- **Import Lambda Predict Items** allows you to import systems from a Lambda Predict analysis.
- **Import MPC Systems** allows you to import systems from an MPC analysis.

Risk Based Inspection (available only for RBI)

- **Add RBI Equipment** and **Add Component** allow you to select one of the equipment types or component types that are eligible for RBI analysis and add the item to the system hierarchy. (See [Building the RBI System Hierarchy](#).)
- **Convert to Equipment** converts the selected system hierarchy item to an RBI equipment item. (See [Converting System Hierarchy Items to RBI Equipment](#).)
- **PRD Components** are available when working with a pressure relief device and the RBI Properties tab is active in the analysis panel.
 - **Assign Components** opens a window where you can select which existing components to add to the pressure relief device.
 - **Go to Component** displays the properties of the selected component.
 - **Remove Component** removes the component from the pressure relief device.
- **Risk Categories** allows you to view or modify the Risk Priority rating scales that will be used for all RBI analyses in the current database.
- **Management Score** allows you to set the Management Systems Evaluation score for all RBI analyses in the current project.
- **Calculate Risk** calculates the results of the RBI analysis.
Current Item

- **Item Permissions** is available only for secure databases. It allows you to prevent specific users from editing the item and its related analyses. (See [Item Permissions](#).)

- **Diagrams**

 - **Process Flow Diagram** opens the process flow diagram associated with the selected item (if any), or allows you to create a new one.

 - **FMEA Block Diagram** opens the FMEA Block Diagram associated with the selected item (if any), or allows you to create a new one.

 - **Cause and Effect Diagram** opens the existing cause and effect diagram (also called a "fishbone diagram") associated with the selected item (if any), or allows you to create a new one.

- **Item History** is available only if a history log has been activated at the project level. It opens the Record History Log window for the current item and displays changes that have been performed for the item.

- **Attachments** allows you to manage the linked or attached files for the selected item.

- **Locator Link** is a link file (similar to a Windows shortcut) that provides quick access to a specific analysis or record. In an enterprise database, you can choose to Save or E-mail the file. In a standard database, the only option is to save the file.

- **Web Summary** is available only if your organization has implemented a Synthesis Enterprise Portal (SEP) website for an enterprise repository. You can open the web summary of the current item’s FMEA in your default web browser or you can e-mail a link to the web summary.

Tools

- **Configurable Settings** opens the Properties window where you can change the properties that are available for the items in this project.

- **Create Categories** creates new item categories based on the names of the current system and its dependents, then applies the new categories to the items in the branch. (See [Item Categories in XFMEA/RCM++/RBI](#).)
Chapter 4: Xfmea, RCM++ and RBI Ribbons

Renumber All Items renumbers all items based on their positions in the system hierarchy. *This cannot be undone*. If you also want to display the full context in the Reference Number field (e.g., # = 3 and Reference Number = 1.2.4.3), select the **Apply to reference number field** check box.

Update Names changes the Name field in every FMEA record in the project to an asterisk (*), which shows the first 50 characters in the record's Description field in the appropriate places.

Reporting provides convenient access to all of the same commands that also appear on the **Home tab**.

Reports allows you to generate predefined reports in Microsoft Word or Excel.

Plots allows you to create graphical charts based on analysis data. First, you will be prompted to select the item(s) from the current project that will be the source of the data. Then you can choose the chart type and make any other required inputs.

Dashboard

Dashboard Viewer opens the Dashboard Viewer so you can view dashboards based on predefined layouts.

Dashboard Manager opens the Dashboard Layout Manager so you can create, edit and delete the predefined layouts that will be available for any user to view for any analysis in the database.

MIL-1629A Criticality will be visible only if you have selected the option on the **Settings page** of the Application Setup window. If there is at least one criticality analysis field enabled in the project, this command opens the MIL-1629A Criticality Analysis window, which provides an alternative to the standard criticality analysis performed directly in the FMRA.

Send Active View to Excel sends the contents of the System panel or the tab in the Analysis panel that currently has focus to an Excel spreadsheet.

Export to Excel exports data to an Excel spreadsheet. You can choose an existing template or create a new template that determines how the data will be "mapped" from the software to the Excel file.
Risk Matrix opens the Risk Matrix window, which provides a visual way to evaluate the risk based on either RPN or criticality metrics.

Diagnostic Logic Assistant opens the Diagnostic Logic Assistant window, which extracts relevant information from the FMEA that you can use to prepare troubleshooting documentation.

FMEA Statistics opens the FMEA Statistics window, which displays some overall statistics for the FMEA. This includes details such as the total number of causes defined in the analysis, the percentage of causes that have the RPN ratings defined, the total number of actions defined in the analysis, the percentage of actions that are complete, etc.

Remove External FMEAs removes the links to all FMEAs that come from reference projects and replaces them with local FMEA records.

Task Packaging is available only in RCM++ and RBI. It opens the Scheduled Task Packaging window, which allows you to group tasks into task packages for the most efficient allocation of resources and downtime management.

XFRACAS

Import XFRACAS Items allows you to import XFRACAS systems into the system hierarchy.

Associate Item creates an association between the currently selected item and an item in the XFRACAS hierarchy. To remove the association, choose Remove Association.

Synchronize Item opens the Synchronize with XFRACAS window, where you choose the type of synchronization that you want to perform for the item, from updating only the current item properties, to adding new dependents, to adding any associated failures and causes.

Import Failures opens the Import Failure Modes from XFRACAS window, where you choose which FMEA failures and causes to update with their associated records in XFRACAS.
Chapter 4: Xfmea, RCM++ and RBI Ribbons

Analyses Tab
The Analyses tab contains the following commands.

Planning

- **Add Risk Discovery** adds a tab in the Analysis panel for the risk discovery analysis associated with the selected item.

- **Add Analysis Plan** adds a tab in the Analysis panel for the analysis plan associated with the selected item.

- **Add P-Diagram** adds a tab in the Analysis panel for the Parameter Diagram (P-Diagram) associated with the selected item.

FMEA

- **Add FMEA** adds a tab in the Analysis panel for the failure modes and effects analysis (FMEA) associated with the selected item.

- **Add Linked FMEA** opens the Add Linked FMEA window, which allows you to select an existing analysis that is eligible to be linked from the current item.

- **Add DRBFM** adds a tab in the Analysis panel for the design review based on failure modes (DRBFM) analysis associated with the selected item. It will be visible only if you have selected the option on the Configurable Settings page of the Project Properties window.

Other

- **Add DVP&R** adds a tab in the Analysis panel for the design verification plan (DVP&R) analysis associated with the selected item. It will be visible only if you have selected the option on the Configurable Settings tab of the Project Properties window.

- **Add PFD Worksheet** adds a tab in the Analysis panel for the process flow diagram worksheet associated with the selected item.

- **Add Control Plan** adds a tab in the Analysis panel for the control plan associated with the selected item.
View Tab
The View tab contains commands related to configuring the layout of the application's interface.

Refresh

Refresh refreshes the display in the Project window. If multiple users are accessing the same project simultaneously, this command will refresh your screen with any changes made by other users. When you make a change to the project, your window will be refreshed automatically.

Project Manager

Show Project Manager brings the Project Manager into focus. If the Project Manager is unpinned and hidden, choosing this command will display it.

Tile Project Manager tiles the project list and current project explorer so they are both displayed simultaneously in the Project Manager panel. This command is not available in XFMEA, RCM++, RBI or MPC.

Dock Project Manager opens a submenu that allows you to choose the desired position for the Project Manager: Dock Left, Dock Right, Dock Top, Dock Bottom or Floating.

My Portal

Show My Portal opens the My Portal window, which provides information relevant to your work within the database, such as messages from other users, recommended actions for a particular project item, status of other users logged in to the database and other information.

Tile My Portal tiles the Messages, Actions and Users pages so they are all displayed simultaneously within the My Portal panel.

Dock My Portal opens a submenu that allows you to choose the desired position for the Portal: Dock Left, Dock Right, Dock Top, Dock Bottom or Floating.
Chapter 4: Xfmea, RCM++ and RBI Ribbons

Workspace Layout

The commands in this group are available only in XFMEA, RCM++, RBI, MPC and Lambda Predict.

- **Change Orientation** toggles between the two possible orientations for the System panel and the Analysis/Properties panel. These panels can be side-by-side or one on top of the other.

- **Hide System [Panel/Hierarchy]** hides the System panel in the Project window. When you want to show the panel again, choose View > Workspace Layout > Split Panels.

- **Hide [Analysis Panel/Properties]** hides the Analysis/Properties panel in the Project window. When you want to show the panel again, choose View > Workspace Layout > Split Panels.

- **Split Panels** splits the Project window into two equal panels, with 50% of the available space used for the System panel and 50% of the available space used for the Analysis/Properties panel.

- **Properties View** is available only in Lambda Predict.

- **Tree View** organizes the properties depending on whether they are physical properties (e.g., part quality level, case type, etc.) or application properties (e.g., ambient temperature, applied voltage, etc.). Depending on the prediction standard and component you are working with, the properties may also be organized according to failure mechanisms or type of data.

- **Pi Factor View** organizes the item properties based on the pi factors that they contribute to so you can see how the values affect the failure rate calculations. The relevant pi factors will vary depending on the item's failure rate model. (See the Tree View and Pi Factor View topic in the Lambda Predict documentation.)

Expand/Collapse

The commands in this group apply to the hierarchical view that currently has focus. Depending on the application, this can be the project list, the current project explorer, the System panel, the Properties panel (Lambda Predict only) or the Analysis panel if it is using a hierarchical view.

- **Expand Tree** expands the entire tree in the hierarchical view.

- **Collapse Tree** collapses the entire tree in the hierarchical view.
Expand Node expands the selected branch in the hierarchical view.

Collapse Node collapses the selected branch in the hierarchical view.

Collapse to Level collapses the hierarchical view to the level of the item that is currently selected. For example, if you have selected a cause in the FMEA hierarchy view and choose this command, all branches in the FMEA hierarchy view will be collapsed to the cause level and the nodes for controls and actions will be hidden.

Zoom

Normal Zoom sets the degree of magnification to 100%.

Zoom In increases the degree of magnification.

Zoom Out decreases the degree of magnification.

Custom Zoom allows you to specify the degree of magnification.

Window

Use Tabbed MDI maximizes the windows to fill the full space available in the MDI and shows a tab for each open window. If you clear this command, the open windows will be displayed as separate windows that can be resized and moved around within the MDI.

Window

Cascade cascades all open project windows inside the MDI.

Tile Horizontally horizontally tiles all open project windows inside the MDI.

Tile Vertically vertically tiles all open project windows inside the MDI.

The Windows drop-down list displays a list of all project windows currently open inside the MDI. You can make any of the open project windows active by clicking its name in this ribbon.

Close All Windows closes all open project windows inside the MDI, leaving only the Project Manager and My Portal panels open (if they were selected to be shown).
Chapter 4: Xfmea, RCM++ and RBI Ribbons

FMRA
The commands in this group are available only in BlockSim. (See [Failure Modes and Reliability Analysis (FMRA)](http://xfmea.reliasoft.com) in the BlockSim documentation.)

- **Show FMRA** opens the FMRA view, which displays the FMRA (failures modes and reliability analysis) hierarchy that is associated with the project.
- **Disassociate FMRA** deletes all of the diagrams and blocks associated with the current FMRA hierarchy and closes the FMRA view.

Show
The commands in this group are available only in XFMEA, RCM++ and RBI.

- **Show FMRA** enables/disables the FMRA tab in the System panel.
- **Show Test Plan** opens the Test Plan tab in the analysis panel, which displays a list of actions that describe specific tests that need to be performed. (See the [Test Plans](http://xfmea.reliasoft.com) topic in the XFMEA/RCM++/RBI documentation.)

Paste Special Window
The Paste Special window allows you to specify how the item(s) that were cut or copied in the System panel will be pasted.

The options in the **Paste at this level** section allow you to specify the level in the system hierarchy to which the item(s) will be pasted:

- **As system** pastes to the top (system) level.
- **As same level** pastes to the same level as the item that is currently selected. (This position also might be referred to as a "sibling.")
- **As next level** pastes to the level below the item that is currently selected. (This position also might be referred to as a "child.")

The options in the **Other Options** section allow you to specify which associated data, if any, will be pasted along with the item(s):

- **Include lower level items** pastes any lower level items (sub-items).
- **Include analyses** pastes any associated analyses (i.e., PFD worksheet, risk discovery, analysis plan, FMEA, DRBFM, DVP&R or, control plan). If this check box is not selected,
only the item properties and attachments (i.e., links/attachments, process flow diagram, FMEA Block Diagram, cause and effect diagram) will be pasted.

Active Tabs

Control Plan Tab

The Control Plan tab is visible when working with a control plan analysis.

Part/Process

- **Add Part/Process** adds cells to the control plan worksheet for describing the part/process that is being analyzed.
- **Insert Part/Process** inserts new cells above the part/process record that is currently selected.

Characteristic

- **Add Characteristic** adds cells to the control plan worksheet for describing the characteristics that must be kept under control.
- **Insert Characteristic** inserts new cells above the characteristic that is currently selected.

Method

- **Add Method** adds cells to the control plan worksheet for describing the control methods that have been defined.
- **Insert Method** inserts new cells above the method that is currently selected.

Sync

- **Sync with PFD Worksheet** allows you to transfer data from the PFD worksheet to the control plan. (See [Sync Options for Control Plans](#).)
- **Sync with FMEA** allows you to transfer data from the FMEA to the control plan based on the criteria that you specify.
Chapter 4: Xfmea, RCM++ and RBI Ribbons

Tools

- **History Log** is available only if a history log has been activated at the project level. It opens the Record History Log window for the current analysis and displays changes that have been performed for the analysis.

- **Configurable Settings** opens the Properties window where you can change the properties that are available for the control plan records in this project.

Change Log

- **Activate Change Log** or **View Change Log** allows you to activate or view a change log for this control plan analysis. A change log records a history of the specific changes that were made in each tracked revision to the analysis since the log was activated.

- **Batch Start Revisions** displays a list of all the change log analyses in the project that are eligible to start change log revisions (i.e., that do not already have an open revision or a revision awaiting approval). This includes analyses that do not yet have change logs activated. This window allows you to start revisions for multiple analyses at once.

- **Batch End Revisions** displays a list of all the change log analyses in the project that currently have open revisions, allowing you to end revisions for multiple analyses at once.

- **Approve Change Logs** displays a list of all the control plan change logs in the project that are assigned to you for review and are ready to be reviewed. Note that you can only approve change logs in this window; you cannot reject them. (See Electronic Approval Tracking.)

DRBFM Tab

The DRBFM tab is visible when working with a Design Review Based on Failure Mode (DRBFM) analysis.

DRBFM Records

- **Parts/Functions** adds or inserts cells in the DRBFM worksheet for describing the change and the parts/functions that might be affected by the change.

- **Concerns** adds or inserts cells in the DRBFM worksheet for describing concerns related to the change. The concerns in a DRBFM are similar to the failure modes in an FMEA. The DRBFM worksheet provides two columns for concerns. The Design Engineer
view displays only the first column and the Review Team view displays both columns. For a given row of the worksheet, you can type in only one column or the other.

Effects adds or inserts cells in the DRBFM worksheet for describing the effects that may result if the concern (failure mode) occurs.

Causes adds or inserts cells in the DRBFM worksheet for describing the possible causes of the concern. The DRBFM worksheet provides two columns for causes. The Design Engineer view displays only the first column and the Review Team view displays both columns. For a given row of the worksheet, you can type in only one column or the other.

Controls adds or inserts cells in the DRBFM worksheet for describing the controls that are in place to reduce the likelihood that the cause will occur (Prevention Controls) or increase the likelihood that the cause will be detected before it reaches the end user (Detection Controls).

Actions adds or inserts cells in the DRBFM worksheet for describing the actions that will be assigned to address the concern. The DRBFM worksheet provides separate columns for three types of actions: design-related actions, testing-related actions and manufacturing-related actions. For a given row of the worksheet, you can define any or all of the three types of action.

Sync

- **Get Functions from FMEA** displays a list of all functions defined in the FMEA. You can choose to import any of these functions to the DRBFM.

- **Send Functions to FMEA** displays a list of all functions defined in the DRBFM. You can choose to export any of these functions (along with all related concerns, effects, causes, controls and actions) to the end of the FMEA.

- **Get Header from FMEA** imports the data from the FMEA header to the DRBFM header. This will replace any header information that has been defined already for the DRBFM.

- **Send Header to FMEA** exports the data from the DRBFM header to the FMEA header. This will replace any header information that has been defined already for the FMEA.
Chapter 4: Xfmea, RCM++ and RBI Ribbons

Tools

History Log is available only if a history log has been activated at the project level. It opens the Record History Log window for the current analysis and displays changes that have been performed for the analysis.

Configurable Settings opens the Properties window where you can change the properties that are available for the DRBFM records in this project.

DVP&R Tab

The DVP&R tab is visible when working with a Design Verification Plans (DVP&Rs) analysis.

Plan

Add Plan adds cells to the DVP&R worksheet for describing a test plan.

Insert Plan inserts new cells above the test plan that is currently selected.

Report

Add Report adds cells to the DVP&R worksheet for describing the results of a test.

Insert Report inserts new cells above the test report that is currently selected.

Sync

Sync with FMEA allows you to transfer data from the FMEA to the DVP&R based on the criteria that you specify.

Tools

History Log is available only if a history log has been activated at the project level. It opens the Record History Log window for the current analysis and displays changes that have been performed for the analysis.

Configurable Settings opens the Properties window where you can change the properties that are available for the DVP&R records in this project.

Attachments adds linked or attached files to the selected plan or report.
Change Log

Activate Change Log or View Change Log allows you to activate or view a change log for this DVP&R analysis. A change log records a history of the specific changes that were made in each tracked revision to the analysis since the log was activated.

Batch Start Revisions displays a list of all the DVP&R analyses in the project that are eligible to start change log revisions (i.e., that do not already have an open revision or a revision awaiting approval). This includes analyses that do not yet have change logs activated. This window allows you to start revisions for multiple analyses at once.

Batch End Revisions displays a list of all the DVP&R analyses in the project that currently have open revisions, allowing you to end revisions for multiple analyses at once.

Approve Change Logs displays a list of all the DVP&R change logs in the project that are assigned to you for review and are ready to be reviewed. Note that you can only approve change logs in this window; you cannot reject them. (See Electronic Approval Tracking.)

FMEA Tab
The FMEA tab is visible when you are working in the FMEA tab in the Analysis panel. This tab can be used to perform a Failure Modes and Effects Analysis or to record the Functional Failure Analysis for RCM.

FMEA Records

Functions

Add Function adds a function to the FMEA.

Insert Function inserts a function above the function that is currently selected in the FMEA.

Transfer Functions opens the Transfer Functions window, which allows you to transfer records from one FMEA to another and, if desired, maintain information about the association between the source record (i.e., the original record) and the descendant records (i.e., the transferred copies).

Smart Add Functions allows you to quickly find and copy FMEA records from other similar analyses.
Import Functions allows you to query an existing data source and then select existing record(s) to import into the FMEA.

Select Existing Text allows you to add existing text elements (using the Select Existing Text window) as new function records to the FMEA.

Edit Function opens the Function Properties window, which allows you to view and edit all of the properties of the function record.

Save Locator Link creates a link file (similar to a Windows shortcut) that provides quick access to a specific analysis or record.

Ancestry

Go to Source opens the project and FMEA that contain the source record, and highlights the source record.

Update from Source opens the Update from Source window, where you can view the changes that have been made to the source and apply any that you deem appropriate to the descendant.

Disconnect from Source removes the association between the descendant and the source. You can remove associations for just the selected record, the selected record and its dependents, the entire analysis or the entire project. Select the Apply only if source does not exist check box if you want to remove only associations to deleted source records and preserve the associations to source records that still exist.

View Descendants opens the View Descendants window, which provides information about and access to all descendant records for the currently selected source record.

Failures

Add Failure adds a failure mode to the FMEA.

Insert Failure inserts a failure mode above the failure mode that is currently selected in the FMEA.

Smart Add Failures allows you to quickly find and copy FMEA records from other similar analyses.
Import Failures allows you to query an existing data source and then select existing record(s) to import into the FMEA.

Select Existing Text allows you to add existing text elements (using the Select Existing Text window) as new failure records to the FMEA.

Edit Failure opens the Failure Properties window, which allows you to view and edit all of the properties of the failure mode record.

Relationship Diagram creates or opens an existing failure relationship diagram, which presents all of the causes and effects that have been defined for the selected failure mode.

Locator Link creates a link file (similar to a Windows shortcut) that provides quick access to a specific analysis or record.

Ancestry

Go to Source opens the project and FMEA that contain the source record, and highlights the source record.

Update from Source opens the Update from Source window, where you can view the changes that have been made to the source and apply any that you deem appropriate to the descendant.

Disconnect from Source removes the association between the descendant and the source. You can remove associations for just the selected record, the selected record and its dependents, the entire analysis or the entire project. Select the Apply only if source does not exist check box if you want to remove only associations to deleted source records and preserve the associations to source records that still exist.

View Descendants opens the View Descendants window, which provides information about and access to all descendant records for the currently selected source record.

Effects

Add Effect adds an effect to the FMEA.
Chapter 4: Xfmea, RCM++ and RBI Ribbons

Insert Effect inserts an effect above the effect that is currently selected in the FMEA.

Smart Add Effects allows you to quickly find and copy FMEA records from other similar analyses.

Import Effects allows you to query an existing data source and then select existing record(s) to import into the FMEA.

Select Existing Text allows you to add existing text elements (using the Select Existing Text window) as new effect records to the FMEA.

Edit Effect opens the Effect Properties window, which allows you to view and edit all of the properties of the effect record.

Effect Categorization is available only in RCM++ and RBI. It opens the Failure Effect Categorization window, which allows you to identify and evaluate the effects of the functional failure when applicable.

Cause and Effect Diagram creates or opens an existing cause and effect diagram (also called a "fishbone diagram"), which presents all of the events that lead to the selected effect.

Save Locator Link creates a link file (similar to a Windows shortcut) that provides quick access to a specific analysis or record.

Ancestry

Go to Source opens the project and FMEA that contain the source record, and highlights the source record.

Update from Source opens the Update from Source window, where you can view the changes that have been made to the source and apply any that you deem appropriate to the descendant.

Disconnect from Source removes the association between the descendant and the source. You can remove associations for just the selected record, the selected record and its dependents, the entire analysis or the entire project. Select the **Apply only if source does not exist** check box if you want to remove only associations to deleted source records and preserve the associations to source records that still exist.
View Descendants opens the View Descendants window, which provides information about and access to all descendant records for the currently selected source record.

Causes

Add Cause adds a cause to the FMEA.

Insert Cause inserts a cause above the cause that is currently selected in the FMEA.

Smart Add Causes allows you to quickly find and copy FMEA records from other similar analyses.

Import Causes allows you to query an existing data source and then select existing record(s) to import into the FMEA.

Select Existing Text allows you to add existing text elements (using the Select Existing Text window) as new cause records to the FMEA.

Edit Cause opens the Cause Properties window, which allows you to view and edit all of the properties of the cause record.

Reliability Policy is displayed only if the Hide reliability policy node option is cleared on the FMEA Hierarchy page of the Application Setup. This is used for Failure Modes and Reliability Analysis (FMRA). (See Setting the Reliability Policies.)

Task Manager is available only in RCM++ and RBI. It opens the Task Manager window, which allows you to specify an appropriate maintenance strategy for the current failure cause.

Save Locator Link creates a link file (similar to a Windows shortcut) that provides quick access to a specific analysis or record.

Ancestry

Go to Source opens the project and FMEA that contain the source record, and highlights the source record.
Update from Source opens the Update from Source window, where you can view the changes that have been made to the source and apply any that you deem appropriate to the descendant.

Disconnect from Source removes the association between the descendant and the source. You can remove associations for just the selected record, the selected record and its dependents, the entire analysis or the entire project. Select the **Apply only if source does not exist** check box if you want to remove only associations to deleted source records and preserve the associations to source records that still exist.

View Descendants opens the View Descendants window, which provides information about and access to all descendant records for the currently selected source record.

Controls

Add Control adds a control to the FMEA.

Insert Control inserts a control above the control that is currently selected in the FMEA.

Reuse Control Resources allows you to add existing control records (using the Select Resource window) to the FMEA.

Make Control Unique creates a new record that is not associated with (linked to) the existing Synthesis resource. The description of the new record will be incremented automatically so it remains unique. For example, if the original description is "Do this and that," then the description of the new record might be "Do this and that_1." After you break the association, changes that are made to one resource will not be applied automatically to the other.

Change Control Resource opens the Select Resource window so that you can replace the selected record with a Synthesis resource that already exists in the project. After you create this association, changes that are made to one instance of the resource will be applied automatically to all other instances.

Edit Control opens the Control Properties window, which allows you to view and edit all of the properties of the control record.
Save Locator Link creates a link file (similar to a Windows shortcut) that provides quick access to a specific analysis or record.

Ancestry

- **Go to Source** opens the project and FMEA that contain the source record, and highlights the source record.

- **Update from Source** opens the Update from Source window, where you can view the changes that have been made to the source and apply any that you deem appropriate to the descendant.

- **Disconnect from Source** removes the association between the descendant and the source. You can remove associations for just the selected record, the selected record and its dependents, the entire analysis or the entire project. Select the **Apply only if source does not exist** check box if you want to remove only associations to deleted source records and preserve the associations to source records that still exist.

- **View Descendants** opens the View Descendants window, which provides information about and access to all descendant records for the currently selected source record.

Actions

- **Add Action** adds an action to the FMEA.

- **Insert Action** inserts an action above the action that is currently selected in the FMEA.

- **Reuse Action Resources** allows you to add existing action records (using the Select Resource window) to the FMEA.

- **Make Action Unique** creates a new record that is not associated with (linked to) the existing Synthesis resource. The description of the new record will be incremented automatically so it remains unique. For example, if the original description is "Do this and that," then the description of the new record might be "Do this and that_1." After you break the association, changes that are made to one resource will not be applied automatically to the other.
Chapter 4: Xfmea, RCM++ and RBI Ribbons

Change Action Resource opens the Select Resource window so that you can replace the selected record with a Synthesis resource that already exists in the project. After you create this association, changes that are made to one instance of the resource will be applied automatically to all other instances.

Edit Action opens the Action window, which allows you to view and edit all of the properties of the action record.

Save Locator Link creates a link file (similar to a Windows shortcut) that provides quick access to a specific analysis or record.

Ancestry

- **Go to Source** opens the project and FMEA that contain the source record, and highlights the source record.

- **Update from Source** opens the Update from Source window, where you can view the changes that have been made to the source and apply any that you deem appropriate to the descendant.

- **Disconnect from Source** removes the association between the descendant and the source. You can remove associations for just the selected record, the selected record and its dependents, the entire analysis or the entire project. Select the Apply only if source does not exist check box if you want to remove only associations to deleted source records and preserve the associations to source records that still exist.

- **View Descendants** opens the View Descendants window, which provides information about and access to all descendant records for the currently selected source record.

Tools

Linked FMEA

- **Go to Source Analysis** allows you to view/edit the source analysis for a linked FMEA.

- **Remove Link** converts the linked analysis to a local analysis, breaking the link to the original analysis and replacing it with new unique records that are directly associated with the current item. If the item already has a local FMEA, the new records will be appended to the end.
Show Locations Used: opens the Show Locations Used window, which provides a list of all locations where the FMEA is currently linked.

Ancestry:

Dismiss Notification: resets the icon to green without making any changes. This is useful if you have determined that it is unnecessary to update the descendant in this particular case, but you still want notifications of subsequent changes to the source.

Go to Source: opens the project and FMEA that contain the source record, and highlights the source record.

Update from Source: opens the Update from Source window, where you can view the changes that have been made to the source and apply any that you deem appropriate to the descendant.

Disconnect from Source: removes the association between the descendant and the source. You can remove associations for just the selected record, the selected record and its dependents, the entire analysis or the entire project. Select the Apply only if source does not exist check box if you want to remove only associations to deleted source records and preserve the associations to source records that still exist.

View Descendants: opens the View Descendants window, which provides information about and access to all descendant records for the currently selected source record.

Attachments: allows you to manage the linked or attached files for the selected record.

Highlight Priority: if selected, uses color to highlight the FMEA records based on logic that has been defined for the project. (See Priority Highlights.)

Calculate Severities: is available only for projects using FMEA structures other than Grouped Effects and Causes. It allows you to calculate overall effect severity ratings from the sub-severity ratings.

Ratings Update: opens the Batch Update Revised RPN Rating window, which allows you to quickly populate the revised RPN ratings in the FMEA records.
Chapter 4: Xfmea, RCM++ and RBI Ribbons

FMEA Statistics opens the FMEA Statistics window, which displays some overall statistics for the FMEA. This includes details such as the total number of causes defined in the analysis, the percentage of causes that have the RPN ratings defined, the total number of actions defined in the analysis, the percentage of actions that are complete, etc.

Failure - Cause Matrix opens the Failure - Cause Matrix window, which displays the unique failure modes and causes that have been defined in the FMEA. This matrix helps to see when the same cause has been identified for more than one failure mode.

Export to Phrase Set

- Export to a New FMEA Phrase Set allows you to export the descriptions from the current FMEA to a new phrase set in the active library. (See Phrase Sets.)
- Export to an Existing FMEA Phrase Set allows you to export the descriptions from the current FMEA to an existing phrase set.

Configurable Settings opens the Properties window where you can change the properties that are available for the FMEA records in this project.

History Log is available only if a history log has been activated at the project level. It opens the Record History Log window for the current analysis and displays changes that have been performed for the analysis.

Change Log

Activate Change Log or View Change Log allows you to activate or view a change log for this FMEA analysis. A change log records a history of the specific changes that were made in each tracked revision to the analysis since the log was activated.

Batch Start Revisions displays a list of all the FMEA analyses in the project that are eligible to start change log revisions (i.e., that do not already have an open revision or a revision awaiting approval). This includes analyses that do not yet have change logs activated. This window allows you to start revisions for multiple analyses at once.

Batch End Revisions displays a list of all the FMEA analyses in the project that currently have open revisions, allowing you to end revisions for multiple analyses at once.

Approve Change Logs displays a list of all the FMEA change logs in the project that are assigned to you for review and are ready to be reviewed. Note that you can only
approve change logs in this window; you cannot reject them. (See Electronic Approval Tracking.)

FMRA Tab
The FMRA tab is visible when you are working in the FMRA tab in the System panel with a Failure Modes and Reliability Analysis (FMRA).

Add System Items
- **Add System** adds a new top-level system hierarchy item.
- **Add Next Level Item** adds a new system hierarchy item below the one that is currently selected.
- **Add Same Level Item** adds a new system hierarchy item in the same level as the one that is currently selected.

Add FMEA Items
- **Add Function** adds a function to the FMEA. If an FMEA does not already exist for the current item, it will be created automatically.
- **Add Failure** adds a failure mode to the FMEA.
- **Add Cause** adds a cause to the FMEA. If the FMEA does not already include an effect to add the cause to, one will be created automatically.

Calculations
- **Calculate (Reliability)** calculates and displays the reliability and criticality values for each record in the FMRA hierarchy.
- **Simulate (Availability)** is available only in RCM++ and RBI. It displays the reliability, availability and cost calculations (obtained via simulation) for each record at the end time specified in the simulation settings.
- **Highlight** applies a color-coding gradient to the results shown in each column, from green (least "desirable" result) to red (most "desirable" result). This command toggles highlighting on and off.
Chapter 4: Xfmea, RCM++ and RBI Ribbons

Policy Update opens the Batch Update Reliability Policy window, where you can change the reliability policy type for all applicable records in the FMRA hierarchy.

Mirrors allows you to create and manage mirror groups for the causes in the FMRA. Mirror groups can be used if you need to consider common cause failures. (See Using Mirror Groups in an FMRA.)

Optimum Replacement is available only in RCM++ and RBI. It opens the Optimum Replacement window, which allows you to define the cost of planned and unplanned replacement tasks and calculate the optimum replacement time, as well as the cost per unit time at that replacement time.

Allocation

Allocate Target Reliability sets the target reliability values for sub-items, based on the selected item’s target value.

Allocate Target Availability is available only in RCM++ and RBI. It sets the target availability values for sub-items, based on the selected item’s target value.

P-Diagram Tab
The P-Diagram tab is visible when working with a Parameter Diagram analysis.

Records

Add Record adds a row to the input box that currently has focus.

Insert Record inserts a new row above the one that is currently selected.

Select Existing Text allows you to choose text from existing P-Diagrams or other relevant analyses to create one or multiple new rows in the input box that currently has focus. (See Select Existing Text.)

Delete Record(s) deletes the rows that are currently selected.

Up and Down move the selected row up or down in the input box (i.e., to change the order).
History Log is available only if a history log has been activated at the project level. It opens the Record History Log window for the current analysis and displays changes that have been performed for the analysis.

Change Log

- **Activate Change Log** or **View Change Log** allows you to activate or view a change log for this P-Diagram analysis. A change log records a history of the specific changes that were made in each tracked revision to the analysis since the log was activated.

- **Batch Start Revisions** displays a list of all the P-Diagram analyses in the project that are eligible to start change log revisions (i.e., that do not already have an open revision or a revision awaiting approval). This includes analyses that do not yet have change logs activated. This window allows you to start revisions for multiple analyses at once.

- **Batch End Revisions** displays a list of all the P-Diagram analyses in the project that currently have open revisions, allowing you to end revisions for multiple analyses at once.

- **Approve Change Logs** displays a list of all the P-Diagram change logs in the project that are assigned to you for review and are ready to be reviewed. Note that you can only approve change logs in this window; you cannot reject them. (See Electronic Approval Tracking.)

PFD Worksheet Tab - Ribbon

The PFD Worksheet tab is visible when working with a process flow diagram worksheet.

Operation

- **Add Operation** adds cells to the PFD worksheet for describing the operation that is being analyzed.

- **Insert Operation** inserts new cells above the operation record that is currently selected.

Product Characteristic

- **Add Product Characteristic** adds cells to the PFD worksheet for describing the product characteristics that must be kept under control (e.g., thread depth, wax thickness, length of a cut, etc.).
Chapter 4: Xfmea, RCM++ and RBI Ribbons

Insert Product Characteristic inserts new cells above the product characteristic that is currently selected.

Process Characteristic

Add Process Characteristic adds cells to the PFD worksheet for describing the process characteristics that must be kept under control (e.g., furnace temperature, flow pressure, coolant concentration, etc.).

Insert Process Characteristic inserts new cells above the process characteristic that is currently selected.

Sync

Sync with System Hierarchy allows you to transfer data from the PFD worksheet to the system hierarchy.

Tools

History Log is available only if a history log has been activated at the project level. It opens the Record History Log window for the current analysis and displays changes that have been performed for the analysis.

Configurable Settings opens the Properties window where you can change the properties that are available for the PFD worksheet records in this project.

Test Plan Tab

The Test Plan tab is visible when working with a test plan analysis.

Action

Add Action creates a new action and add it to the test plan.

Insert Action creates a new action and inserts it above the action that is currently selected in the test plan.

Reuse FMEA Actions opens the Reuse FMEA Actions window, which allows you to find actions already used in an FMEA and either reuse them in the test plan or duplicate them and add the duplicates to the test plan.
Reuse FMEA Controls opens the Reuse FMEA Controls window, which allows you to find controls already used in an FMEA, create actions based on them and add the new actions to the test plan.

Reuse Action Resources allows you to add existing action records (using the Select Resource window) to the test plan.

Make Action Unique creates a new record that is not associated with (linked to) the existing resource. The description of the new record will be incremented automatically so it remains unique. For example, if the original description is "Do this and that," then the description of the new record might be "Do this and that_1." After you break the association, changes that are made to one resource will not be applied automatically to the other..

Edit Action opens the Action window, which allows you to view and edit all of the properties of the action record.

Tools

Ancestry

Go to Source opens the project and FMEA that contain the source record, and highlights the source record.

Update from Source opens the Update from Source window, where you can view the changes that have been made to the source and apply any that you deem appropriate to the descendant.

Disconnect from Source removes the association between the descendant and the source. You can remove associations for just the selected record, the selected record and its dependents, the entire analysis or the entire project. Select the Apply only if source does not exist check box if you want to remove only associations to deleted source records and preserve the associations to source records that still exist.

View Descendants opens the View Descendants window, which provides information about and access to all descendant records for the currently selected source record.
History Log is available only if a history log has been activated at the project level. It opens the Record History Log window for the current analysis and displays changes that have been performed for the analysis.

Attachments adds linked or attached files to the selected plan or report.

Save Locator Link creates a link file (similar to a Windows shortcut) that provides quick access to a specific analysis or record.

Change Log

Activate Change Log or View Change Log allows you to activate or view a change log for this test plan analysis. A change log records a history of the specific changes that were made in each tracked revision to the analysis since the log was activated.

Batch Start Revisions displays a list of all the test plan analyses in the project that are eligible to start change log revisions (i.e., that do not already have an open revision or a revision awaiting approval). This includes analyses that do not yet have change logs activated. This window allows you to start revisions for multiple analyses at once.

Batch End Revisions displays a list of all the test plan analyses in the project that currently have open revisions, allowing you to end revisions for multiple analyses at once.

Approve Change Logs displays a list of all the test plan change logs in the project that are assigned to you for review and are ready to be reviewed. Note that you can only approve change logs in this window; you cannot reject them. (See Electronic Approval Tracking.)
Chapter 5: Configurable Settings

All of the analysis settings that can be configured in XFMEA, RCM++ or RBI (including the data fields, the options in drop-down lists, the rating scales used for risk assessment and other analysis preferences) are stored together with the data for each project. This makes it possible to define different properties for different types of projects and, when multiple users cooperate on the analysis, it also ensures that all users see the same configurable settings for a particular project.

To save time and ensure consistency, authorized users can manage a library of predefined settings and profiles that can be copied into any particular analysis project. With an enterprise database, the library is stored directly in the database and can be accessed only by users with the "Manage profiles and templates in XFMEA/RCM++/RBI" permission. With standard databases, the library is a separate database (*.lb19) that can be stored on your computer or a shared network folder. Although you can maintain multiple library databases if desired, only one library can be active at any given time.

Transferring Settings Between the Library and the Projects

As you begin working with the configurable settings in XFMEA, RCM++ or RBI, it may be helpful to keep a few basic principles in mind:

- A complete set of configurable settings are stored with each project in the database.
- The library contains predefined settings that can be copied into any given project at any time.
- Settings are copied, not linked.
 - Changing settings in the library does not automatically update any of the settings for existing projects. You will need to reapply the updated profile to each affected project.
 - Changing settings for a particular project does not automatically update the library that the settings were originally copied from. You will need to apply/transfer the same changes in the library, if appropriate.

For new users, we recommend the following basic workflow:

1. **Configure the library to contain the settings your organization will need.** Assign one user (or a small team of users) to use the Profiles/Libraries Manager to create a library
that contains a predefined profile for each type of project your team may need to use. For example, your organization may need one profile for Design FMEAs, a second profile for Process FMEAs and a third profile for RCMs (if applicable). Alternatively, you may need to create different profiles (e.g., with different rating scale criteria) for different product lines, etc.

Tip: If you start with the library that is installed with the software, it may help to avoid confusion if you delete any settings that are not relevant for your team. You can restore the original shipped library at any time if you need it.

2. **Make sure that all users are sharing the same active library.** With an enterprise database, this is the only option. With standard databases, you can place the library database in a shared network location and then instruct all users to set this shared file as the active library on their computers. Alternatively, you can simply distribute a copy of the latest file to all users. When you’re working with a standard repository, the active library can be set at the top of the Profiles/Libraries Manager window.

3. **Establish the configurable settings for each project.** The simplest way to set the properties for a particular project is to choose a predefined profile from the drop-down list on the General tab of the Project Properties window. This will automatically copy all of the relevant settings from the library to the project.

4. **View/modify the settings for an individual project, if desired.** If you need to view or modify the settings for one particular project only, use the Configurable Settings tab of the Project Properties window or choose Project > Management > Configurable Settings.
Remember that changing the settings in an individual project does not automatically update the library or any other projects.

- **If you want the changes to apply to all future projects**, it may be more efficient to update the active library and then reapply the profile to any existing projects that need to be updated.

- **If you want to change a particular project only**, edit the project settings directly via the Configurable Settings tab of the Project Properties window or by choosing the appropriate option from the ribbon.

Unmatched Settings Window

If you change a drop-down list or rating scale in a project that already contains data, the Unmatched Settings window provides a quick and easy way to update existing records, if desired. This window will appear automatically when it is applicable.

For example, if you remove or rename one of the options in the **Action Category** drop-down list, and if the project contains any actions that have already been assigned to that option, you will be prompted to specify which category those actions should be reassigned to (if any). Simply select the appropriate option from the **New Value** drop-down list, as shown next. (This picture shows XFMEA, but it works the same in RCM++ and RBI.)
Profiles/Library Manager

A profile is a collection of predefined settings for a particular type of analysis. For example, your organization may need one profile for Design FMEAs and a second profile for Process FMEAs and a third profile for RCMs (if applicable). A library, on the other hand, is a collection of profiles and other settings that can be applied to any project. The library file that is in effect at any given time on your computer is called the active library.

Note that:

- For standard databases (*.rsr19), library files have the extension *.lb19 and can be saved on your own computer or stored in a shared network location. The ability to modify the settings depends on whether the user has read/write access to the file.
- For enterprise databases (SQL Server or Oracle), the active library is stored within the enterprise database itself, and the ability to edit this library is restricted to authorized users only.

If you have the necessary permissions, you can view and edit all of the profiles in a library via the Profiles/Library Manager. To access this utility, first open a database, then choose File > Manage Repository > XFMEA/RCM++/RBI Libraries > Profiles/Library Manager.

If you are connected to a standard database, the address bar at the top of the Profiles/Library Manager window shows the location and name of the active library for your computer. You can click the Browse button to select a different library file to use. You can select a library from the current version of the software, or you can upgrade a library from a previous version by choosing the appropriate file type in the Browse window. If you open an older version library, an upgraded copy will be created, with "_V19" appended to the filename. For example, if you open "MyLibrary.lb10," the Version 2019 library that is created will be called "MyLibrary_V19.lb19."

Note: In Version 19.0.1 only, it is not possible to open *.lb11 files in XFMEA or RBI. To open these files, please upgrade your software to Version 19.0.2 or later.

Viewing or Editing Settings

The navigation panel on the left lists the different types of settings that can be predefined and stored in the library. The table on the right displays the predefined settings for the type that is currently selected. To view or edit the settings, simply double-click the row in the table or select the row and click Add, Edit or Delete.
Chapter 5: Configurable Settings

- **Profiles**, which use the following settings
 - **Interface Styles**
 - **Rating Scales** (i.e., severity scale, occurrence scale and detection scale)
 - **Risk Discovery Questions**
 - **Risk Discovery Ratings**
 - **FEC Logic** (only in RCM++ and RBI)
 - **Task Logic** (only in RCM++ and RBI)
- **Phrase Sets**
- **Checklists**
- **Assumptions**
- **Surveys**
- **Conditions of Use**

Importing Settings from Another Database

If you want to import settings from another database, first select the type of setting then click the **Import** button. If you import a profile, the application will also import copies of all related settings (i.e., the interface style, severity scale, etc.). (See **Importing Settings to a Library**.)

In addition, the **Copy Existing** button appears in many windows throughout the Profiles/Library Manager. This feature allows you to copy selected settings from another library to replace the ones in the current window. (See **Copy Existing**.)

Active File and Reset Library

When a standard database (*.rsr19) is currently open, the **Reset Library** button will be displayed at the bottom of the window. This button restores the default file that was shipped with the software (Library.lb19) and makes it active for your computer/username. This will not replace whatever library currently exists. Rather, it will create a new standard library file in the ReliaSoft folder under My Documents on your computer (e.g., C:\Users\username\My Documents\ReliaSoft\Common) If a file with the name Library.lb19 already exists in this location, the new filename will have an increment at the end (e.g., Library_1.lb19).
Chapter 5: Configurable Settings

Importing Settings to a Library

It is easy to import profiles and other settings (e.g., interface styles, rating scales, etc.) from another database. To do this, open the Profiles/Library Manager window, select the setting of interest from the navigation panel and then click the Import button.

In the Import to Library window, do the following:

1. Use the drop-down list or browse button (...) to select the library that you want to import from. This can be a standard library file (*.lb19) or an enterprise database connection file (*.rserp).

 Tip: If you want to import from a previous version standard library file, you must first upgrade the library file by opening it in the Profiles/Library Manager.

2. The table shows all of the applicable settings in the library that is currently selected. Use the check boxes to select which settings you wish to import.

3. Click OK to copy the data into your active library.

Importing an Entire Profile

When you select to import a profile, the application will also import all related settings (e.g., the interface style, severity scale, etc.). If settings with the same name already exist in the destination library, the application will import them anyway and increment the name(s).

If you prefer for the imported profile to use any of the settings that were already present in the destination library, you can edit the profile to link to the existing settings and then delete the duplicate settings that were imported.

 Tip: If you need to import multiple profiles that reference some of the same settings (e.g., if they all use the same rating scales or risk discovery questions), we recommend to import all of the profiles at the same time in order to limit the amount of work that will be required to manually adjust the profiles and delete extra settings.

Copy Existing

The Copy Existing button appears in many windows throughout the Profiles/Library Manager. This feature allows you to select another library and copy selected settings to replace the ones in the current window. The following instructions explain how to copy an existing interface style. You can use a similar procedure for rating scales, risk discovery questions, etc.
1. Open an existing interface style and click the **Copy Existing** button at the bottom of the window.

2. In the Select window that appears, browse for the library file that contains the interface style you want to copy.

3. The table displays a list of the interface styles that have been predefined in the library that is currently selected. Double-click or select a row and click **OK**. This replaces all of the settings in the current interface style with the settings that were copied from the selected one.

Profiles

A **profile** is a collection of predefined settings that can be used to update all of the configurable settings for any project at the same time.

The Profiles page in the Profiles/Library Manager shows all of the predefined profiles in the active library.

- To add a new profile, click **Add**.
- To edit an existing profile, select the row and click **Edit** or double-click the row.

You can also add or edit a profile from the General page of Project Properties window, as shown next.

Selecting the Default Profile

If you select the **Set this as the default profile** check box, the profile will be selected by default for each new project that you create when this library is active. Because only one profile can be the default at any given time, selecting this check box for one profile will have the effect of clearing it from the other profile that previously was the default.
Chapter 5: Configurable Settings

Profile Settings
Each profile contains the following settings. For each type of setting, you can use the following menu to a) **Select** settings that have been predefined in the active library, b) **Add** new settings and/or c) **Edit** the predefined settings that are currently selected in the drop-down list.

General tab
- **Interface Style** determines the data fields that will be enabled in the project, the options from configurable drop-down lists, the method of risk assessment, the order of the columns in analysis worksheets and other configurable preferences.
- The **RPN Scales** will be used for any **risk priority number (RPN)** calculations in the project. For information about how to enable these rating scales for effect and cause records in the FMEA, see **FMEA > RPNs**. For information about how to create rating scales, see **Rating Scales**.
 - The **Severity Scale** can be enabled for effect records in the FMEAs.
 - The **Occurrence Scale** and **Detection Scale** can be enabled for cause records in the FMEAs.
- The **Criticality Scales** will be used for any **criticality analyses** that you perform in the project. For information about how to enable these rating scales for failure records in the FMEAs, see **FMEA > Criticality**.
 - The **Severity Class** can use any of the predefined severity rating scales.
 - The **Failure Probability** can use any of the predefined occurrence rating scales.

Risk Discovery tab
For **risk discovery analysis** (e.g., preliminary risk analysis, change point analysis, equipment selection, etc.), you can choose to use either questions or ratings.
- The **Risk Discovery Questions** method uses a series of yes/no questions.
- The **Risk Discovery Ratings** method uses a set of factors and ratings that calculate a numerical value.
Chapter 5: Configurable Settings

- **Tasks tab**

 In RCM++ or RBI only, the Tasks tab contains the settings for the logic diagrams used in traditional reliability centered maintenance (RCM) analysis.

 - The **FEC Logic** will be used in the Failure Effect Categorization window for effect records.
 - The **Task Selection Logic** will be used in the Maintenance Task Manager window for cause records.

 Note: For any given profile, if you have chosen a task selection logic that presents different questions depending on the failure effect categorization then you must choose a failure effect categorization logic with the same number of categories. If the logics do not match, a message will be displayed when you attempt to save the profile.

Interface Styles

An *interface style* determines the data fields that will be enabled in the project, the options from configurable drop-down lists, the method of risk assessment, the order of the columns in analysis worksheets and other configurable preferences.

The Interface page in the Profiles/Library Manager shows all of the predefined interface styles in the active library.

- To add a new interface style, click **Add**.
- To edit an existing style, select the row and click **Edit** or double-click the row.

There are also several ways to edit the interface style for a particular project. Remember that changing the settings in an individual project does not automatically update the library or any other projects (Learn more...).

- **Choose Project > Management > Configurable Settings > Interface Style.**
- **Click the Edit icon on the Configurable Settings tab of the Project Properties window.**
Chapter 5: Configurable Settings

- Click any of the **Configurable Settings** icons that are available in FMEA record properties windows.

![Configurable Settings](image)

Viewing or Editing Settings

The navigation panel on the left lists the properties and other options that can be customized via the interface style. The table on the right allows you to view or edit the settings that are currently selected. The appearance of each page will differ depending on what can be customized. Each type of interface is discussed in the sections that follow.

- **Customizing Record Properties**
- **Modifying Drop-Down Lists**
- **Reordering Worksheet Columns**
- **Configuring Risk Assessment Settings**
 - FMEA > RPNs
 - FMEA > Criticality
- **Configuring Synchronization Preferences**
 - FMEA > Sync Options
 - Control Plan > Sync Options
 - DVP&R > Sync Options
Customizing Record Properties

For many types of records, you have the option to choose which properties will be enabled and what they will be called. All of the available properties will be displayed in a table like the one shown next:

<table>
<thead>
<tr>
<th>Property</th>
<th>Type</th>
<th>Enabled</th>
<th>Display Name</th>
<th>Tooltip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause Description</td>
<td>Text (2000)</td>
<td>Yes</td>
<td>Cause</td>
<td>List the potential cause(s) for each failure. This should be the "actionable" level of the analysis, which is the level of causation at which corrective actions and/or controls could effectively be a...</td>
</tr>
<tr>
<td>Detection Method</td>
<td>Text (150)</td>
<td>No</td>
<td>Detection Method</td>
<td>Describe the mechanisms that are in place to detect the failure cause.</td>
</tr>
<tr>
<td>Compensating Provisions</td>
<td>Text (150)</td>
<td>No</td>
<td>Compensating Provisions</td>
<td>Describe the mechanisms that are in place to compensate if the failure cause occur.</td>
</tr>
<tr>
<td>Classification</td>
<td>Drop-Down</td>
<td>Yes</td>
<td>Classification</td>
<td>Use this column to identify and classify characteristics that require special manufacturing control, e.g. Critical, Significant, Key Leading, etc.</td>
</tr>
</tbody>
</table>

- **Property** is the basic name for the field. This cannot be changed.
- **Type** indicates whether the field contains text, a date, a number or a drop-down list.
 - If text, the number in parentheses indicates the maximum number of characters.
 - If a drop-down list (and if the property is enabled), you can click the Edit icon to view or edit the options that appear in the list.
- **Enabled** indicates whether the field will be enabled in the interface and report output. Click inside the cell to toggle between Yes and No. An asterisk (*) indicates that the field cannot be disabled.
- **Display Name** is the name that will appear in the interface and report output. This can be changed to whatever fits your needs.
- **Tooltip** is a short statement that will be displayed when a user holds the mouse over the field in a table or worksheet. This can be changed to whatever fits your needs.

Clear Tooltips deletes all of the tooltips from all of the properties in the current interface style.
Option to Disable Controls or Actions
On the FMEA > Controls page and the FMEA > Actions page, an additional option will be displayed above each properties table.

- If you clear the Enable Controls for Causes check box, all controls-related functionality will be disabled within the project. The properties table will be disabled because these settings are not applicable for this interface style.

- If you clear the Enable Actions for Causes check box, the actions-related functionality in FMEAs will be disabled within the project. However, the properties table will remain enabled because these settings will still be used for action records in the Project Planner and the My Portal window.

Option to Enable the Alpha/Beta Ratio Worksheet
Starting in Version 2019, on the FMEA > Alpha/Beta page, the Enable Alpha/Beta ratio analysis option is displayed above the properties table. Selecting this check box, enables the Alpha/Beta Ratios worksheet for all local FMEAs within the project. If the option is not selected, the properties table will be disabled and the worksheet will not be shown.

Modifying Drop-Down Lists
The Modify Drop-Downs window allows you to customize any of the drop-down lists that can be enabled via the interface style.

- If you want to edit one particular list, click the Edit icon in the Type column in the record properties table.

- If you want to edit all of the drop-down lists that are currently enabled in the interface style, click the Modify Drop-Downs button at the bottom of the interface style window.

For most of the drop-down lists, you can simply type inside the table and use the buttons to Delete Row, Insert Row or Move Up/Move Down. For the certain fields that can be enabled for process flow diagram (PFD) worksheets, an additional step is required as described next.

Define PFD Symbols Images
For the Operation Type and Operation Type Symbol fields that can be enabled for PFD worksheets, you will need to select an image to represent each option type.
To customize the list of available images, click the **PFD Symbols** button at the bottom of the Modify Drop-Downs window. This opens the Define PFD Symbols Images window, as shown next. (This picture shows XFMEA, but it works the same in RCM++ and RBI.)

- To add an image, click the **Add** button and select a file. The available formats are *.png, *.bmp, *.dib, *.gif, *.jpg, *.wmf and *.emf. The file name and image appear in the window.
- To delete an image, click the image and then click **Delete**.

Worksheet Columns

For many of the analyses that use a worksheet (including FMEAs, PFD worksheets, DVP&Rs and DRBFMs), the **Worksheet Columns** page of the [interface style](#) allows you to specify the order in which the property columns will be displayed. These preferences will be saved with the project so the column order will be the same for all users who view the analysis.
Chapter 5: Configurable Settings

The table shows all of the properties for that type of analysis that are currently enabled in the interface style (using the display name that has been specified in the record properties table(s)). You can use the arrows to move a selected property up or down in the list.

![Worksheet Columns](image)

FMEA > RPNs

The FMEA > RPNs page of the interface style allows you to customize properties and functionality related RPNs and related metrics for failure causes in an FMEA. (To configure the Item Risk metrics for items in the system hierarchy, use the Item > Properties page instead.)

RPN Properties and Metrics

The table at the top of the page works like the other record properties tables except:

- The metrics can be enabled only if the applicable rating scales are enabled. For example, if you disable the Initial Severity property, the Initial RPN will be disabled automatically.

- **Sub-severity ratings** can be enabled only if the applicable rating scales are enabled. For example, if you disable the Initial Severity property, all of the Initial Sub-Severity properties will be disabled automatically.

- **Initial Risk Ranking** and **Revised Risk Ranking** can be enabled only if you have selected to highlight priority based on "Risk Ranking" as discussed below.

- **Short Display Name** specifies the abbreviation that will be used in some locations within the interface, plots and/or report output where the full display name will not fit.
Priority Highlights

The options under the table allow you to configure the logic that will be employed when a user turns on the priority highlights feature (*FMEA > Tools > Highlight Priority*) for FMEAs within the project.

In the **Highlight Priority Based on** area, the options will depend on which ratings and metrics have been enabled in the properties table. For example, if you have disabled the Initial RPN and Revised RPN properties, you can't choose to highlight based on RPN.

If you select RPN, Severity, Occurrence or Detection, you can specify the **High Priority >=** and **Low Priority <=** thresholds and **Select Highlight Colors**.

For example, with the settings shown below:

<table>
<thead>
<tr>
<th>Highlight Priority Based on</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPN</td>
</tr>
<tr>
<td>High Priority >= 300</td>
</tr>
<tr>
<td>Low Priority <= 30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Select Highlight Colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Priority Red</td>
</tr>
<tr>
<td>Medium Priority Yellow</td>
</tr>
<tr>
<td>Low Priority Green</td>
</tr>
</tbody>
</table>

- Causes that do not have a calculated RPN will not be highlighted
- Causes with an RPN equal to or greater than 300 will be highlighted with red
- Causes with an RPN from 31 to 299 will be highlighted with yellow
- Causes with an RPN equal to or less than 30 will be highlighted with green

Risk Ranking Logic

If you want to define more complex criteria to assign priority, click the **Risk Ranking Logic** button.

This logic can be used for **Priority Highlights in FMEAs** if you select "Risk Ranking" under **Highlight Priority Based on**. It can also be used for assigning **Item Risk** in the system hierarchy and for applying highlight colors in the **Risk Matrix**. For more details, see **Risk Ranking Logic**.

FMEA > Criticality

The **FMEA > Criticality** page of the interface style allows you to customize properties and functionality related to quantitative or qualitative **criticality analysis**.
Chapter 5: Configurable Settings

Criticality Properties
The table at the top of the page works like the other record properties tables except:

- **Short Display Name** specifies the abbreviation that will be used in some locations within the interface and/or report output where the full display name will not fit.
- At least one of these properties must be enabled if you want to perform Criticality Analysis.

Criticality Matrix Priority Highlights
The settings at the bottom of the page allow you to customize the priority highlight colors that will be added to any quantitative or qualitative criticality matrix reports that you generate.

Do the following:

1. Click the **Preview** button to create a sample matrix, and then use the drop-down lists to specify the size of the matrix that you will be creating for criticality analyses in this project. For example, if you have configured the project to use the criticality rating scales from MIL-STD-1629A (a five-point scale for Failure Probability and a four-point scale for Severity Class):
 - The qualitative criticality matrix report will be 5 x 4 (i.e., Failure Probability on the vertical axis and Severity Class on the horizontal axis).
 - The quantitative criticality matrix will be 10 x 4 (i.e., calculated criticality on the vertical axis and Severity Class on the horizontal axis).
The following picture shows a sample for the MIL-1629A qualitative matrix. Note that the software has assigned a value to each cell such that the smallest number appears in the bottom left corner and the largest number appears in the top right corner. It has also applied the highlight colors based on the thresholds that are currently specified (in this case, .6 for high priority and .4 for medium priority). (This picture shows XFMEA, but it works the same in RCM++ and RBI.)

2. If you are not satisfied with the highlights that are shown in the sample, use the numbers in the cells to determine how the threshold values should be changed. For example, in the sample matrix shown above, if you wanted the top left corner of the matrix to be highlighted as medium instead of low priority, you would need to set the medium priority threshold to .25 instead of .4.

3. Return to the FMEA > Criticality page and enter the new threshold values. Each number must be greater than zero and less than or equal to 1. In addition, the **High Priority Threshold** must be larger than the **Medium Priority Threshold**.
4. Click the **Preview** button and set the matrix size again, then check to see if the new threshold values will result in the desired highlight pattern. For example, the following picture shows a new preview for a 5 x 4 matrix in which the high priority threshold has been changed to .5, and the medium priority threshold has been changed to .25. (This picture shows XFMEA, but it works the same in RCM++ and RBI.)

5. You can repeat this process as many times as needed until you’re able to confirm that the specified threshold values will result in the highlight pattern you prefer for criticality matrix reports.

FMEA > Sync Options

The FMEA > Sync Options page of the interface style determines how FMEA functions will be created when a new FMEA is added to an analysis. Select one of the following options:

- Select **None** to not create any default functions.
- Select **Create functions from PFD worksheet operations** to use the operation descriptions in the PFD worksheet as functions in the FMEA.
- Select **Create functions from system hierarchy item** to use the name of the system hierarchy item as functions in the FMEA.
- Select **Create functions from system hierarchy item and dependents** to use the names of the system hierarchy and its dependents as functions in the FMEA.
Control Plan > Sync Options

The Control Plan > Sync Options page of the interface style determines how control plan data will be created when a new control plan is added to an analysis.

You can start a control plan with a blank worksheet or with data imported from either FMEAs or a PFD worksheet. Below are descriptions of the options available for FMEAs and PFD worksheets.

FMEA

In the Map Records for Transfer area, select which data to transfer as process names and cause descriptions in the control plan:

- In the Part/Process list: If you stored descriptions of the process in the system hierarchy, select the Transfer from Items option; if the descriptions are stored as functions in the FMEA, select the Transfer from Functions option.
- In the Characteristic list, specify whether the cause records are more likely to be product characteristics or process characteristics. Your selection determines which column the data will be transferred to. If your cause records do not have data that would be a good starting point for defining the characteristics in the control plan, then you could leave the characteristic records blank.

In the Transfer Controls Options area, select the All controls option to transfer all the controls from the FMEA to the control plan. To transfer only the controls that meet the desired requirements, select the Controls where type= option and then select the required control type from the drop-down list.
Chapter 5: Configurable Settings

PFD Worksheet

- Choose **Transfer product and process characteristics to separate rows** to transfer all the classifications that were defined in the PFD worksheet, as in the following example (where C1 is the classification of the product characteristic and C2 is the classification of the process characteristic):

<table>
<thead>
<tr>
<th>Op. #</th>
<th>Process Name/Operation Description</th>
<th>Product Characteristic</th>
<th>Process Characteristic</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Operation Description 1</td>
<td>Product Characteristic 1</td>
<td>Process Characteristic 1</td>
<td>C1</td>
</tr>
<tr>
<td>2</td>
<td>Operation Description 2</td>
<td>Product Characteristic 2</td>
<td>Process Characteristic 2</td>
<td>C2</td>
</tr>
<tr>
<td>3</td>
<td>Operation Description 3</td>
<td>Product Characteristic 3</td>
<td>Process Characteristic 3</td>
<td>C1</td>
</tr>
</tbody>
</table>

Example of product and process characteristics transferred to separate rows.

- Choose **Transfer to same row and use the process characteristics classification** to transfer only the classifications of the process characteristics, as in the following example.

<table>
<thead>
<tr>
<th>Op. #</th>
<th>Process Name/Operation Description</th>
<th>Product Characteristic</th>
<th>Process Characteristic</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Operation Description 1</td>
<td>Product Characteristic 1</td>
<td>Process Characteristic 1</td>
<td>C2</td>
</tr>
<tr>
<td>2</td>
<td>Operation Description 2</td>
<td>Product Characteristic 2</td>
<td>Process Characteristic 2</td>
<td>C2</td>
</tr>
<tr>
<td>3</td>
<td>Operation Description 3</td>
<td>Product Characteristic 3</td>
<td>Process Characteristic 3</td>
<td>C2</td>
</tr>
</tbody>
</table>

Example of product and process characteristics transferred to the same row.

DVP&R > Sync Options

The DVP&R > Sync Options page of the **interface style** determines how FMEA data will be transferred to new **DVP&Rs**.

If the **Integrate New DVP&Rs with FMEA** check box is selected, data will be transferred automatically from the FMEA when you add a new DVP&R for an item that already has an
FMEA. If the check box is not selected, data will not be transferred automatically and the new DVP&R worksheet will be blank.

As described in Sync Options for New DVP&Rs, when you choose to transfer data automatically from the FMEA to the DVP&R, the software will create new Test Plan records in the DVP&R by transferring control descriptions from the FMEA. In addition, you have the option to:

- Create new Test Plan records in the DVP&R by transferring control and/or action descriptions from the FMEA.

 If the Control Category property is enabled for the project (from the FMEA > Controls page of the interface style) or if the Controls where type = field is empty, then all controls descriptions will be transferred to the DVP&R. If the Control Category property is enabled, you can use the Controls where type = field to limit the transfer to only those controls descriptions with the specified categories. To define multiple control categories, use commas to separate the labels.

- If the Action Category property is enabled for the project (from the FMEA > Actions page of the interface style) or if the Actions where category = field is empty, then all action descriptions will be transferred to the DVP&R. If the Action Category property is enabled, you can use the Actions where category = field to limit the transfer to only those action descriptions with the specified categories that you select. To define multiple action categories, select multiple items. Or you can select the No actions option to not transfer any actions.

- Transfer the cause description along with each control or action description. For example, if the Incorporate cause description with controls and actions transferred to DVP&R check box is selected and the cause description in the FMEA is "Failure cause" and the control description is "Design control" then the transferred test plan will be "Design control : Failure cause."

Rating Scales

Severity, occurrence and/or detection rating scales can be used in either of the risk assessment methods: risk priority numbers or criticality analysis. These scales can contain any number of ratings (e.g., five-point scale, ten-point scale, etc.), and you can fully customize the values, descriptions and criteria.

The Severity, Occurrence and Detection pages in the Profiles/Library Manager show all of the predefined rating scales in the active library.

- To add a new rating scale, click Add.
Chapter 5: Configurable Settings

- To edit an existing scale, select the row and click **Edit** or double-click the row.

There are also several ways to edit the rating scales for a particular project. Remember that changing the settings in an individual project does not automatically update the library or any other projects (Learn more...).

- Choose **Project > Management > Configurable Settings > [Severity/Ocurrence/Detection/Severity Class/Failure Probability]**.
- Click one of the **Edit** icons on the Configurable Settings tab of the Project Properties window.

![FMEA Scales](image)

Note: Severity Class and Failure Probability can be applied at the failure level for **criticality analysis**, or at the effect level for the **Alpha/Beta Ratios worksheet**.

Editing a Scale

- Each **Value** must be unique within the scale and the values can be whole numbers or decimals. The software will order the numbers from smallest to greatest when you save the scale.
- **Description** specifies the short text description that will be associated with the numerical rating in the drop-down lists within the interface.
- **Criteria 1** and **Criteria 2** specify longer text descriptions of the criteria that can be used to determine whether the rating will be assigned to a particular issue. This information will be visible when the user clicks the drop-down list for each rating scale in an FMEA.

Sub-Severalty Criteria

Starting in Version 2019, you can use **sub-severity ratings** to rate effects according to several different types of severity. The sub-severity ratings can be informational or, for projects using **FMEA structures** other than Grouped Effects and Causes, can be used to calculate an overall severity rating for each effect, based on either the maximum or the average of the sub-severity ratings.
The severity scale that you are using for the project will be used for overall severity ratings and for all sub-severity ratings. Each sub-severity type can have its own criteria defined for the values in the scale. To edit the criteria, select the **Show sub-severities criteria** check box above the table, then supply criteria for each sub-severity type.

Important: The numerical scale values apply across all severity types, so if some of your severity types have a different number of levels, you will need to assign the criteria accordingly, in proportion to their importance.

Quantitative Values

If you are working with an Occurrence or Failure Probability scale, this window will also display an **Occurrence Probability** column and a **Treat Occurrence Probability As** area. These settings apply if you want to use the qualitative rating assigned to a record to set that record’s quantitative probability of failure model. The model can then be used for reliability or criticality calculations in the FMRA. (See [Using Rating Scales to Set the Reliability Policies](#).)

Risk Discovery Questions

For **risk discovery analysis** (e.g., preliminary risk analysis, change point analysis, equipment selection, etc.), you can choose to use either questions or ratings.

The risk discovery questions method uses a series of yes/no questions.

The **RD Questions** page in the **Profiles/Library Manager** shows all of the predefined sets of risk discovery questions in the active library.

- To add a new set of questions, click **Add**.
- To edit an existing set of questions, select the row and click **Edit** or double-click the row.

If you want to view/modify the risk discovery questions for a particular project:

- Choose **Project > Management > Configurable Settings > RD Questions**.
- Click the **Edit** icon on the Configurable Settings tab of the Project Properties window.
Remember that changing the settings in an individual project does not automatically update the library or any other projects. Also note that these options will be disabled if you have selected to use ratings rather than questions for the current project.

Editing a Set of Risk Discovery Questions

- **Label** - a short text string (up to 50 characters) that summarizes the issue.
- **Question** - a longer text string (up to 255 characters) that contains a question that can be answered with Yes or No.

To edit any existing entry, simply type directly in the table cell.

To add or delete a question, click inside an appropriate cell and then use the buttons under the table.

To import a set of questions that have already been defined in another project or library, click **Copy Existing**.

Risk Discovery Ratings

For risk discovery analysis (e.g., preliminary risk analysis, change point analysis, equipment selection, etc.), you can choose to use either questions or ratings.

The risk discovery ratings method uses a set of factors and ratings that calculate a numerical value. You can specify how the ratings will be calculated.

The RD Ratings page in the Profiles/Library Manager shows all of the predefined sets of risk discovery ratings in the active library.

- To add a new set of ratings, click **Add**.
- To edit an existing set of ratings, select the row and click **Edit** or double-click the row.

If you want to view/modify the risk discovery ratings for a particular project:

- Choose **Project > Management > Configurable Settings > RD Ratings**.
- Click the **Edit** icon on the Configurable Settings tab of the Project Properties window.
Remember that changing the settings in an individual project does not automatically update the library or any other projects. Also note that these options will be disabled if you have selected to use questions rather than ratings for the current project.

Editing a Set of Risk Discovery Ratings

The **Calculation Methods** area specifies how the rating will be calculated for each category defined in the table and for the item overall.

- **Item** - the software calculates the overall rating for the item by obtaining the sum, product, max or average of the category ratings.
- **Category** - the software calculates the rating for each category by obtaining the sum, product, max or average of the factors in that category. If you select "Define for each," the table provides an additional column to specify the calculation method for each category.

Using a simplified example, the following settings would calculate the Safety rating (Potential for Injury \times Severity of Injury) and the Maintenance Rating (Downtime + Repair Costs), and then calculate the overall Item rating as Safety + Maintenance.

<table>
<thead>
<tr>
<th>Category</th>
<th>Calculation Method</th>
<th>Factor</th>
<th>Option</th>
<th>Rating</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>Product</td>
<td>Potential for Personal Injury</td>
<td>None</td>
<td>1</td>
<td>Criteria for assigning a 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moderate</td>
<td>3</td>
<td>Criteria for assigning a 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Very High</td>
<td>5</td>
<td>Criteria for assigning a 5</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Sum</td>
<td>Downtime Impact</td>
<td>None</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moderate</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Very High</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair Costs</td>
<td>None</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moderate</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Extreme</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

To edit any existing entry, simply type directly in the table cell.

To add or delete a category, factor or option, click inside an appropriate cell and then use the buttons under the table. For example, if you want to add another option above "Moderate" in the "Repair Costs" rating scale, click inside any of the three cells for that option and then click **Insert Option** to insert a new row above.
To import a set of ratings that have already been defined in another project or library, click Copy Existing.

Phrase Sets

A phrase set contains lists of predefined descriptions that can be used to define any of the text-based record properties in an FMEA. The descriptions in a phrase set are accessible via the Select Existing Text window when the phrase set has been selected to be "active" from the window’s Phrase Sets page.

The Phrase Sets page in the Profiles/Library Manager shows all of the sets of predefined phrases in the active library.

- To add a new phrase set, click Add.
- To edit an existing phrase set, select the row and click Edit or double-click the row.

Note: Unlike many of the other settings stored in the active library and managed via the Profiles/Library Manager, the descriptions in a phrase set are not stored in the project properties for individual analysis projects. Rather, you can use any phrase set from the active library on your computer for any analysis project that you may be working on, and it is possible to use phrases from multiple different phrase sets in the same project.

You can use any or all of the following methods to create/update phrase sets.

- Type phrases into the tables
- Import phrases from Excel
- Export FMEA descriptions to phrase sets

Type Phrases Into the Tables

The navigation panel on the left side of the Edit Phrase Set window shows the types of records for which you can save phrases. The table on the right allows you to view/edit/add phrases for the record type that is currently selected.
Note that the columns show all of the possible fields (i.e., the tables are not customized based on the enabled/disabled preferences in a particular interface style). The field names are based on those used in the default profile. You can ignore any record types and/or record properties that you don’t want to save phrases for.

Import Phrases from Excel

When you click the **Import from Excel** or **Export to Excel** buttons, the software will import or export the descriptions in the phrase set from/to the Excel file.

Note: When importing from an Excel file, this functionality adds unique descriptions only and appends them to the phrase set. For example, if the existing phrase set contains a failure cause called "Excessive condensation" and so does the Excel file that is being imported from, the phrase will not be duplicated.

Exporting FMEA Descriptions to Phrase Sets

You can export the descriptions from an existing FMEA to a new or existing phrase set in the active library. Do the following:

1. Open the FMEA.
2. Choose **FMEA > Tools > Export to Phrase Set > [Export to a New/Existing FMEA Phrase Set]**.
 a. If you choose to export to a new phrase set, you will be prompted to enter the name (required) and description).
 b. If you choose to export to an existing phrase set, you will be prompted to select one of the phrase sets from the active library.

Note: This functionality adds unique descriptions only. For example, if the existing phrase set contains a failure cause called "Excessive condensation" and so does the FMEA analysis that is being exported, the phrase will not be duplicated.

FEC Logic

RCM++ & RBI Only

The **FEC logic** determines the questions and categories that will be displayed in the Failure Effect Categorization window for effect records. This is used for performing traditional reliability centered maintenance (RCM) analysis.
Chapter 5: Configurable Settings

The FEC Logic page in the Profiles/Library Manager shows all of the predefined FEC logic diagrams in the active library.

- To add a new logic, click Add.
- To edit an existing logic, select the row and click Edit or double-click the row.

There are also several ways to edit the FEC logic for a particular project. Remember that changing the settings in an individual project does not automatically update the library or any other projects (Learn more...).

- Choose Project > Management > Configurable Settings > FEC Logic.
- Click the Edit icon on the Configurable Settings tab of the Project Properties window.

Editing the FEC Logic

The first step is to choose the logic tree configuration from the drop-down list at the top of the window. Then you can type directly in the text boxes that are displayed. Each question can contain up to 255 characters and each category must have a label (up to 50 characters) and an abbreviation (up to 5 characters).

If you have accessed the window from within the Profiles/Library Manager, you can import a logic tree that has already been defined in another project or library by clicking Copy Existing.

Available Tree Configurations

- 4 Categories allows you to define three questions that lead to four FEC categories.

```
?  Yes  No
  ? Yes No  ? Yes No
  1 2 3 4
```

- 5 Categories (Split in Yes Branch) allows you to define four questions that lead to five FEC categories. If the user answers "yes" to the first question and "no" to the second question, there will be a third question in that branch before the category is assigned.
5 Categories (Split in No Branch) allows you to define four questions that lead to five FEC categories. If the user answers "no" to the first question and "no" to the second question, there will be a third question in that branch before the category is assigned.

6 Categories (Split in No Branch) allows you to define five questions that lead to six FEC categories.

Task Logic

The task selection logic determines the questions that will be displayed in the Task Manager window for cause records. This is used for traditional reliability centered maintenance (RCM) analysis.

The Task Logic page in the Profiles/Library Manager shows all of the predefined task selection logics in the active library.
To add a new logic, click **Add**.

To edit an existing logic, select the row and click **Edit** or double-click the row.

There are also several ways to edit the task selection logic for a particular project. Remember that changing the settings in an individual project does not automatically update the library or any other projects. (Learn more...).

- Choose **Project > Management > Configurable Settings > Tasks Logic**.
- Click the **Edit** icon on the Configurable Settings tab of the Project Properties window.

Editing the Task Logic

The first step is to specify whether the task selection questions will depend on the failure effect categorization (FEC) that has been assigned to the associated effect.

If you select **Same Questions for All FEC**, there will be a single table for defining the questions. The analysis will always consider the same types of maintenance tasks regardless of the consequences of failure.

If you select **Specific Questions for Each FEC in Selected Logic**, two additional drop-down lists will become enabled so you can define a separate set of questions for each effect categorization:

- Use the first drop-down list to specify the number of categories in the FEC logic that this task selection logic is planned to be used with (i.e., 4 categories, 5 categories or 6 categories).
- Use the second drop-down list (labeled **FEC**) to choose which set of questions will be currently displayed in the table.

Each table contains the following columns:

- **#**: Displays the numeric or alphanumeric label used to identify the question. This can contain up to 5 characters (e.g., 1, 2, 3, or 1A, 1B, 1C,... etc.).
- **Question**: Displays the question. This can be up to 255 characters.

To edit any existing entry, simply type directly in the table cell.
To add or delete a question, click inside an appropriate cell and then use the buttons under the table.

If you have accessed the window from within the Profiles/Library Manager, you can import a set of task selection questions that have already been defined in another project or library by clicking **Copy Existing**.

Checklists

A checklist contains a list of activities that need to be performed during an analysis project. You can copy a checklist from the active library to any analysis plan in a software project.

Note: Unlike many of the other settings stored in the active library and managed via the Profiles/Library Manager, the checklists are not stored in the project properties for individual analysis projects. Rather, you can use any checklist from the active library on your computer for any project that you may be working on, and it is possible to use different checklists for different analysis plans in the same project.

The Checklists page in the Profiles/Library Manager shows all of the sets of predefined checklists in the active library.

- To add a new checklist, click **Add**.
- To edit an existing checklist, select the row and click **Edit** or double-click the row.

Editing a Checklist

To edit any existing entry, simply type directly in the table cell.

To add or delete a description, click inside an appropriate cell and then use the buttons under the table.

To import a checklist that has already been defined in another project or library, click **Copy Existing**.

Assumptions

The ground rules and assumptions are a list of the information that all members of the analyses team will use to make judgments with in an analysis project. You can copy the assumptions from the active library to any analysis plan in a software project.

Note: Unlike many of the other settings stored in the active library and managed via the Profiles/Library Manager, the assumption lists are not stored in the project properties for individual analysis projects.
Chapter 5: Configurable Settings

Rather, you can use any assumption list from the active library on your computer for any project that you may be working on, and it is possible to use different assumption lists for different analysis plans in the same project.

The Assumptions page in the Profiles/Library Manager shows all of the sets of predefined assumption lists in the active library.

- To add a new assumption list, click Add.
- To edit an existing assumption list, select the row and click Edit or double-click the row.

Editing an Assumption List

To edit any existing entry, simply type directly in the table cell.

To add or delete a description, click inside an appropriate cell and then use the buttons under the table.

To import an assumption list that has already been defined in another project or library, click Copy Existing.

Surveys

A survey contains a list of requirements that are believed to influence the success of an analysis project. You can copy a survey from the active library to any analysis plan in a software project.

Note: Unlike many of the other settings stored in the active library and managed via the Profiles/Library Manager, the surveys are not stored in the project properties for individual analysis projects. Rather, you can use any survey from the active library on your computer for any project that you may be working on, and it is possible to use different surveys for different analysis plans in the same project.

The Surveys page in the Profiles/Library Manager shows all of the sets of predefined surveys in the active library.

- To add a new survey, click Add.
- To edit an existing survey, select the row and click Edit or double-click the row.

Editing a Survey

To edit any existing entry, simply type directly in the table cell.

To add or delete a category, click inside an appropriate cell and then use the buttons under the table.
To import a survey that has already been defined in another project or library, click **Copy Existing**.

Conditions of Use

The *conditions of use* are a list of the conditions under which you expect the product to be used (e.g., Screen set to 75% brightness). You can copy the conditions of use from the active library to any [analysis plan](#) in a software project.

Note: Unlike many of the other settings stored in the active library and managed via the Profiles/Library Manager, the condition lists are not stored in the project properties for individual analysis projects. Rather, you can use any condition list from the active library on your computer for any project that you may be working on, and it is possible to use different condition lists for different analysis plans in the same project.

The Conditions of Use page in the Profiles/Library Manager shows all of the sets of predefined condition lists in the active library.

- To add a new condition list, click **Add**.
- To edit an existing condition list, select the row and click Edit or double-click the row.

Editing a Condition List

To edit any existing entry, simply type directly in the table cell.

To add or delete a description, click inside an appropriate cell and then use the buttons under the table.

To import a condition list that has already been defined in another project or library, click **Copy Existing**.

Converting Prior Version Libraries

Converting Libraries and Profiles from Version 5

If you have customized the configurable settings in your XFMEA/RCM++ 5 library, you can automatically convert them for use in the new version. This topic describes:

- How to import an entire library or selected profiles from a [Version 5 standard library file (*.lb5)](#).
- How to import library settings from a [Version 5 Enterprise database](#).
Chapter 5: Configurable Settings

- The new configurable settings that will be added to support new features that were added in subsequent versions. (You may need to modify the default options for these new settings after the profile(s) have been converted.)

Converting Standard Library Files (*.lb5)

If you have an existing XFMEA/RCM++ 5 standard library file (*.lb5), you can convert the entire library or just convert and import selected profiles.

To convert the entire library:

1. Open any standard database in the current version of XFMEA, RCM++ or RBI.
2. Choose File > Manage Repository > Profiles/Library Manager.
3. In the Profiles/Library Manager, click the Browse button in the top-right corner and choose XFMEA 5/RCM++ 5 Library (*.lb5) from the Files of type drop-down list, then select the file you want to convert.
4. Click Open and, when prompted, confirm that you want to proceed.

The application will create a new standard library file in the same directory with the extension *.lb19; the existing *.lb5 file will remain unchanged.

To convert and import only selected profile(s):

1. Open any standard database in the current version.
2. Choose File > Manage Repository > Profiles/Library Manager.
3. Select Profiles in the navigation panel and then click Import.
4. In the Import Profiles to Library window, use the drop-down list or browse button at the top of the window to select the file you want to import from.
5. The table shows the profiles that have been defined in the selected library. Select the profile you wish to import and click OK.

The application will import the profile and all of the associated settings (e.g., the interface style, severity scale, etc.). If settings with the same name already exist in the destination library, the application will import them anyway and increment the name(s). (See Import Settings to a Library.)

Converting an Enterprise Database Library

To convert and import library settings from an XFMEA/RCM++ 5 enterprise database, you must have both of the following permissions:

- The "Admin" access level in the Version 5 database.
• The "Manage all projects" and "Manage users and logins" permissions in the Synthesis repository.

There are two ways to import the data. If you want to import the entire library, including settings that are not directly associated with a profile (e.g., phrase sets, checklists, project plan templates, etc.), you must use the Import from Version 5 method described below. If you want to import selected profiles, you can use this method or the Import Profiles to Library method described above.

To use the Import from Version 5 method:

1. Connect with the enterprise database you want to import into.
2. Choose File > Manage Repository > Import from Version 5.
3. In the area at the top of the Import from Version 5 Enterprise Database window, enter the connection information for the Version 5 enterprise database and click Connect.
4. The table shows all of the data and settings that are available to be imported. Find the Profiles heading.
 • If you select the Profiles check box, application will import the entire library, including settings that are not directly associated with a profile.
 • If you select individual profiles, the application will import only the selected profiles and the settings that are directly used by those profiles.
5. Click OK to copy the data.

Converting Configurable Settings from Version 5

When you convert an existing library profile from XFMEA/RCM++ 5, the application will add new configurable settings for new features that were added in subsequent versions. Likewise, when you convert an existing project, its configurable settings will be updated in the same way.
Chapter 5: Configurable Settings

Here is a summary of the settings that will be added, modified or changed:

<table>
<thead>
<tr>
<th>Setting Type</th>
<th>Page</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface</td>
<td>FMEA > Functions</td>
<td>New Op Seq Number field, which can be used to add a reference number to a function. In synchronized worksheets, the op seq number is also used to link a function to a particular item in the associated PDF worksheet or Control Plan worksheet.</td>
</tr>
<tr>
<td>Tasks > Properties (RCM specific)</td>
<td></td>
<td>Many of the properties that were in the FMEA > Tasks page are now configured as part of the task resources. (See Task Properties.) The task properties that apply only in RCM++/RBI can be configured via the new Tasks > Properties (RCM specific) page.</td>
</tr>
<tr>
<td>FMEA > Sync Options</td>
<td></td>
<td>New options for creating FMEA functions from system hierarchy items or PFD worksheet operations.</td>
</tr>
<tr>
<td>FMEA > Criticality</td>
<td></td>
<td>The Probability of Loss field was removed and is now generated from the FMRA.</td>
</tr>
<tr>
<td>Control Plan > Sync Options</td>
<td></td>
<td>New options for synchronizing from the PFD Worksheet.</td>
</tr>
<tr>
<td>DVP&R > Sync Options</td>
<td></td>
<td>New options for separately synchronizing controls and actions.</td>
</tr>
<tr>
<td>PFD Worksheet</td>
<td></td>
<td>Added properties for the new PFD Worksheet functionality.</td>
</tr>
<tr>
<td>Occurrence Scale</td>
<td>Properties</td>
<td>New Quantitative Value column and options for automatically creating failure models based on the RPN occurrence ratings.</td>
</tr>
<tr>
<td>Task Logic</td>
<td>Properties</td>
<td>Some of the task properties were removed because they are now part of the task resources.</td>
</tr>
</tbody>
</table>
Upon conversion, the application will apply default values for all of the new settings. It is important to note that these defaults may need to be modified after the conversion if you plan to use the Quantitative Value setting in the FMRA calculations for the converted project. This is because the application is not able to interpret the numerical thresholds (if any) recorded in the Criteria descriptions, and therefore it must apply the same values for all converted rating scales.

For example, the following table shows part of the occurrence scale from the "DFMEA: AIAG-4" profile. As you can see, the default values that would be applied if you convert this rating scale from Version 5 would need to be changed to more appropriate values that match the thresholds specified in the text descriptions. For example, 1 in 1,000,000 vehicles is 0.000001, and so on.

<table>
<thead>
<tr>
<th>Rating</th>
<th>Criteria</th>
<th>Quantitative Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Very Low</td>
<td>Failure is eliminated through preventive control.</td>
<td>0.000001 0.0000001</td>
</tr>
<tr>
<td>2 - Low</td>
<td><=0.001 per thousand items/vehicles, 1 in 1,000,000</td>
<td>0.000010 0.000001</td>
</tr>
<tr>
<td>3 - Low</td>
<td>0.01 per thousand items/vehicles, 1 in 100,000</td>
<td>0.000100 0.000010</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 - Very High</td>
<td>=> 100 per thousand items/vehicles, => 1 in 10</td>
<td>0.900000 0.100000</td>
</tr>
</tbody>
</table>
Chapter 5: Configurable Settings

When feasible, the most efficient and consistent way to apply these updates is to first obtain a fully updated profile in the Profiles/Library Manager and then use this profile to re-apply the settings for each converted project. Specifically, you will need to do the following:

1. Decide which library you will use and then confirm that the new settings are fully updated for all active profiles in the library:
 - If you had not customized any of the predefined profiles in the Version 5 library, we recommend using the new default library provided with the current version because it has appropriate values for the new settings (e.g., quantitative values that match any numerical criteria specified in the occurrence rating scales).
 - If you had created your own custom profiles in Version 5 or customized any of the predefined ones, we recommend converting the existing library and then reviewing/updating all of the new settings that were added during the conversion.

2. Convert one or more existing projects from Version 5.

3. For each converted project:
 - Choose Project > Management > Edit Project Properties.
 - On the General page of the Project Properties, choose the appropriate profile from the Select Profiles from Library drop-down list.
 - Click OK to reset all of the project's configurable settings based on the fully updated profile defined in the library.

Of course, you also have the option to review and manually update the configurable settings for any particular project, if desired. These are accessible from the Configurable Settings pages in the Project Profiles window, and also from Project > Management > Configurable Settings.
Chapter 6: System Hierarchy

In XFMEA, RCM++ and RBI, the flexible system hierarchy allows you to manage large, multi-level system configurations with as many levels as you need and any number of items per level. You can fully define the **properties for each item** (e.g., supplier, part number, expected operating environment, etc.) and **perform relevant analyses** for selected items.

For RCM and FMEA analyses, the hierarchy will consist of systems, subsystems and components, and you can perform a variety of analyses at any level in the configuration. (See [Building the System Hierarchy](#).)

For RBI analyses, you also have the option to define systems, subsystems and components. However, the risk based inspection analysis can be performed only for specialized items that represent specific equipment and component types that are addressed in the API RP 580/1 guidelines. (See [Building the RBI System Hierarchy](#).)

System Hierarchy in XFMEA and RCM++

<table>
<thead>
<tr>
<th>Name</th>
<th>ID</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>System 1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subsystem 1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subsystem 2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component 1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component 2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

System Hierarchy in RBI

<table>
<thead>
<tr>
<th>Name</th>
<th>Component Type</th>
<th>Area Risk (Plan Date)</th>
<th>Financial Risk (Plan Date)</th>
</tr>
</thead>
<tbody>
<tr>
<td>System 1</td>
<td>HEXTUBE</td>
<td>HEXTUBE</td>
<td>PIPE-1</td>
</tr>
<tr>
<td>Heat Exchanger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe</td>
<td>HEXTUBE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIPE-1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
System Hierarchy Filtered View

On the Filtered View tab of the System panel, you can also select or create an item filter to find and focus on the specific items of interest. Records meeting the filter criteria are presented in a sortable list.

System Hierarchy Columns

To hide or display system hierarchy columns, or change the column order, right-click the column headings then click Customize Columns. (You can also change the column order by dragging and dropping column headings into the desired positions.) These settings are stored per computer/username in the System Hierarchy page of the Application Setup. Any project that you open on this computer will have the same columns displayed, but other users may have different display preferences.

The following columns are available:

- **#** displays the record position number assigned by the software based on the position of the item in the system hierarchy. For example, if you insert a new item above an existing item, then the new item will take the number of the existing item and all items below it will be renumbered. Likewise, if you delete an item, all items below it will be renumbered automatically.

- **Name** displays the item name. This is a required field, and it is specified on the Properties tab of the Analysis panel.
• **Component Type** 📘 RBI Only

 This is relevant only for component items in a risk based inspection analysis and indicates the type of component (which determines the analysis method that will be used).

• **Area Risk (Plan Date) and Financial Risk (Plan Date)** 📘 RBI Only

 These are relevant only for component items in a risk based inspection analysis and indicate the risk priority that has been calculated from the RBI analysis. As discussed in more detail in **RBI Results**, the plan date is the next date when the component is scheduled to undergo major maintenance or replacement. The area risk represents the risk to the surrounding area assuming that you do not schedule any inspections prior to the plan date, while the financial risk represents the financial consequences.

• **Record ID** displays a unique identifier assigned by the software. The record ID is unique among all system hierarchy items that are defined in the database. It can also be used in the **Query Utility** to help identify a specific item that may share the same name with another item.

• **User Access** displays status indicator when the record is in use (🔒) or when it is restricted to selected users (🔒).

• **XFRACAS Associated Hierarchy Item** is available for enterprise databases only. It indicates that the item is associated with an **XFRACAS hierarchy item**. If an association exists, future changes made to the item and/or its failures and causes in XFRACAS can be brought into the software by synchronizing the data.

• **Reference Number** displays the reference number associated with the item. To display this column in the current project, the field must be enabled on the Item > Properties page of the **interface style**. The number is specified on the Properties tab of the Analysis panel.

 • **Tip:** If you wish to automatically generate reference numbers (e.g., 1.2.1) for all items based on their positions in the hierarchy, choose **System Hierarchy > Tools > Renumber All Items** and then select the **Apply to reference number field** check box. **This cannot be undone.**

• **Part Number** displays the part number associated with the item. To display this column in the current project, the field must be enabled on the Item > Properties page of the **interface style**. The number is specified on the Properties tab of the Analysis panel.

• **FMEA Document Number** displays the document number for the local FMEA associated with the item, if any. To display this column in the current project, the field must be enabled on the FMEA > Header page of the **interface style**. This number is specified on the **Header tab** of the FMEA, if there’s an FMEA defined for the item.
• **Attachment** displays a paper clip icon if one or more files have been attached to the corresponding item.

• **Flag** displays a flag for the item, if desired. The available flags are: Complete (indicated by a green flag), In Progress (indicated by a yellow flag) and Incomplete (indicated by a red flag). In all ReliaSoft applications, flags are displayed in the interface only and do not affect analysis results or reports.

• **Ancestry** indicates the status of the associations with all source records. (See **Ancestry** for more information about source records and the situations in which they can be used.) Green indicates that no source records have been changed either since their descendants were created or since the last time a change notification for the descendants was dismissed. Orange indicates that some change has been made to one or more source records or their dependents, or that one or more source records have been deleted.

• **Item SxO** displays the calculated rating from the **Item Severity x Item Occurrence** (if enabled for the project). If a risk ranking logic is defined for the project, the value will be color-coded based on the specified risk criteria.

• **Item Risk** displays the calculated **risk ranking logic** value for the item, if it is defined for the project.

• **Risk Discovery** displays an icon if a **risk discovery analysis** has been performed on the item. If the analysis indicates that the item requires more detailed investigation, the icon will be red; otherwise, the icon will be green.

• **Risk Discovery Details** displays a number if a risk discovery analysis has been performed on the item.
 - If the analysis uses **risk discovery questions**, then this cell will display the number of questions with "Yes" answers. More "Yes" answers indicates greater risk.
 - If the analysis uses **risk discovery ratings**, then this cell will display the calculated value of all categories, which is based on the method in use for the Risk Discovery Ratings used in the project. Higher values indicate greater risk.

• **P-Diagram** displays if a **Parameter Diagram (P-Diagram)** has been created for the item, when a **P-Diagram change log** is present and a revision is in progress or when a P-Diagram change log is present and no revision is active.

• **Analysis Plan** displays if an **Analysis Plan** has been created for the item.

• **Process Flow Diagram Worksheet** displays if a **PFD worksheet** has been created for the item.
- **FMEA** displays if an FMEA has been created for the item, when an FMEA change log is present for the local FMEA and a revision is in progress or when an FMEA change log is present for the local FMEA and no revision is active.

- **DRBFM** displays if a design review based on failure mode (DRBFM) analysis has been created for the item.

- **Test Plan** displays if a test plan analysis has been created, for the item, when a test plan change log is present and a revision is in progress or when a test plan change log is present and no revision is active.

- **DVP&R** displays if a design verification plan and report (DVP&R) analysis has been created for the item, when a DVP&R change log is present that a revision is in progress or when a DVP&R change log is present and no revision is active.

- **Control Plan** displays if a control plan analysis has been created for the item, when a control plan change log is present and a revision is in progress or when a control plan change log is present and no revision is active.

- **Process Flow Diagram** displays if a graphical process flow diagram has been created for the item.

- **FMEA Block Diagram** displays if an FMEA Block Diagram has been created for the item.

- **Cause and Effect Diagram** displays if a cause and effect diagram has been created for the item.

- **QCPNi** and **QCPNr** display the calculated initial and revised Quantitative Consequence Priority Numbers. To display these columns in the current project, the fields must be enabled on the FMEA > RPNs page of interface style.

Building the System Hierarchy

There are many ways to build the system hierarchy in XFMEA/RCM++/RBI.

Adding New Items

When you create a project, the first item is automatically added to the system hierarchy. To add more new items, follow any of the instructions below. If you choose "add," the new item will be added to the bottom of the list for the associated level. If you choose "insert," the new item will be inserted above the selected item.

- To add a new top-level item, choose **System Hierarchy > Add Items > Add System**.
Chapter 6: System Hierarchy

- To add a new item to the next level below a selected item, choose **System Hierarchy > Add Items > Add Next Level Item**.

- To add a new item to the same level as a selected item, choose **System Hierarchy > Add Items > Add Same Level Item** or **Insert Same Level Item**.

Deleting Items
To delete an item from the system hierarchy, select the item and press **DELETE**. The item will be deleted, along with all sub-items and all associated analyses and attachments. *You can undo the last deletion only.*

Moving Items
You can move items within the system hierarchy by dragging and dropping them to the desired location. When an item is moved, all associated analyses and attachments will also be moved. You can also use the following methods:

- To move a selected item to the next higher or lower level, choose **Home > Move Record > Promote or Demote**. An item can be demoted only if there is another item on the same level and above the selected item that it can be demoted under.

![Before demoting D](image1)

![After demoting D](image2)

- To move an item up or down within its current level, choose **Home > Move Record > Up or Down**.

Cutting/Copying and Pasting Items
You can cut or copy items in the system hierarchy and paste them to the same project or to another project within the same database.
To cut/copy multiple items all at once, hold the **CTRL** key while clicking all the items you wish to select. To select multiple items that are adjacent, click the first item and then hold the **SHIFT** key while you click the last item.

You can then use the standard keyboard shortcuts for cut/copy (**CTRL+X** and **CTRL+C**) or you can choose **Home > Clipboard > Cut** or **Copy**. All sub-items will also be cut or copied, along with any analyses and attachments. You can then paste the item to the desired level in the system hierarchy.

- To paste the item in the next level below the selected item, choose **Home > Clipboard > Paste** or press **CTRL+V**.
- To paste the item as a system, choose **Home > Clipboard > Paste > Paste as Top Level**.
- For additional options, choose **Paste Special**. The **Paste Special window** allows you to paste to the same level, and to choose whether sub-items and/or related analyses/attachments will be pasted.

After an item has been cut or copied, any edits that are made to the original will also be applied to its copy in the Clipboard. Likewise, if you delete the original, its copy will also be deleted from the Clipboard.

Note that you will not be able to cut or copy items in a project that is **locked by another user**.

Smart Add and Import

There are also several ways to add items that were copied from an existing analysis, another ReliaSoft desktop application or an external data source.

- **System Hierarchy > Add Items > Smart Add Items**.

 The **Smart Add Items** utility makes it easy to copy item names from existing system hierarchies when the parent items were similar (based on category, part number, name and/or keywords).

- **System Hierarchy > Add Items > Import > Import Items (Query) or (Browse)**.

 Both of these utilities allow you to find and copy items from existing system hierarchies, with the option to include sub-items and/or related analyses/attachments if desired. You can use the **Query method** or the **Browse method**.

- **System Hierarchy > Add Items > Import > Import from Excel**.
Chapter 6: System Hierarchy

The Import from Excel utility can be used to import system configuration, FMEA or other analysis data using flexible templates that you can customize to fit your particular needs.

- **System Hierarchy > Add Items > Import > Import Lambda Predict Items** or **Import MPC Systems**.

These commands allow you to import items from Lambda Predict prediction folios or the MPC system hierarchy in the same project (if applicable).

- **System Hierarchy > XFRACAS > Import XFRACAS Items**.

Import Hierarchy Items from XFRACAS is available only when you are working in a database that has associated XFRACAS tables.

Item Properties

Each item in the system hierarchy can have basic properties associated with it (such as name, description, part number, etc.) as well as reliability characteristics (such as operating time, target reliability, etc.). When an item is selected in the system hierarchy or the failure modes and reliability analysis (FMRA), you can view and edit this information on the Properties tab in the Analysis panel.

Some of the fields that are enabled in the interface, as well as the options available in configurable drop-down lists, will depend on the interface style for the current project.

- **Identifiers** are the same identifiers that are used to filter and group resources and analyses in all ReliaSoft desktop applications.
 - **Image**: An image that is displayed for the item in the Analysis panel only. Click the icon to open a window and browse for the desired image file.
 - **Name**: This field is populated automatically by the software based on the item’s position within the system hierarchy, but it can be changed by the user. The field cannot be blank and cannot contain any of the following characters: \/:*?<>|.
 - **Category**: A predefined category that can be used throughout the current database to find, filter and group analysis data. (See Item Categories in XFMEA/RCM+/RBI.)
Chapter 6: System Hierarchy

- **Part Number, Version, Supplier, Application, Description and Comments:** Optional fields that provide additional information about the item.

- **Keywords:** Words or phrases (separated by commas) that can be used to find or filter analysis data. If desired, you can use the Smart Add Keywords utility to automatically choose words from the name and/or description for this item.

- **Other Item Properties**
 - **FMEA % Completed:** This field is always displayed in the item properties. Enter the percentage as a number => 0 and <=100. This value can be displayed in dashboard charts, queries and generated reports.
 - **Reference Number:** A reference number associated with the item.
 - **Alternate Part Number:** An alternate part number for the item.
 - **CAGE Code:** The Commercial and Government Entity (CAGE) code associated with the item.
 - **LCN:** The Logistic Control Number (LCN) associated with the item.
 - **Reference Designator:** The reference designator for the item.
 - **Drawing Number:** The number of the drawing associated with the item.
 - **Qty per System** and **Qty per Assembly:** These properties are applicable only if the item is not a top-level system. They represent:
 - Quantity of identical sub-items in the system (e.g., 4 engines per airplane).
 - Quantity of sub-items in the next higher level assembly (e.g., 2 engines per wing).

 Note: These fields are informational only and do not affect the reliability calculations in the FMRA. To affect these values, use the Qty field in the Operation node. Refer to Setting the Operation Properties for an FMRA for more information.

 - **Similar To:** Another item similar to this one.
 - **Design Engineer:** The name of the design engineer for the item.
 - **MMEL:** The item’s impact on the Minimum Master Equipment List (MMEL), as used in the aircraft industry.

 - The **Ratings** fields are used if you want to perform item risk calculations on the system hierarchy items. (See Item Risk.)
User-Defined: Up to five text fields, two date fields, two number fields and two drop-down lists.

The Operation and Reliability Policy fields are relevant if you wish to a) calculate criticality metrics, b) generate a baseline system reliability based on information in the FMEA or c) share system configuration and failure mode data between the software and BlockSim. (See Failure Modes and Reliability Analysis (FMRA).) These fields can be shown or hidden depending on the Hide reliability nodes on item properties setting on the Settings page of the Application Setup.

The Reliability/Availability fields allow you to enter the target reliability and availability that you hope to achieve, and compare them to the current estimates from the FMRA. These fields can be shown or hidden depending on the Hide reliability nodes on item properties setting on the Settings page of the Application Setup.

If desired, you can set the target for a system or assembly and use the FMRA to automatically allocate the targets for sub-items. (See Allocate Target Reliability and Availability.)

The software also applies automatic color-coding to highlight situations when the expected reliability/availability does not meet the specified target(s). (See Highlights Based on Target Reliability/Availability.)

The Push to Metrics fields allow you to associate metric resources with the current reliability/availability. The metric is automatically updated whenever you recalculate/resimulate the value in the FMRA. (See Pushing Metrics from an FMRA.) These fields can be shown or hidden depending on the Hide reliability nodes on item properties setting on the Settings page of the Application Setup.

The History fields display information about when the record was created and last modified. If the history log has been activated at the project level, you can click the View Item History icon to open the Record History Log for the item.

Item Categories in XFMEA/RCM++/RBI

In all ReliaSoft desktop applications, you can use flexible categories and identifiers to find, filter and group analysis data. In XFMEA/RCM++/RBI, these properties can be assigned to any item in the system hierarchy. They apply for any analysis or diagram that is associated with the item.

This topic discusses several options that are available for assigning categories to system hierarchy items: Smart Add Category, Select from Category List or Create Categories.

Remember that the same list of categories can be assigned for any project item (e.g., folio, diagram, system hierarchy item, etc.) or resource (e.g., model, URD, etc.) in the database.

http://xfmea.reliasoft.com
Smart Add Category
When you click the Smart Add Category icon inside the Category field in the Item Properties, the software checks to see if a category already exists that exactly matches the item’s name.

If there’s a match, the category will be assigned automatically. If not, you’ll be prompted to select the category manually if desired.

Select from Category List
To manually set an item’s category, click twice inside the Category field and then select an option from the list.

To modify the list for the entire database, click Edit Categories.

Create Categories
The Create Categories feature can save a lot of time if you want the categories used throughout the database to match the item names in one or more of the system hierarchies defined in XFMEA/RCM++/RBI. To use the feature, open the project that contains the system hierarchy and choose System Hierarchy > Tools > Create Categories. (In a secure database, this is only available for users with the "Manage project item/categories" permission.)
The software automatically creates a category for every item in a system hierarchy and assigns the appropriate category for each item's properties.

Smart Add Keywords

The **Keywords** field is one of the **identifiers** you can use to find, filter and group analysis data in all ReliaSoft desktop applications.

In XFMEA/RCM++/RBI, this field can also be used by the **Smart Add utilities** to quickly find and copy item names or FMEA record descriptions from other similar analyses.

In either the **item properties** or the **FMEA record properties**, you can enter keywords manually by typing the words or phrases (separated by commas) directly into the **Keywords** field.
Alternatively, you can click the **Smart Add Keywords** icon to open a utility that makes it easy to choose keywords from the text already entered into other fields.

Specifically, the Smart Add Keywords utility shows a list of all words from the record’s name and description that have more than two characters and are not on the *Excluded Keywords List* (marked **Always Exclude**) for the current database.

If a candidate keyword is on the **Preferred Keywords List** (marked **Always Select**), it will be selected automatically in the Add column. You can also clear and set these check boxes manually.

When you click **OK**, the selected keywords will be automatically inserted into the **Keywords** field. (This picture shows RCM++, but it works the same in XFMEA and RBI.)

Note that the excluded and preferred keywords lists will be the same for all projects in the database, and they can be modified by any user who has write-access to any public or private project.

Associated Analyses and Diagrams

This topic describes the FMEA, RCM and related analyses and diagrams that can be associated with any item in the [system hierarchy](#). For information about the risk based inspection analysis properties and results, see [RBI Properties](#).
Available Analyses

The available analyses are summarized below. To add an analysis for an item, select the item and click the appropriate command on the Analysis tab of the ribbon. You can also right-click the item name and choose an analysis from the Analyses submenu.

A **Risk Discovery Analysis** is a preliminary analysis that can involve answering questions and/or assigning ratings about possible risks. It can help you to choose which items should receive more detailed consideration via a failure mode and effects analysis (FMEA) or reliability centered maintenance (RCM) analysis.

A **Parameter Diagram (P-Diagram)** is a structured tool that identifies the inputs from a system and relates those inputs to desired system outputs, while considering the controlled and uncontrolled factors.

An **Analysis Plan** allows you to keep track of team members, ground rules and assumptions, estimated completion dates, scheduled work sessions and other details to help you plan and manage your analysis projects.

A **Failure Modes and Effects Analysis (FMEA)** is a methodology designed to identify potential failure modes for a product or process, to assess the risk associated with those failure modes, to rank the issues in terms of importance and to identify and carry out corrective actions to address the most serious concerns.

Design Review Based on Failure Mode (DRBFM) is a methodology used to evaluate proposed changes to an existing design. It was developed by Tatsuhiko Yoshimura, working with Toyota Motor Corporation. DRBFM uses a worksheet similar to the FMEA worksheet, but it typically focuses on the failure modes that might be introduced by a specific change to a product or process.

A **Design Verification Plan and Report (DVP&R)** is a worksheet that is used to track the progress of design verification tests.

A **PFD Worksheet** captures details about what happens to the item in each step of its manufacturing or assembly process, and it records the product and process characteristics that are important to keep under control. The information from this worksheet can be used as an input to the process FMEA (PFMEA) and control plan for the item.

A **Control Plan** is used to keep track of characteristics that affect a product during the manufacturing process to ensure that the desired product specifications are met.
Available Diagrams

The available diagrams are summarized below. To create a diagram, choose **System Hierarchy > Current Item > Diagrams > [Diagram Type].**

- **A Process Flow Diagram** is a high level chart that helps you visualize the steps that a product goes through in a manufacturing or assembly process. You can create a blank diagram or base one on the FMEA or control plan associated with the item.

Tip: If you want to use a process flow diagram as a starting point for preparing process FMEAs (PFMEAs) or control plans, then the PFD worksheet may be a more appropriate tool. The PFD worksheet integrates the chart into a worksheet that records more detailed information about each step in the process and it allows you to synchronize the relevant information with the FMEA or control plan analysis. (See **PFD Worksheets**.)

- **An FMEA Block Diagram (Boundary Diagram)** helps to define the scope of a particular analysis project and also may provide additional information that will be useful to the analysis team when they attempt to identify potential failure modes.

- **A Cause and Effect Diagram** helps you visualize the relationships among the events described in your analysis. When you select an item and choose **System Hierarchy > Diagrams > Cause and Effect Diagram,** the diagram will be constructed based on the events described in the FMEA for that item.

Importing Analysis Data

Smart Add and Import

Smart Add (Items or FMEA Records)
The Smart Add utilities make it easy to quickly find and copy item names or FMEA descriptions from other similar analyses.

For system hierarchy items, choose **System Hierarchy > Add Items > Smart Add Items.**
For FMEA records, choose the command for the desired record type. For example, **FMEA > Functions > Smart Add Functions**.

Smart Add Settings and Query Criteria
The utility displays all of the unique item names or FMEA record descriptions that meet the requirements currently specified in the Smart Add Settings window.

- For system hierarchy items, you can consider the category, part number, name and/or keywords for the parent item in the system hierarchy.

- For FMEA records, you can consider the category and/or part number of the system hierarchy item that the FMEA belongs to, as well as the description and/or keywords for the parent record in the FMEA hierarchy.

To access the settings window, click the **Smart Add Settings** icon.

To see the actual query criteria, point your mouse cursor over the text at the top of the Smart Add utility. Note that the query will always be evaluated from left to right. For example, "A and B or C or D" will be implemented as "((A and B) or C) or D".

As an example, the following query will provide a list of all unique failure descriptions in the database that match the system hierarchy item’s category and part number OR the parent function’s keywords OR the parent function’s description. (This picture shows XFMEA, but it works the same in RCM++ and RBI.)
Transfer Criteria to Import Existing Window

The Smart Add utility copies only the item name or the FMEA record description. If you prefer to copy the entire record and/or have the option to import dependent records and attachments, click the Import Existing icon at the bottom of the window.

This will transfer the Smart Add utility’s query criteria to the Import Existing window.

Import Existing (Items or FMEA Records)

The Import Existing windows make it easy to find and import existing system hierarchy items or FMEA records. You can use up to four search terms, with the Boolean operators AND and OR.

For system hierarchy items, choose System Hierarchy > Add Items > Import > Import Items (Query) (or choose Items (Query) in the Import Wizard).
For FMEA records, choose the command for the desired record type. For example, **FMEA > Functions > Import Functions**.

Tip: When using this feature from within the new Smart Add utilities it will be pre-populated with the same query criteria.

Using the Utility
Regardless of the record type, all five of these utilities function in a similar manner.

1. Use the **Repository Location** area to choose where you wish to search. This can be:
 - Only the current project.
 - All projects in the current repository.
 - All projects in another repository.

2. Use the **Query Criteria** area to specify the keywords and/or phrases that you want to consider in the search. You can define up to four search terms, with the Boolean operators AND and OR. Refer to **Query Criteria** below for more information.

3. Click **Search** to display a list of records that meet your criteria. Note that this will only consider projects that have the same FMEA structure as the current project, and will return only records that are eligible for import.

4. Use the check boxes to choose which records you want to import.

5. Use the options at the bottom of the window to specify additional preferences. Specifically:
 - If you are importing items, specify which level in the system hierarchy the new items will be imported to:
 - **As system** pastes to the top level.
 - **As same level** pastes to the same level as the item that is currently selected.
 - **As next level** pastes to the level below the item that is currently selected.

 Also specify whether you want to import the sub-items and analysis data associated with the selected items:
 - **Include lower level items** imports any sub-items associated with the selected items.
• **Include analyses** imports any associated FMEAs, control plans, etc. associated with the selected items. If this check box is not selected, only the item properties, attachments and diagrams will be imported.

• If you are importing FMEA records, specify whether to include the dependent records. For example, if you are importing functions, you can import only the functions, or you can import the functions and their related failures, effects, causes, etc.

• By default, dependent records will be imported. If you want to import only the individual records, select the **Import without dependents** check box.

6. Click **OK** to copy the data.

Query Criteria

You can use the four fields in the **Query Criteria** area to limit the search by up to four keywords or phrases. Note that these drop-down lists use the *property names* (i.e., the basic name for the field, which cannot be changed) and not the *display names* (i.e., the names that can be customized for each project).

![Query Criteria Table]

To match, the record must contain the search term anywhere within the field.

• **AND** searches for the records that match both requirements.

• **OR** searches for the records that match either requirement.

Note that the query will always be evaluated from left to right. For example, "A and B or C or D" will be implemented as "((A and B) or C) or D".

Import Existing Items (Browse Method)

You can use the Import Existing Items (Browse) window to import selected items from the system hierarchy and/or selected records from an existing FMEA.

For system hierarchy items, choose **System Hierarchy > Add Items > Import > Import Items (Browse)** (or choose **Items (Browse)** in the Import Wizard).
To use the Import Existing Items (Browse) window, do the following:

- Use the Select Repository area to select the database you wish to import from.
- Use the Projects area to select one of the projects in the database.

Note: This utility will display only projects that have the same FMEA structure as the project that is currently open. The FMEA structure determines how the effect and cause records will be displayed in the FMEA hierarchy, and it is set via the Project Properties window in XFMEA/RCM++/RBI.

- Use the options at the bottom of the window to select what will be imported, and then select the specific records you want to import:

 - **Import selected items and all functions:** You can select one or more items from the System Hierarchy area. The selected items will be imported along with all of their associated FMEA data.

 - **Import item and selected functions:** You can select only one item from the System Hierarchy area and then use the FMEA Hierarchy area to select which of that item's FMEA records you wish to import. Both the item and the selected FMEA records will be imported.

 - **Import selected FMEA records only:** This is the same as the previous option except that the item will not be imported. Instead, the selected FMEA records will be imported to the item that is currently selected in the project.

- Click **Import** to copy the data.

Tip: If the Part Number, Reference Number and/or FMEA Document Number columns are displayed in the system hierarchy, these columns will also be displayed in the System Hierarchy area in this window.

Importing from Lambda Predict to XFMEA/RCM++/RBI

Although the system hierarchy that you work with in Lambda Predict is independent from the system hierarchy that you work with in XFMEA/RCM++/RBI, the Synthesis Platform makes it easy to import items from a prediction folio into a hierarchy that will be used for FMEA, RCM or RBI analysis. The original system configuration in the prediction folio will remain unchanged, and new (independent) records will be created in XFMEA/RCM++/RBI.

To use this feature, open the project in XFMEA, RCM++ or RBI and choose **System Hierarchy > Add Items > Import > Import Lambda Predict Items.**
The left side of the window displays all of the prediction folios that have been created in the current project using Lambda Predict. The right side of the window displays the system hierarchy from the prediction folio that is currently selected. Use the check boxes to select which items will be imported.

Any item properties in Lambda Predict that have an equivalent field in XFMEA/RCM++/RBI analyses (such as Part Number, Supplier, Item Description, etc.) will be imported.

There are two additional options:

Create URDs from published prediction models

The Synthesis Platform makes it possible to publish any failure rate calculated in a Lambda Predict prediction folio as a model resource that may be used in other ReliaSoft applications. (For details, see Publishing Models from Failure Rate Predictions in the Lambda Predict documentation.)

If you are importing prediction items that have been used to publish models and you wish to use these published models to automatically define the reliability policies for the new items that will be created in XFMEA/RCM++/RBI, select the Create URD from published prediction models check box.

As an example, the following picture shows the reliability policy for an item imported from a MIL-217 prediction.

<table>
<thead>
<tr>
<th>Reliability Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Define at this level</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>URD</th>
</tr>
</thead>
<tbody>
<tr>
<td>System- MIL217</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>LP_System: MIL217 [EX1 (1.757E-05)]</td>
</tr>
</tbody>
</table>

Create FMEA functions from the 'Function Description' field

If you are importing prediction items that have text in the "Function Description" field of the Lambda Predict item properties and you wish to use this text to automatically create the first FMEA functions for the new items that will be created in XFMEA/RCM++/RBI, select the Create FMEA functions from 'Function Description' field check box.
As an example, the following picture shows the function description for an item in Lambda Predict. This can be used to create the first function in the FMEA for the new item that is imported to the XFMEA/RCM++/RBI system hierarchy.

Importing MPC Systems Into XFMEA, RCM++ or RBI

Although the system hierarchy and F-F-E-C that you create in MPC for an aircraft systems and powerplant analysis has many similarities with the FMEA and RCM analyses that you can perform in XFMEA, RCM++ or RBI, some key differences are that:

- The analysis in MPC is designed specifically for the needs of the aircraft industry and is subject to certain logic constraints and restrictions imposed by the MSG-3 guidelines.
- XFMEA/RCM++/RBI provide more flexibility and more options for data-driven system analyses (such as the ability to use failure mode and/or component data to estimate the reliability/availability for higher-level assemblies and systems).

Therefore, each application must store and manage the analysis data independently. In other words, if you are accessing the same project with both applications, the system hierarchy that you work with in MPC is independent from the system hierarchy that you work with in XFMEA/RCM++/RBI.

However, it is easy to copy any system from the MPC systems and powerplant analysis into the more flexible XFMEA/RCM++/RBI system hierarchy in the same project. The original system
hierarchy in MPC will remain unchanged, and new (independent) records will be created in XFMEA/RCM++/RBI.

To use this feature, open the project in XFMEA, RCM++ or RBI and choose **System Hierarchy > Add Items > Import > Import MPC Systems.**

The window displays a list of the systems, if any, that have been defined in the MPC system hierarchy for the current project. Use the check boxes to select the MPC systems you wish to copy and click **OK.**

This process will automatically convert all of the relevant analysis information into the applicable feature(s) in XFMEA/RCM++/RBI.
If you are working with RCM++/RBI and you wish to see the MSI selection questions, failure effect categorization and task selection responses for the systems you import from MPC, make sure that the configurable project properties in RCM++/RBI are consistent with the MSG-3 guidelines. The easiest way to do this is to open the Project Properties in RCM++/RBI (Project > Management > Edit Project Properties) and check to make sure that the configurable settings are based on the MSG-3 profile from the default library installed with the software.

Import or Sync from XFRACAS
If your organization uses ReliaSoft’s XFRACAS for incident/failure reporting and team-based problem resolution, you can import or synchronize data with related analyses in XFMEA, RCM++ or RBI. The available options depend on the database you are working with.

Enterprise Databases – In an enterprise database that has an XFRACAS website, the icon in the XFRACAS Associated Hierarchy Item column in the System Hierarchy (if displayed on your computer) indicates that the desktop item is “associated” with a template part in XFRACAS.
When an association exists, you will be able to synchronize the following:

- Certain item properties:
 - Item name
 - Part number (if enabled in the desktop project)
 - Version (if enabled in the desktop project)
 - Item category (if there is a corresponding detail field in XFRACAS)
 - Failure and cause descriptions (called "failure mode" and "root cause" in XFRACAS)

You can also view the number of Observed Occurrences reported in XFRACAS for a particular part and failure mode.

The following actions require the "Synthesis – Read Failure Mode Data" permission in XFRACAS:

- **Import XFRACAS Items** adds new items in the desktop system hierarchy that are associated to the XFRACAS parts they were copied from.
- **Associate Item** creates association(s) for a desktop item or branch that already exists.
- **Remove Association** breaks the association(s) for an item or branch.
- **Synchronize Item** updates part names, dependents and/or failures and causes in the desktop to reflect any changes to associated records in XFRACAS.
- **Import Failures** adds or updates failures and causes in the FMEA based on failure modes defined for the XFRACAS template part.

Tip: For users with the required admin permission in XFRACAS, the Template page provides similar options to a) import desktop items, b) remove the association to a desktop item and/or c) update part names, dependents or failure modes to reflect any changes to associated desktop items. In other words, users in either application can choose to copy more recent data from the other. If you will be importing desktop items into XFRACAS and plan to be creating serialized incidents using those items, you must make sure that the Part Number field is enabled and populated for each item.

Standard Databases – If the file is connected to an enterprise database that has XFRACAS data (see XFRACAS Connection), the Import XFRACAS Items or Import Failures commands will copy data from XFRACAS without creating an association.

Observed Occurrences
For desktop items that are associated with an XFRACAS template part, the Observed Occurrences column in the FMEA Hierarchy (if displayed on your computer) shows the number of occurrences reported in XFRACAS for a particular part and failure mode.
Chapter 6: System Hierarchy

Depending on your selection on the FMEA Hierarchy page of the Application Setup, the quantity can be calculated based on one of the following XFRACAS record types:

- **Incidents** – the quantity of XFRACAS incidents that match the "responsible part" and "failure mode."

- **Problems** – the quantity of XFRACAS incidents that are assigned to an XFRACAS problem that matches the "part category" and "failure mode." This may be useful if the XFRACAS entity is configured to assign the failure mode at the problem level rather than for each individual incident. If a problem matches the part and failure mode but does not have any assigned incidents, it will not be counted.

- **Failure Analyses** – the quantity of XFRACAS failure analysis reports that match the repaired/replaced part ("incoming part") and the "failure mode."

Tip: Although failure modes can be assigned in XFRACAS as a combination of failure mode and root cause, the quantity of observed occurrences is based only on the failure mode. For example, "Failure Mode1 > Root Cause1" and "Failure Mode1 > Root Cause2" will both be counted as occurrences of "Failure Mode1." If both of those root causes are assigned to the same incident or failure analysis report, it will be counted as 2 occurrences of the failure mode. If both root causes are assigned to a problem that has 5 incidents, it will be counted as 10 occurrences.

Import XFRACAS Items
Choose **System Hierarchy > XFRACAS > XFRACAS > Import XFRACAS Items.**

- **Select Entity** – select from a list of entities that you have permission to import from in XFRACAS.

- **Select Parts** – select from a list of template parts in the entity you selected.

- An 📝 icon indicates that failure modes have been defined for the part in XFRACAS. Select the **Import associated failures and causes** check box if you want to import these "failure modes" and "root causes" to start new FMEA(s) for the new item(s).

In an enterprise database, the new desktop items will be associated with the XFRACAS template parts they were copied from. In a standard database, the data will be copied without creating an association.

Associate Item
Select an item in the desktop system hierarchy that a) is not associated with an XFRACAS part and b) is not the dependent of an item that is associated. Then choose **System Hierarchy > XFRACAS > Associate Item.**
You may be prompted to select an XFRACAS entity and template part. If you also want to copy any failure modes that don’t already exist in the FMEA, select the Import associated failures and causes check box. Note that:

- If the XFRACAS part has different item properties (i.e., name, part number, version and item category), this will update the properties of the desktop item.
- If the XFRACAS part has dependents, this will also create associations for any desktop item dependents that have the same names. If the names of the dependents do not match, this will create new desktop items that are associated to the XFRACAS parts they were copied from.

Remove Association
Select an item in the desktop system hierarchy that a) is associated with an XFRACAS part and b) is not the dependent of an item that is associated. Then choose System Hierarchy > XFRACAS > Remove Association.

If the item has dependents that are also associated, you will be prompted to select:

- Remove association from current item only
- Remove association from current item and its dependents

Synchronize Item
Select an item in the desktop hierarchy that is associated with an XFRACAS part and choose System Hierarchy > XFRACAS > Synchronize Item.

You can choose which updates will be performed if applicable for the current data.

- Current item changes the item properties (i.e., name, part number, version and item category) of the desktop item to match the current properties of the associated XFRACAS part.
- Current item's failures and causes changes the descriptions for any failures and causes in the current item's FMEA that were previously synchronized with XFRACAS failure modes. This option will not be available if the FMEA has an active change log with no open revision.
- Sub-items changes the properties of the desktop item’s dependents to match the current properties of the associated XFRACAS parts. If there are any unassociated
dependents of the desktop item that have the same names as dependents of the XFRACAS part, this will create the associations.

- **Sub-items' failures and causes** changes the descriptions for any failures and causes in the dependents' FMEAs that were previously synchronized with XFRACAS failure modes. This option will not be available if any dependent's FMEA has an active change log with no open revision.

You can choose to update only records that are already associated (**Only update existing**), or to also add and associate new records (**Update existing and add new**).

Import Failures

Select an item and choose **System Hierarchy > XFRACAS > XFRACAS > Import Failures**.

![Icon](http://xfmea.reliasoft.com)

In the first window, select an entity and a part that has failure modes defined in XFRACAS (indicated with an ![icon] icon) and click **OK**.

In the second window, you can compare the failure modes already defined in the existing FMEA (on the left) to the failure modes that have been defined for the part in XFRACAS (on the right), and select which records you want to import or update.

- **Pink** indicates that the failure/cause does not exist in the FMEA; select the check box if you want to import it.

- **Yellow** indicates that the failure/cause has been previously imported but the description has changed in XFRACAS; select the check box if you want to update the desktop description.

- **Green** indicates that the failure/cause already exists; the check box is disabled.

For failure modes that have not been previously imported, you can use the Associated Function column to either create a new function or select an existing function. When applicable, effects will be created with a default description ("<Undefined>") that you can modify after the import.
Chapter 7: FMEA Analysis

Failure Modes and Effects Analysis (FMEA) and Failure Modes, Effects and Criticality Analysis (FMECA) are methodologies designed to identify potential failure modes for a product or process, to assess the risk associated with those failure modes, to rank the issues in terms of importance and to identify and carry out corrective actions to address the most serious concerns.

Tip: For information about how to use the FMEA tab to perform reliability centered maintenance analysis (RCM) in RCM++ or RBI, see RCM Analysis.

- A general overview of typical FMEA analysis methods.
- Choosing an FMEA structure (Grouped Effects and Causes, Effects Before Causes or Causes Before Effects).
- Creating, copying or deleting a local FMEA.
- Working with linked FMEAs.
- The five tabs in the FMEA analysis panel: Header, Hierarchy, Worksheet, Alpha/Beta and Filtered.
- Using the record properties windows to add or edit FMEA records (function, failure, effects, etc.).
- Calculating displaying RPNs and related metrics (RPN, SxO, QCPN, etc.).
- A choice of three criticality analysis methods: Qualitative, Quantitative in the FMRA or MIL-1629A.
- Tools that utilize the data from an FMEA: Failure Cause Matrix, Risk Matrices, FMEA Statistics Window, Diagnostic Logic Assistant, Transfer Projects and Ratings Update.

FMEA Background

Failure Mode and Effects Analysis (FMEA) is a methodology designed to:

- Identify and fully understand potential failure modes for a product or process.
- Assess the risk associated with those failure modes and prioritize issues for corrective action.
Chapter 7: FMEA Analysis

• Identify and carry out corrective actions to address the most serious concerns.

This topic provides a brief, general overview of common principles and applications for Failure Mode and Effects Analysis (FMEA) and related analyses, such as Criticality Analysis (FMECA), design verification plans (DVP&Rs), process flow diagrams (PFDs), process control plans (PCPs) and design reviews based on failure mode (DRBFM).

FMEA Applications and Benefits

Usually, the primary objective of an FMEA is to identify and mitigate risks in a product or process in order to improve the design. In addition, since the FMEA provides a central location for reliability-related information for the product or process, it can be used as a learning tool for new engineers, a resource when considering modifications to the design or developing a similar design, a resource for service personnel to identify possible corrective actions when problems occur in the field, and so on.

FMEA is often performed in conjunction with Design for Reliability (DFR), Design for Six Sigma (DFSS), ISO quality programs and other initiatives. It also may be performed to satisfy a customer or regulatory requirement.

When performed effectively, an FMEA can contribute to improved designs for products and processes, resulting in higher reliability, better quality, increased safety, enhanced customer satisfaction and reduced costs.

When to Perform an FMEA

Many references cite three situations in which an FMEA commonly may be performed:

• Creating a new design or process
• Modifying an existing design or process
• Using an existing design or process in a new environment
The FMEA should be performed during the "window of opportunity" when it can most effectively impact the product or process design. In general, it should be an "up-front" activity, rather than "after-the-fact." Citing the "factor of 10 rule," most practitioners agree that it is more cost effective to correct reliability issues early in the process.

Basic Analysis Procedure for FMEA
This section introduces the basic analysis procedure for FMEAs. Of course, the specific implementation approach will vary among different organizations, practitioners and applications.

Determining the Scope
Before you can begin the FMEA, you must decide what you are going to analyze. Determining the scope of the analysis is an extremely important step because it helps to identify which FMEA(s) will be performed and then, for each particular FMEA, the boundaries for what issues will be considered and the approach that the analysts will take during the analysis. The determination of the scope may be based on a variety of factors, including (but probably not limited to) timing, complexity and characteristics of the design, risk/importance, available budget, customer requirements, etc. The tools available for determining the scope will vary depending on whether you are performing a Design FMEA or a process FMEA.

If you are performing a Design FMEA, you may wish to start by defining the system configuration. Early in the design process, you may wish to perform a high-level FMEA on the entire system. As the design matures, it will be possible to perform more detailed FMEAs on
individual assemblies or components. A change point analysis or preliminary risk assessment may help to focus the analysis effort on the aspects of the design that have the greatest risk and/or have the greatest potential benefit from design improvements. Factors may include:

- New technology or new application of existing technology
- Potential for safety or regulatory issues
- History of significant field problems
- Mission-critical applications
- Supplier capability
- Etc.

Tip: There are many different ways that the preliminary risk assessment can be performed. The **Risk Discovery Analysis** feature supports two possible methods: one based on a series of yes/no questions and another based on rating scales.

For each individual FMEA that you will perform, it may also be useful to define what components and interactions will be included in the analysis. A boundary diagram (or block diagram) shows the physical and logical relationships between the components in the system or assembly. It can identify relationships and dependencies between components as well as critical inputs and outputs.

Tip: You can use the **Attachments** feature to provide easy access to boundary/block diagrams that have been created with other software tools (such as Visio or PowerPoint). Alternatively, you can use the **FMEA Block Diagram** feature to create the diagram and link it to the rest of the analysis.

If you are performing a **Process FMEA**, you may start by identifying the steps in the process and the operations that must be performed at each step. In most cases, the scope of the PFMEA will be the entire process. However, in some situations, the organization may choose to exclude low-risk portions of the process.

The process flow diagram (PFD) provides a logical, visual depiction of the process that is being analyzed. The diagram typically uses specific symbols to describe different types of activities (e.g., operation, decision, inspection, storage, etc.). It also may include an identification of the product or process characteristics that need to be monitored at each step (e.g., temperature of the oven, thickness of the wax, diameter of the hole, etc.) and the possible sources of variation (e.g., incorrect setup, contamination, machine maintenance, etc.). Such diagrams can be useful to determine the steps in the process that will be analyzed in the PFMEA and to determine the functions and critical characteristics that will be considered in the analysis.
Tip: You can use the Attachments feature to provide easy access to process flow diagrams that have been created with other software tools (such as Excel, Visio or PowerPoint). Alternatively, you can use the process flow diagram feature to create the diagram and link it to the rest of the analysis.

Assemble the Team
One of the first steps in performing an FMEA is to assemble a cross-functional team of knowledgeable individuals to perform the analysis. The team should be large enough to make sure that relevant viewpoints and knowledge are represented but not too large. If the team is too large, it will be difficult to have productive discussions during meetings and it will be a waste of an extremely valuable resource – the time and patience of your organization’s subject matter experts. Team members should be familiar with the FMEA analysis process, as it is practiced by the organization. In addition, a skilled facilitator can help to make sure that team meeting time is used effectively and the analysis is performed correctly.

The composition of the team at any particular meeting may vary depending on the focus of the discussion. This may include representatives from Design, Analysis/Testing, Materials, Suppliers/OEM, Manufacturing/Assembly, Quality/Reliability, System Integration, Field Service, Maintenance, etc.

Tip: You can use the analysis plan feature to document the members of the analysis team for each FMEA.

Establish the Ground Rules and Assumptions
Before beginning the analysis, the team should discuss (and probably document) the underlying assumptions of the analysis and specific ground rules for how the analysis will be performed. Some of these guidelines may be determined already by the organization’s standard practices for FMEA and some may be specific to the particular analysis project. Some of the questions that might be considered include (but are not limited to) the following:

- What will be considered a failure?
- What are the assumed environmental and operating conditions?
- Will the analysis consider failures that result from abuse?
- What is the budget and timescale for the project and what are the project deliverables?
- What other activities within the organization will the team need to interact with and have the necessary communications been established?
- When and where will the team meet?
- Will there be a facilitator?
Chapter 7: FMEA Analysis

- How will decisions be made within the team and how will conflicts be resolved?
- What will be the format of the analysis worksheet and what rating scales will be used?
- How will the organization track the completion of recommended actions?
- And so on...

This list is provided as an example. Other issues may be applicable for your particular situation.

Tip: You can use the analysis plan feature to document the ground rules and assumptions for each FMEA.

Gather and Review Information (Pre-Work)
Taking the time to gather and review available information before the analysis meetings begin can help to make the most efficient use of team meeting time and achieve an analysis that is thorough and accurate. The appropriate resources will vary depending on the type of FMEA that you are performing and the specific product or process that you are analyzing. This may include:

- Bill of materials and/or process flow diagrams
- Customer requirements, business requirements, functional specs, technical specs
- Design schematics, drawings
- Feasibility studies or trade-off analyses
- Information from similar designs, including field data, FMEAs, etc.
- Documentation or contracts from suppliers
- Applicable government or safety regulations

This is an incomplete list that is provided as an example. Other resources may be applicable for your particular situation.

Tip: You can use the Attachments feature to provide easy access to supporting documentation that may be relevant to a particular analysis.
Identify the Functions, Failure Modes, Effects, Causes and Controls

For each item or step that will be analyzed, the analysis team will use engineering and business judgment to identify the functions, failure modes, effects, causes and controls that will be considered in the analysis.

- **Function**: An intended function or purpose, as described by a required standard of performance.
- **Failure Mode**: The inability to perform a function within the specified limits.
- **Effect**: The anticipated consequences if the failure mode occurs.
- **Cause**: The specific reason for the failure. This may be found by asking "why" until the basic mechanism that brings about the failure is determined. In many cases, there are several levels of detail that could be used to describe the cause of failure. In general, it is best to choose the level at which the organization is able to control the condition and/or take corrective action.
- **Current Control**: A method or action that is planned or currently in place to reduce or eliminate the risk. In many cases, the current controls are classified as "Prevention" or "Detection," where:
 - **Prevention Controls** are intended to reduce the likelihood that the problem will occur.
 - **Detection Controls** are intended to increase the likelihood that the problem will be detected before it reaches the end user.

Tip: In many situations, an existing document may contain information that would be useful to import directly into your FMEA analysis (such as a requirements document, a process flow diagram worksheet, an FMEA from a similar product/process or a predefined "phrase set"). The software provides numerous features to help you find and import this information. These features are described in Importing, Exporting and Data Conversion.

Evaluate Risk for Potential Failures

A typical FMEA incorporates some method to identify and evaluate the risk associated with the potential problems identified through the analysis. Risk Priority Numbers (RPNs) and criticality analysis are the most commonly used methods for this.

To use the **Risk Priority Number (RPN)** method, the analysis team must:

- Rate the severity of each effect of failure.
- Rate the likelihood of occurrence for each cause of failure.
Chapter 7: FMEA Analysis

- Rate the likelihood of detection for each cause of failure.
- Calculate the RPN by obtaining the product of the three ratings:
 \[\text{RPN} = \text{Severity} \times \text{Occurrence} \times \text{Detection} \]

To use **Qualitative Criticality Analysis**, the analysis team must a) rate the severity of the potential effects of failure and b) rate the likelihood of occurrence of each potential failure mode. It is then possible to compare failure modes, via a Criticality Matrix, which identifies severity on the horizontal axis and occurrence on the vertical axis.

To use **Quantitative Criticality Analysis**, the analysis team considers the reliability/unreliability for each item at a given operating time and identifies the portion of the item's unreliability that can be attributed to each potential failure mode. For each failure mode, they also rate the probability that it will result in system failure. The team uses these factors to calculate the criticality for each potential failure and for each item.

Tip: The software provides an extensive array of features to support risk assessment based on RPN and related metrics. (See **Risk Priority Numbers (RPNs)**.)

Quantitative and qualitative criticality analysis patterned after the concepts in MIL-STD-1629A are also supported. (See **Criticality Analysis**.)

Identify and Assign Corrective Action(s)

The next step is to identify, assign and track the completion of recommended actions that will help to reduce the risk associated with potential failures. In some situations, it may be possible to take an action that will reduce the severity of the effect when the failure occurs but in most cases, the recommended actions will be designed to either reduce the likelihood that the failure will occur or to increase the likelihood that it will be detected and controlled before the problem reaches the end user. When selecting the actions to recommend, the team may consider:

- Existing controls.
- The relative importance (prioritization) of the issue.
- The cost and potential effectiveness of the corrective action.

Tip: One of the most costly mistakes among FMEA practitioners is the failure to follow up and track the completion of recommended actions. The software provides multiple features that will help to ensure that your organization implements the actions suggested by the analysis in order to achieve the benefits that come from improving the design and reducing the risk. (See **Actions**.)
Perform Corrective Actions and Re-evaluate Risk
In many cases, it may be appropriate to revise the risk assessment after the recommended actions have been completed (or based on the results that the analysis team expects to achieve when they are completed). This will provide an indication of the effectiveness of corrective actions and the benefits achieved by performing the FMEA. To use revised RPNs for this purpose, the analysis team will:

- Assign revised severity, occurrence and detection ratings.
- Calculate a revised RPN.
- Compare the initial and revised RPNs.

The % reduction in RPN can be calculated with the following equation:

\[
\% \text{ Reduction in } RPN = \frac{RPN_i - RPN_f}{RPN_i}
\]

Distribute, Review and Update Analysis Results
FMEAs are typically reported in a tabular (worksheet) format. The style varies depending on the standard/guidelines and the terminology used during the analysis. In addition to the worksheet, other tabular reports can be useful to support decision-making and communicate the results of the analysis, such as Assigned Actions, Causes Ranked By RPN, etc. Pareto (bar), pie and matrix charts also can help to visualize analysis results.

An FMEA is most effective when it is a "living" document. When completed, the analysis should be distributed as appropriate throughout the organization so that it can be used as a resource for other activities. Your organization invested too much effort and knowledge to bury the document in the file cabinet!

Tip: You can use the Reports window and the Query Utility to create the reports to distribute the results of your FMEAs. In addition, the Plot Viewer provides a variety of charts to present the information graphically.

In general, the FMEA should be reviewed and updated:

- When there is a change to the design.
- When other factors change (such as the operating conditions or the intended application).
- When new information from the field is available.
Chapter 7: FMEA Analysis

Tip: There are several ways to manage revisions to an existing analysis, including a formal Change Log that can automatically record all revisions to an existing analysis and facilitate a process for electronic approval tracking.

After the completion of an FMEA project, it can also be a good idea to have an expert in the FMEA methodology evaluate (audit) the FMEA. In addition, you may wish to solicit feedback from the team members who participated in the analysis in order to identify issues that should be addressed in future analysis projects. A suitable checklist could be obtained from the FMEA literature or your organization may choose to develop its own audit requirements.

Tip: You can use the analysis plan feature to document the results of the quality survey for each FMEA.

Integration with Other Analyses (Including APQP)

Within the automotive industry and some other industries, practitioners have integrated FMEA with other quality planning efforts, as shown in the following diagram and described next.

DFMEA and DVP&R

The design verification plan and report (DVP&R) is a worksheet that is used to track the progress of design verification tests. The lessons learned from the DFMEA can be a valuable input to the DVP&R (and vice-versa). For example: if the Design FMEA indicates that Part X will fail if the incorrect wax thickness is applied for protection, then it may be appropriate to add a test to the design verification plan for determining the optimum wax thickness to be applied.
Tip: The DVP&R Analysis feature provides a configurable worksheet for design verification planning and reporting, including the ability to synchronize the DVP&R with information transferred from an existing FMEA.

DFMEA to PFMEA
The lessons learned from a Design FMEA also can be a valuable input to the process FMEA. Analysts may wish to transfer relevant information between analyses, where:

- Causes in the DFMEA can become failures in the PFMEA.
- Failures in the DFMEA can become effects in the PFMEA.

For example, if the Design FMEA indicates that Part X will leak if the hole diameter is too wide then the Design FMEA will consider whether the specified hole diameter is appropriate while the process FMEA will consider aspects of the manufacturing process that may cause the hole diameter to vary from the specification.

- DFMEA: Failure = Leak; Cause = Hole too wide.
- PFMEA: Failure = Hole too wide; Effect = Leak.
 - Causes = ?
 - Controls = ?
 - Actions = ?

Tip: The Transfer Projects feature allows you to transfer selected data from an existing Design FMEA to a new process FMEA.

Process Flow Diagram, Process FMEA and Process Control Plan
As described above, the process flow diagram (PFD) provides a logical, visual depiction of the process that is being analyzed and such diagrams can be useful to determine the steps in the process and the critical characteristics that will be analyzed in the PFMEA.

In addition, the process control plan (PCP) describes the actions that are required at each phase of the process to ensure that all process outputs will be in a state of control. The process flow diagram and the lessons learned from a process FMEA can be a valuable input to the process control plan. The linkages between these documents might be applied as follows:

- **Operation # and Description** flow from the Process Flow Diagram to the PFMEA to the control plan.
- **Significant Product Characteristics (and Classifications)** contribute to the definition of failure modes and/or causes in the PFMEA. They also flow to the control plan.
Chapter 7: FMEA Analysis

- **Current Controls** flow from the PFMEA to the control plan.

Tip: The [PFD Worksheet](http://xfmea.reliasoft.com) feature provides integration with both the Process FMEA and the [Process Control Plan](http://xfmea.reliasoft.com) worksheet.

Design Review Based on Failure Mode (DRBFM)

DRBFM is a methodology used to evaluate proposed changes to an existing design, using a worksheet that is usually similar to, but not identical to, an FMEA.

Although some organizations may choose to perform DRBFM instead of FMEA, most practitioners start with a baseline FMEA and then use the DRBFM worksheet for evaluating the risks that might be introduced by changes to the original design.

Tip: The [DRBFM Analysis](http://xfmea.reliasoft.com) feature provides a configurable worksheet for design review based on failure mode, including the option to select functions that will be transferred from an existing FMEA and the ability to update the FMEA with new information from the DRBFM.

References

• Society of Automotive Engineers (SAE), Aerospace Recommended Practice ARP5580, "Recommended Failure Modes and Effects Analysis (FMEA) Practices for Non-Automobile Applications," June 2000.

Choosing the FMEA Structure

On the General page of the [Project Properties window](#), the FMEA Structure field determines how the effect and cause records will be displayed in the hierarchy for all FMEAs in the project. You have three options:

- **Grouped Effects and Causes** (commonly used for FMEA)
- **Effects Before Causes** (can be used for FMEA or RCM)
- **Causes Before Effects** (sometimes used for RCM)

If you want to copy/paste or import/export data between projects, the FMEA structure must be the same. Also note that some data conversion may need to be applied if you [change the FMEA structure for an existing project](#).

Grouped Effects and Causes

The "Grouped Effects and Causes" structure is often used for FMEA if you want to display causes and effects at the same level of the hierarchy under the failure mode that they are both associated with. This assumes that you will always define the failures such that any of the causes may result in any of the possible effects.
With this structure, the Grouped Effects window stores a separate description and severity rating for each effect. When using the RPN risk assessment method, the software will automatically choose the highest severity rating to calculate the RPN for all of the causes associated with that failure mode.

Effects Before Causes
The "Effects Before Causes" structure can be used for either FMEA or Reliability Centered Maintenance (RCM).
If the failures are defined such that any of the causes will result in any of the effects (which is typical for FMEA), you can define all of the effects together in the same record (using `CTRL+ENTER` to force linebreaks in the text box when needed), and then choose a single severity rating that you want to use to calculate the RPN for all of the causes.

Alternatively, if the failure mode is defined rather generally, such that specific causes may result in different effects, you can enter them separately as shown below. If you are calculating RPNs, the software can use different severity ratings for different causes.

Causes Before Effects

The "Causes Before Effects" structure, which is sometimes used for RCM analysis, assumes that functional failures will be defined rather generally and requires that there can be only one
Chapter 7: FMEA Analysis

effect record per cause. To describe multiple effects in the same record, use CTRL+ENTER to force linebreaks in the text box when needed.

Setting the Default FMEA Structure
Starting in Version 11, you have the option to either set a default FMEA structure for all new projects in a database or to require that a user choose a structure when a project is created.

For projects created in XFMEA/RCM++/RBI, the software will either prompt you to select the structure when you create the project, or use the default that has been defined for the database by an administrator. (See Repository Settings window.)

A project created in MPC will always use the "Effects Before Causes" structure to ensure that the hierarchies will be compatible with XFMEA, RCM++ or RBI. This will happen even if a different FMEA structure has been selected for the database. A project created in any other ReliaSoft desktop application will either use the default for the database (if that has been defined) or the structure for the last database created.

Changing the FMEA Structure
If you change the FMEA structure for an existing project, some data conversion may need to be applied. Specifically:

From Grouped Causes and Effects to:

- **Effects Before Causes**: The highest severity rating from the group will be used for each new effect.
- **Causes Before Effects**: Direct conversion is not possible. You must first convert to "Effects Before Causes."

From Effects Before Causes to:

- **Grouped Causes and Effects**: All effects associated with a given failure are merged into one grouped effect.
- **Causes Before Effects**: Each effect record is duplicated under each cause record.
From **Causes Before Effects** to:

- **Effects Before Causes**: All records are converted without adjustment.
- **Grouped Causes and Effects**: Direct conversion is not possible. You must first convert to "Effects Before Causes."

Local FMEAs
This topic discusses basic capabilities for creating and working with an FMEA that is directly associated with the current system hierarchy item (i.e., a **local FMEA**). If you want to link to an existing FMEA that has already been defined for another item, see [Linked FMEAs](#).

Add an FMEA
To add an FMEA for any item in the system hierarchy, select or right-click the item and choose **Analyses > Add FMEA**.

This adds the FMEA tab in the Analysis panel and prompts you to add the first function. If the FMEA column is **enabled in the system hierarchy**, the ![FMEA icon](image.png) shows that the item has an FMEA.

For more information about using the tabs at the bottom of the Analysis panel, see [FMEA Header](#), [FMEA Hierarchy](#), [FMEA Worksheet](#), [Alpha/Beta Ratios Worksheet](#) and [FMEA Filtered View](#). For information about working with the functions, failures, etc., see [FMEA Records](#).

Copy/Paste an FMEA
It is easy to copy/paste an entire FMEA (i.e., all functions and all of their dependent records) to another item, either in the same project or in a different project.
Chapter 7: FMEA Analysis

To copy an FMEA, right-click the item and choose Analyses > Copy Analysis.

To paste the FMEA, right-click a different item and choose Analyses > Paste Analysis.

(Both of these commands are also available when you right-click the tab at the top of the Analysis panel, and from Home > Clipboard on the ribbon.)

If the copied analysis is not eligible to be linked in the new location, the functions (et al) will be pasted as new records in the local FMEA for the item that you’re pasting to. If the destination item already has a local FMEA, the new records will be appended to the bottom of the list.

If the copied analysis is eligible to be linked in the new location (i.e., if it is associated with an item in the same project or in a reference project, and it is not already linked from the selected item), you can choose:

- **Paste as New** pastes the functions (et al) as new records in the item’s local FMEA.
- **Paste as Linked** creates a linked FMEA that gets updated automatically if the original analysis changes.

Cut/Copy and Paste Portions of an FMEA

You also have the option to cut/copy and paste portions of an FMEA (e.g., one selected function, two selected failures, etc.). If you are working in the FMEA hierarchy, you can use CTRL or SHIFT to select multiple records of the same type.

The cut/copy/paste commands are available when you select the record(s) in the FMEA and choose Home > Clipboard > [Cut, Copy, Paste, Paste Without Dependents], and when you right-click the record(s).

<table>
<thead>
<tr>
<th>Command</th>
<th>Key Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy</td>
<td>Ctrl+C</td>
</tr>
<tr>
<td>Paste</td>
<td>Ctrl+V</td>
</tr>
<tr>
<td>Paste Without Dependents</td>
<td>Ctrl+Shift+V</td>
</tr>
<tr>
<td>Cut</td>
<td>Ctrl+X</td>
</tr>
</tbody>
</table>

In this case, you can choose whether to include the dependents or just the top level record.
Delete an FMEA
To delete an entire FMEA, right-click the item and choose Analyses > Delete Analysis.

(This command is also available when you right-click the tab at the top of the Analysis panel, and from Home > Clipboard on the ribbon.)

Delete a Portion of an FMEA
To delete a portion of an FMEA, select the record or branch and press Delete or right-click and choose Delete.

You will always be asked to confirm before the records are deleted. If you want to be able to undo the action, make sure that Allow undo this operation is selected before you click Yes.

Linked FMEAs
You can use the same FMEA in more than one location in the database, if desired. For example, if you are using the same component in multiple different designs, you can create the FMEA in one location and link to the exact same analysis from other locations.

Any item in the system hierarchy can have one local FMEA and/or one or multiple linked FMEAs.

- **Local FMEA**: The functions, failures, etc. that are directly associated with the current item.

- **Linked FMEA**: Links to the exact same functions, failures, etc. that are associated with another item. A change in the source analysis will be reflected in all locations where it is linked. To be eligible for linking, an FMEA must be a) associated with another item in the current project or in a reference project and b) not already linked from the current item.

This topic focuses on the following special considerations associated with linked FMEAs. For information about FMEA features, see Local FMEAs. For information on how importing/exporting or checking out a project affects linked FMEAs, see Local, Global and Reference Resources.
Linked Analyses in the FMEA Hierarchy

If an FMEA is linked, the icons in the FMEA hierarchy will include a link symbol and you won’t be able to edit the records directly (i.e., the OK button in the record properties window will be disabled).

If an item has more than one FMEA, the hierarchy will use an additional top-level heading to identify each analysis (i.e., "Local Analysis" or "Linked Analysis - Source: <ITEM NAME>"). To change the order in which the analyses are displayed, drag and drop the heading into the desired position.

If a local FMEA is being linked from at least one other location, then the FMEA hierarchy states how many other locations the FMEA is used in.
Linked Analysis Commands
There are two ways to access the commands for a linked or source analysis (Copy Analysis, Remove Link, Go to Source Analysis, Show Locations Used, etc.):

- Right-click the analysis heading.
- Select any record in the analysis and right-click the FMEA tab.

Add Linked FMEA
To add a linked FMEA, select or right-click an item and choose Analyses > Add FMEA > Add Linked FMEA.

The Add Linked FMEA window allows you to select an existing analysis that is eligible to be linked from the current item. If desired, you can use the project and/or item filters to further limit the analyses you can choose from. When you find the FMEA you wish to link, select the row and click OK.

Paste as Linked
Alternatively, you can also use copy/paste to create a linked FMEA.

1. Copy the FMEA you want to link to (the source analysis). To be eligible for linking, this must be a local FMEA in the same project or a reference project that is not already linked from the item you will be pasting to.
2. Select or right-click the item you want to link from and chooseAnalyses > Paste Analysis.

3. If the copied FMEA is eligible for linking, the following options will be displayed:

Choose Paste as Linked and click OK.

Go to Source Analysis
To view/edit the source analysis for a linked FMEA, right-click the FMEA tab or the Linked Analysis heading and choose Go to Source Analysis.

Show Locations Used
For any source analysis (i.e., local FMEA that is linked in at least one other location), the Show Locations Used window provides a list of all locations where the FMEA is currently linked. To access this window, double-click the Local Analysis heading or right-click the heading and choose Show Locations Used.
To go to one of the linked locations, select it in the list and click the **Go To** button.

![Image of Go To button](image)

Delete Analysis
To remove a linked analysis from an item, right-click the FMEA tab or the analysis heading and choose **Delete Analysis**.

The original source analysis will remain unchanged.

Remove Link
To convert a linked analysis to a local analysis, right-click the FMEA tab or the analysis heading and choose **Remove Link**.

This will break the link to the original analysis and replace it with new unique records that are directly associated with the current item. If the item already has a local FMEA, the new records will be appended to the end.

Remove External FMEAs
If you need to break the links to all FMEAs in the current project that were linked from a reference project (e.g., because you are finalizing the project and you do not want the FMEAs to continue to be updated automatically when there is a change in the external source), choose **System Hierarchy > Tools > Remove External FMEAs**.

The links will be replaced by new unique records in the local FMEAs.
FMEA Analysis Tab

FMEA Header
The Header tab for an FMEA contains the information that will be displayed at the top of any FMEA spreadsheet reports that you generate from the Reports window.

FMEA Header Properties
The fields that are enabled in the interface and the options available in configurable drop-down lists will depend on the interface style for the current project. This may include:

- **FMEA Type**: The type of FMEA. This field is a configurable drop-down list.
- **Document Number**: A unique document identifier.
- **Key Date**: The date when the FMEA should be completed.
- **FMEA Date (Orig.)** and **FMEA Date (Rev.)**: The dates when the FMEA was first completed and last revised.
- **Prepared By**: The person who prepared the document.
- **Primary Approval** and **Approval Date**: The person who gave primary approval for the document, and the date of approval.
- **Product**: The product that the FMEA applies to.
- **Model Year(s)/Program(s)**: The model year and/or program identifier that the FMEA applies to.
- **Mission**: The mission that the item is intended to perform.
• **Release Date**: The date when the design will be released.

• **Responsibility**: The person who is responsible for the design that is being analyzed.

• **Core Team**: The primary team of people who worked on the analysis. If the item has an [Analysis Plan](#), you can click to import the display names of the analysis plan team members (up to 255 characters).

• **Support Team** and **Others Affected**: The individuals and teams involved with the support and/or who are involved with or affected by the analysis.

• **User-Defined Fields**: Up to five text fields, two date fields, two number fields and two drop-down lists.

Last Updated and *Last Updated By* are populated automatically by the software.

FMEA Hierarchy

The Hierarchy tab for an FMEA displays the analysis records in a hierarchical tree, which tends to be good for viewing a lot of information in a small amount of space. It can be especially useful when copying and pasting data or when scanning the analysis to find a particular section of the FMEA.

![Hierarchy Example](image)

Double-click a row to open its properties window. If you click another row while the properties window is still open, it will automatically update to show the current selection.
Chapter 7: FMEA Analysis

To access other relevant commands (add, insert, copy, paste, etc.), right-click inside the hierarchy or use the FMEA tab on the ribbon. The options depend on which record (or heading) is currently selected. (See FMEA Tab for a complete list.)

To move a record up or down in the list, drag and drop the row to the desired location, or select the row and choose Home > Move Record > [Up or Down].

FMEA Hierarchy Columns

To hide or display columns, right-click the column headers in the FMEA hierarchy view, then click Customize Columns to select which columns you want to display. These settings are stored per computer/username in the FMEA Hierarchy page of the Application Setup, so any project that you open on this computer will have the same columns displayed.

The available columns include the following:

- **#** is assigned automatically based on the current position of the record in the FMEA hierarchy. This number will change if the record’s position within the FMEA changes.
- **Description** is the record description.
- **Record ID** is assigned automatically when the record is created. It is unique throughout the repository for a given record type and it does not change. If you copy/paste or import a record, each new instance will receive its own unique ID.
- **Attachment** displays a paper clip icon if there are any links or attachments for the record.
- **Flag** displays a flag for the record, if desired. The available flags are: Complete (indicated by a green flag), In Progress (indicated by a yellow flag) and Incomplete (indicated by a red flag). In all ReliaSoft applications, flags are displayed in the interface only and do not affect analysis results or reports.
- **Ancestry - Source Record** is available only for descendant records. It indicates the status of the association with the source record.
- **Ancestry - Descendant Record(s)** is available only for source records. It displays the number of descendant records that have been created from the source record. Double-click the number to open the View Descendants window.
- **Classification** may be assigned to cause records in order to identify design characteristics that require special manufacturing control (e.g., Critical, Significant, Key Leading, etc.).
- **FEC** (RCM++) & **RBI Only**
This displays the abbreviation generated in the Failure Effect Categorization window.

- **Observed Occurrences** is available only if you are working with an item that has a current association with a part in XFRACAS. It displays the number of incidents, problems or failure analyses recorded in XFRACAS for the failure mode/cause combination. (See Import or Sync from XFRACAS for more details.)

- The following columns for RPN ratings and/or metrics can be displayed only if the column is selected in the Customize Columns window and the property is enabled in the interface style for the current project. The lowercase letter "i" indicates an initial rating or metric while the letter "r" indicates revised.
 - **S, O and D** display the severity, occurrence and detection ratings assigned to the effect and cause records. (Note that in projects using sub-severity ratings, this column displays only the overall severity ratings and will be blank if you have neither assigned nor calculated an overall rating.)
 - **RPN** displays the calculated Severity x Occurrence x Detection.
 - **QCPN** displays the calculated Quantitative Consequence Priority Number.
 - **SxO** displays the calculated Severity x Occurrence.
 - **SOD** and **SD** combine the ratings into a 3 or 2 digit number. For example, if the severity is 7, the occurrence is 5 and the detection is 6, then SOD = 756 and SD = 76.
 - **RR** displays the risk ranking value for the cause. (See Risk Ranking Logic.)

FMEA Worksheet

The Worksheet tab for an FMEA presents the analysis data in the traditional tabular format that most FMEA practitioners are familiar with. It allows you to type directly into the worksheet cells and tab through the analysis as you would in a spreadsheet application such as Microsoft Excel.
The status bar at the bottom of the tab displays the record type and the number of attachments the record has. For controls and actions, it also includes a link to the Dependency Viewer where you can see where the resource is used. Starting in Version 2019, if a control or action is used more than once, this area is highlighted as shown above.

Adding or Editing Records
To add or edit records in the worksheet, you can use the commands on the FMEA ribbon, or right-click inside a cell and use the shortcut menu. The options depend on which cell is currently selected. (See FMEA Tab for a complete list.)

You can also add and edit records directly in the worksheet cells. The options vary depending on whether the cell is selected or in edit mode.

When a cell is selected:

- Click twice or press ENTER to switch to edit mode.
- Use the HOME, END and arrow keys to navigate between selected cells.
• Use **CTRL+C** and **CTRL+V** to copy and paste an entire record.

When a cell is in edit mode:

• Press **ALT** to save changes and exit edit mode. Press **ESC** to exit edit mode without saving changes.

• Press **TAB** to navigate to the next column on the same row. Press **SHIFT+TAB** to navigate to the previous column.

• Press **ENTER** to navigate down to the next row. If you press **ENTER** from the last record in a column, the software prepares a new row so that you can create a new record.

• Use the **HOME**, **END** and arrow keys to move through the text within the cell.

• Use **CTRL+C** and **CTRL+V** to copy and paste selected text within the cell.

• Click the **Select Existing** icon to find and reuse text that has already been entered in this type of field.

Note: For projects that use the Grouped Effects and Causes **FMEA structure**, effects are edited in the **Effect Properties Window** rather than directly in the worksheet.

Reordering Columns
The project’s **interface style** determines which columns are displayed in the FMEA worksheet, as well as the column order. This will be the same for any user who views the analysis.

If you drag and drop a column heading into a new position while using the worksheet, the new order will be saved in the interface style if you have write access for the project. If you have read-only access, the new order will not be retained after you leave the current worksheet.

Resizing Columns
To resize a column, drag the column heading to the desired width. The preferred widths will be saved per computer/username. This will be the same for any analysis you view on this computer, but other users may have different column size preferences.

Repeating Data
To populate the gray areas in the worksheet with the relevant information from a prior row, choose **File > Application Setup**. On the Settings page select the **Repeat data in worksheet views** check box.

Inserting or Removing a Split Bar
A split bar creates two areas in the worksheet that scroll separately.
• To insert a split bar to the left of a selected column, right-click the heading and choose **Split**.

• To remove the split bar, right-click again and choose **Remove Split**.

Alpha/Beta Ratios Worksheet

New in Version 2019, the Alpha/Beta Ratios worksheet is used to calculate the likelihood of each effect occurring, assuming a known overall failure rate for the item. This is an optional criticality approach that supports standards such as ARP4761.

Enabling the Alpha/Beta Ratios Worksheet

To enable the Alpha/Beta Ratios worksheet for a project, select the **Enable Alpha/Beta ratio analysis** check box on the FMEA > Alpha/Beta page of the **interface style**. You can then customize the settings for the worksheet. Note that while some columns can be hidden, the order of the columns in the Alpha/Beta Ratios worksheet is fixed and cannot be altered.
Alpha/Beta analysis can be performed only on a local FMEA analysis. If any linked analyses exist, they will not be shown in the Alpha/Beta Ratios worksheet.

Using the Worksheet

The failure effect criticality number (FECN) represents the rate, in failures per operational hour, that a given failure effect will occur due to the selected mode for the selected part. It is calculated as follows:

\[
\text{FECN} = \text{part quantity} \times \text{part failure rate} \times \alpha \times \beta
\]

In order for the FECN values to be calculated:

- Specify the **Part Quantity** (i.e., the quantity of the part that are used in the product) in the **Item Properties** area above the worksheet.
- Specify the **Part Failure Rate** in the **Item Properties** area above the worksheet.
- Make sure that every failure has at least one effect.
- In the Failure Alpha Ratio column, enter an alpha value for every failure in the worksheet.
 - Alpha is the proportion of the part’s failure rate that is due to the specified failure mode, represented as a decimal.
Chapter 7: FMEA Analysis

- The sum of all alpha values must be between 0.999999 and 1.000001. A running total of the alpha values in the worksheet is displayed in the column heading.

- In the Effect Beta Ratio column, enter a beta value for every effect in the worksheet.

- Beta is the likelihood of the specified effect occurring if its associated failure mode occurs.

- For projects that use the Grouped Effects and Causes FMEA structure, beta is defined at the group level.

- The sum of all beta values for a given failure must be between 0.999999 and 1.000001.

Any required field that is not properly populated will have a pink background. Once all required fields have been filled, the FCEN values are automatically calculated. The calculated values will be cleared and, if possible, recalculated when any of the required fields are changed, or when effects or failures are added or deleted.

You can edit existing failure and effect records in the Alpha/Beta Ratios worksheet, but you cannot delete the record, nor add new records. Editing records in the Alpha/Beta Ratios worksheet works in the same way as editing in the FMEA worksheet. Changes in the Alpha/Beta Ratios worksheet will be recorded in the corresponding FMEA change log, if one is activated.

The status bar at the bottom of the tab displays the selected record type and the number of attachments the record has.

Alpha/Beta Ratios Worksheet Columns

- **Failure**: The failure description, as defined in the failure record properties.

- **Failure Alpha Ratio**: The proportion of the part’s failure rate that is due to the specified failure mode (e.g., if a failure mode accounts for 20% of the item’s failures, the failure alpha ratio is 0.2). The sum of all alpha values must be between 0.999999 and 1.000001. A running total of the alpha values in the worksheet is displayed in the column heading.

- **Effect**: The effect description, as defined in the effect record properties.

- **Effect Beta Ratio**: The likelihood of the specified effect occurring if its associated failure mode occurs (e.g., if 30% of the parts affected by the failure mode experience this effect, the effect beta ratio is 0.3). The sum of all beta values for a given failure must be between 0.999999 and 1.000001.

- **Effect FHA Ref**: The Functional Hazard Assessment (FHA) codes identifying the failure conditions that correspond to the effect. Not all effects have matching failure conditions in the FHA.
• **Effect FMES**: The Failure Mode Effect Summary (FMES) codes that correspond to this effect. It is expected that FMES codes and their effects will have been defined in a preliminary system safety analysis (PSSA) or fault tree analysis (FTA); this field provides a place to record these codes. Multiple FMES codes can be selected for a single effect. Some effects may not have an FMES code.

• **Effect Mitigation**: Notes explaining factors that limit the extent or frequency of the failure, including methods of detection if available (e.g., “Loss of drive will result in immediate shut down before further damage occurs” or “Frequent mandatory inspections make this failure Extremely Remote”).

• **Effect Comments**: Any comments regarding the effect. This column is shown only if the comments field is enabled for effects in the interface style.

• **Effect FECN per Unit**: The failure effect criticality number. This is automatically calculated as follows: part quantity * part failure rate * alpha * beta.

• **Effect Severity Class**: The severity of the potential effects of failure, according to a predefined scale. The available ratings are based on the Severity Class rating scale that has been defined for the Project Properties.

• **Effect Failure Probability**: The likelihood that the failure mode will occur, according to a predefined scale. The available ratings are based on the Failure Probability rating scale that has been defined for the Project Properties.

• **Effect Indication**: The indication that would signal to the operator that this failure mode and effect have occurred (e.g., low oil indication as a result of a pipe leak).

Inserting or Removing a Split Bar
A split bar creates two areas in the worksheet that scroll separately.

- To insert a split bar to the left of a selected column, right-click the heading and choose **Split**.

- To remove the split bar, right-click again and choose **Remove Split**.

FMEA Filtered View
The Filtered tab for an FMEA presents a sortable list of all records of a particular type. For example, you may wish to see all cause records sorted by RPN, or all actions that are overdue. This view allows you to generate these lists on-the-fly as you work on the analysis.
Double-click a row to open its properties window. If you click another row while the properties window is still open, it will automatically update to show the current selection.

You cannot create or delete records from the filtered view.

Filtered View Columns
The columns displayed in the filtered view will depend on the record type and the fields enabled in the project’s interface style. To hide specific columns and/or change the column order, right-click inside any of the column headers and choose Customize Columns. These preferences are stored per computer/username.

FMEA Records

This topic describes some features that are the same for any record in an FMEA.

Record # and ID
Each record in an FMEA has a record position number (#) and a record identifier (ID). These values can be displayed in the FMEA Hierarchy or FMEA Filtered View, and they are also used in the Query Utility and Reports.

- # is assigned automatically based on the current position of the record in the FMEA hierarchy. This number will change if the record’s position within the FMEA changes.

 - For example, a failure record with # = 2.3 is currently the third failure for the second function in a particular FMEA.
• **ID** is assigned automatically when the record is created. It is unique throughout the repository for a given record type and it does not change. If you copy/paste or import a record, each new instance will receive its own unique ID.

 • For example, a failure record with ID = 25 is the 25th failure record that was created in any of the FMEAs within the current repository.

• **Keywords** are words or phrases (separated by commas) that can be used to find or filter analysis data. If desired, you can use the Smart Add Keywords utility to automatically choose words from the name and/or description for this record.

Source Record

The **Source Record** heading appears only when the record is a descendant record (i.e., was created by transferring an existing record and maintains an association with the original record). The fields show information about the source record. You can click the **Update from Source** icon to open the **Update from Source window**, where you can view the changes that have been made to the source and apply any that you deem appropriate to the descendant.

![Update from Source](image)

If you want to quickly update the current record's description, you can click the **Copy Description** icon and paste the copied text into the current record's description.

Associated Records

The fields under the **Associated Records** heading show the item, function, failure, effect and/or cause that the current record is associated with.

<table>
<thead>
<tr>
<th>Associated Records</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Widget</td>
</tr>
<tr>
<td>Function</td>
<td>A function the item is intended to perform.</td>
</tr>
<tr>
<td>Failure</td>
<td>A potential failure mode.</td>
</tr>
<tr>
<td>Effect</td>
<td>The consequence of the failure.</td>
</tr>
<tr>
<td>Cause</td>
<td>The cause of the failure.</td>
</tr>
</tbody>
</table>
History (and History Log, if applicable)
The fields under the History heading show when the record was created and last modified (and by whom).

If the history log has been activated for the project, you can click the View Item History icon to see a list of changes to this record since the log was activated.

Ribbon Commands
When you open the properties window from within the FMEA hierarchy, the following ribbon commands are available:

Home > Add
These commands make it easy to add records to the FMEA without closing and reopening the properties window. The options vary depending on the current record type. For example, all of the following commands may be available if you are editing a cause record.

Home > Tools
- Configurable Settings allows you to adjust the settings for this record type in the project’s interface style. (In a secure database, this is available only for users with the "Edit project properties" permission.)
- Spelling checks the spelling in all text fields within the window.
- Attachments opens the Attachments window, which allows you to manage the linked and attached files for the record.
Effect Categorization opens the Failure Effect Categorization window, which allows you to identify and evaluate the effects of the functional failure. This displays only for effect records in RCM++ and RBI.

Task Manager opens the Task Manager window, which allows you to work with tasks assigned to causes within the FMEA and to choose an appropriate maintenance strategy by using one or both of the available task selection methods. This displays only for cause records in RCM++ and RBI.

Change Log is available only if a change log has been activated for the FMEA and only if changes have been made to this record since the log was activated. It opens the Record Change Log window for this record.

Navigate
These commands make it easy to browse through the FMEA without closing and reopening the properties window. The options vary depending on the current record type.

Functions
In an FMEA or RCM, the functions typically state what the item or process is intended to do, usually to a given standard of performance or requirement.

To access the commands to add or edit function records, right-click inside the FMEA hierarchy or worksheet, or use the Functions commands on the FMEA tab of the ribbon. (See FMEA Tab for a complete list.)

The properties enabled (and their display names) will depend on the interface style for the current project. To view or change these settings, choose Project > Management > Configurable Settings > Interface Style.

Note: Starting in Version 2019, comments fields are available for Function, Failure, Effect and Cause records. You can use the project's interface style to enable these fields for any of these record types.

Note the following:

- The Description is required.
- The Name will be used in locations where the full description would be too long to display (e.g., diagrams).
 - If the field contains an asterisk (*) or is blank when you save the record, the software automatically uses the first 50 characters of the full description.
Chapter 7: FMEA Analysis

- The #, ID, Source Record, Associated Records, History and ribbon commands are similar for any FMEA record type. (See FMEA Records.)

Tip: You can specify for a default function to be created for all new items added to the System panel by choosing File > Application Setup and selecting the Create a default function for new items option on the Settings page of the Application Setup.

Failures (Functional Failures)

In an FMEA or RCM, the failures, (typically called functional failures in RCM analysis), state the manner in which the item or operation fails to meet or deliver the intended function and its requirements.

To access the commands to add or edit failure records, right-click inside the FMEA hierarchy or worksheet, or use the Failures commands on the FMEA tab of the ribbon. (See FMEA Tab for a complete list.)

The properties enabled (and their display names) will depend on the interface style for the current project. To view or change these settings, choose Project > Management > Configurable Settings > Interface Style.

Note: Starting in Version 2019, comments fields are available for Function, Failure, Effect and Cause records. You can use the project's interface style to enable these fields for any of these record types.

Note the following:

- The Description is required.

- The Name will be used in locations where the full description would be too long to display (e.g., diagrams).
 - If the field contains an asterisk (*) or is blank when you save the record, the software automatically uses the first 50 characters of the full description.

- The #, ID, Source Record, Associated Records, History and ribbon commands are similar for any FMEA record type. (See FMEA Records.)

- The Failure Probability and Severity Class fields are used in criticality analysis and will only be available if they are enabled on the FMEA > Criticality page of the project's interface style. Note that the application will not fully validate these factors until you perform the criticality analysis.
Tip: If you need to define the reliability/maintainability characteristics for this record, use the FMRA tab. These characteristics will be applicable if you wish to perform criticality analysis, use the FMEA occurrence ratings to calculate a preliminary baseline estimate of the system reliability, share system configuration/reliability data between RCM++/RBI and BlockSim or perform RCM cost/availability calculations.

Effects

In an FMEA or RCM, the effects typically state the consequence of the failure on the system or end user. Some of the features for working with effects will depend on the FMEA structure that has been selected for the current project.

To access the commands to add or edit effect records, right-click inside the FMEA hierarchy or worksheet, or use the Effects commands on the FMEA tab of the ribbon. (See FMEA Tab for a complete list.)

As discussed in Choosing the FMEA Structure, the FMEA Structure field on the General page of the Project Properties determines how the effect and cause records will be displayed in the FMEA hierarchy.

- **Causes Before Effects** - you are limited to only one effect for each cause and you cannot add or insert additional effects.

- **Grouped Effects and Causes** - the properties window will be divided into two sections. In the table at the top of the window, you can enter a separate description and severity rating for each potential effect.

<table>
<thead>
<tr>
<th>Grouped Effect(s) Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
</tr>
<tr>
<td>First possible effect.</td>
</tr>
<tr>
<td>Second possible effect.</td>
</tr>
<tr>
<td>Third possible effect.</td>
</tr>
</tbody>
</table>

When this effect is displayed in a hierarchy or worksheet, all of the descriptions will be combined into a single cell. The individual severity ratings will be shown in parentheses and the highest rating will always be used for the purpose of RPN calculations.

<table>
<thead>
<tr>
<th>Effect</th>
<th>Si</th>
<th>Sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>First possible effect. (7,4)</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Second possible effect. (5,5)</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Third possible effect. (3,3)</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>
Chapter 7: FMEA Analysis

The properties enabled (and their display names) will depend on the interface style for the current project. To view or change these settings, choose Project > Management > Configurable Settings > Interface Style.

Note: Starting in Version 2019, comments fields are available for Function, Failure, Effect and Cause records. You can use the project’s interface style to enable these fields for any of these record types.

Note the following:

- The **Description** is required.
- The **Name** will be used in locations where the full description would be too long to display (e.g., diagrams).
 - If the field contains an asterisk (*) or is blank when you save the record, the software automatically uses the first 50 characters of the full description.
- The **#**, ID, **Source Record**, Associated Records, **History** and ribbon commands are similar for any FMEA record type. (See FMEA Records.)
- The **Initial Severity** and **Revised Severity** ratings are numerical values that indicate how serious the consequences will be if the failure occurs. The options in these drop-down lists are based on the severity scale that has been assigned in the configurable settings for the current project. A severity rating must be defined in order for the RPN to be calculated automatically. (The drop-down list works just like the Find panel found elsewhere in the software.)
- The **Sub-Severities** heading appears if you have enabled sub-severity ratings in the project’s interface style. These can be used to rate effects according to several different types of severity. The sub-severity ratings can be informational or, for projects using FMEA structures other than Grouped Effects and Causes, can be used to calculate an overall severity rating for each effect, based on either the maximum or the average of the sub-severity ratings.
- In RCM++ and RBI only, the **FEC** field displays the current Failure Effect Categorization rating that is used for traditional RCM analysis.

Causes (Failure Modes)
In an FMEA or RCM, the **causes** (typically called *failure modes* in RCM analysis), state the specific reason for the failure, preferably found by asking "why" until the root cause is determined.
To access the commands to add or edit cause records, right-click inside the FMEA hierarchy or worksheet, or use the Causes commands on the FMEA tab of the ribbon. (See FMEA Tab for a complete list.)

As discussed in Choosing the FMEA Structure, the FMEA Structure field on the General page of the Project Properties determines how the effect and cause records will be displayed in the FMEA hierarchy.

- **Causes Before Effects** or **Grouped Effects and Causes** - each cause will be associated with a failure record.
- **Effects Before Causes** - the cause will be associated with an effect record.

The properties enabled (and their display names) will depend on the interface style for the current project. To view or change these settings, choose Project > Management > Configurable Settings > Interface Style.

Note: Starting in Version 2019, comments fields are available for Function, Failure, Effect and Cause records. You can use the project’s interface style to enable these fields for any of these record types.

Note the following:

- The **Description** is required.
- The **Name** will be used in locations where the full description would be too long to display (e.g., diagrams).
 - If the field contains an asterisk (*) or is blank when you save the record, the software automatically uses the first 50 characters of the full description.
- The **#, ID, Source Record, Associated Records, History** and ribbon commands are similar for any FMEA record type. (See FMEA Records.)
- Use **Classification** to identify design characteristics that require special manufacturing control (e.g., Critical, Significant, Key Leading, etc.).
- The options in the following drop-down lists are based on the rating scales that have been assigned in the configurable settings for the current project. The **RPN** will be calculated automatically if you have defined a Severity rating for the effect, and Occurrence and Detection ratings for the cause. (The drop-down lists work just like the Find panel found elsewhere in the software.)
 - The **Initial Occurrence** and **Revised Occurrence** ratings estimate the probability of occurrence for the potential failure cause.
Chapter 7: FMEA Analysis

- The **Initial Detection** and **Revised Detection** ratings estimate the probability that the problem will be detected before it reaches the customer or end user.

Tip: If you need to define the reliability/maintainability characteristics for this record, use the **FMRA tab**. These characteristics will be applicable if you wish to perform criticality analysis, use the FMEA occurrence ratings to calculate a preliminary baseline estimate of the system reliability, share system configuration/reliability data between the software and BlockSim or perform RCM cost/availability calculations in RCM++ or RBI.

Controls in FMEAs

In an **FMEA**, the **controls** typically are the methods to prevent or detect the cause during product development, or can be actions to detect a problem during service before it become catastrophic. There can be many controls for each cause.

Controls will be available in FMEAs only if the **Enable Controls for Causes** option is selected in the current project's interface style. They can also be created and used in control plans and PFD worksheets.

To access the commands to add or edit control records, right-click inside the FMEA hierarchy or worksheet, or use the **Controls** commands on the FMEA tab of the ribbon. (See **FMEA Tab** for a complete list.)

The properties (and their display names) will depend on the interface style for the current project. To view or change these settings, choose **Project > Management > Configurable Settings > Interface Style**.

Note the following:

- The **Description** is required.

- The **Name** will be used in locations where the full description would be too long to display (e.g., diagrams).
 - If the field contains an asterisk (*) or is blank when you save the record, the software automatically uses the first 50 characters of the full description.

- The **#, ID, Source Record, Associated Records, History** and ribbon commands are similar for any FMEA record type. (See **FMEA Records**.)

- The options in the **Control Type** drop-down list depend on the current project's interface style. By default:
 - **Detection** controls will help to detect the failure before it reaches the end user.
• **Prevention** controls will help to prevent the failure from occurring.

In the FMEA worksheet view, these controls can be displayed in either one or two columns depending on the project’s settings for the **Number of Controls Columns in Worksheet View** option in the interface style.

• Use the **Associated Actions** node to link the control to new or existing action records. The associated action(s) can be used to track specific responsibilities required to implement a particular control. (See **Associating Actions with Controls**.)

Deleting Controls from an FMEA

To delete a control from a specific location in an FMEA, select the control and press **Delete** or right-click the control and choose **Delete** from the shortcut menu.

This removes the control from the current location, but the resource remains in the project so it can continue to be used in other places. If a resource is not being used in any other locations, in a secure database, an authorized user (i.e., the project owner or any user with the applicable "create/edit/delete resources" permission) can delete it via the **Resource Manager**.

Actions in FMEAs

In an **FMEA** or **RCM**, the **actions** typically are the tasks recommended by the FMEA team that can be performed to reduce or eliminate the risk associated with a potential cause of failure. Actions are **resources** that can be used multiple times in different locations, if appropriate. Any changes made to the action properties will be reflected in all locations where the same resource is used.

Actions will be available in FMEAs only if the **Enable Actions for Causes** option is selected in the current project's **interface style**. They can also be created and used in **project plans** and My Portal.

To access the commands to add or edit action records, right-click inside the FMEA hierarchy or worksheet, or use the **Actions** commands on the FMEA tab of the ribbon. (See **FMEA Tab** for a complete list.)

For information about the action properties and other general considerations that are applicable wherever the action may be used, see **Actions**.

Deleting Actions from an FMEA

To delete an action from a specific location in an FMEA, select the action and press **Delete** or right-click the action and choose **Delete** from the shortcut menu.
This removes the action from the current location, but the resource remains in the project so it can continue to be used in other places. If a resource is not being used in any other locations, in a secure database an authorized user (i.e., the project owner, the action creator or any user with the applicable “create/edit/delete resources" permission) can delete it via the Resource Manager.

Associating Actions with Controls

You may choose to create new actions to track specific responsibilities required to implement a particular control. Actions that are associated with a control but do not appear in an FMEA are referred to as *control actions*.

To associate one or more actions with a control, open the control window and navigate to the **Associated Actions** heading:

- **Associate with a New Action** creates a new action resource that will be associated with this control. If you intend for the action to appear in the automatically generated test plan, make sure it is set as a **Detailed Action** in the ribbon, and the **Show in Test Plan** field is set to "Yes."

- **Associate with Existing Action(s)** allows you to select one or more existing actions from the current project.

If the control is already associated with at least one action:

- **Edit Associated Action** allows you to view or modify the selected action record. Any changes to the action properties will be reflected in all locations where the resource is used.

- **Remove Association** disassociates the selected action from this control. The action resource will remain in the project unless/until an authorized user deletes it from the project.
Viewing Control Actions in Filtered View and Queries
Starting in Version 11, you can view control actions in the FMEA filtered view and queries, even when they don't appear in the FMEA.

In the filtered view, select **Actions** from the drop-down list and select the **Include control actions** check box.

In the **Query utility**, select to query from **FMEA Control Actions**.

Ancestry

Starting in Version 2018, there are several situations in which you can create copies of FMEA records for use in new locations and maintain information about the association between the source record (i.e., the original record) and the descendant records (i.e., the copies). This allows you to know when a source record is changed and, if desired, make corresponding changes to the descendant record(s). These situations include:

- Transferring a project
- Transferring functions from one FMEA to another
- Reusing FMEA actions or controls in a test plan
Chapter 7: FMEA Analysis

When an association exists:

- The descendant record will have an icon in the Ancestry - Source Record column in the FMEA hierarchy (if displayed on your computer) or test plan (if displayed) that indicates the status of the association.

- The source record will have a number in the Ancestry - Descendant Record(s) column in the FMEA hierarchy (if displayed) that indicates the number of descendant records that have been created from the source record. Double-clicking this number opens the View Descendants window.

- The system hierarchy item will have an icon in the Ancestry column in the system hierarchy (if displayed) that indicates the status of all associations for that item.

Association Status - FMEA Hierarchy

For each descendant record, the icon in the Ancestry - Source Record column in the FMEA hierarchy indicates the status of its association with the source record.

- **Green** indicates that the source record has not been changed EITHER since the descendant was created OR since the last time a change notification for the descendant was dismissed.

- **Orange** indicates that some change has been made to the source or its dependents. This can include:

 - A change was made to any field that was transferred from the source to the descendant.

 - If the source record and the descendant record are the same record type, all record properties are transferred.

 - If the record types do not match, only the description is transferred.

 - An immediate dependent was added to the source (e.g., a failure was added to a source function).

 - For descendant effects associated with source failures, the severity of the source failure’s effect was changed. If the source failure has more than one effect, a change to the effect with the largest severity value will trigger this status. (In projects using sub-severity ratings, only overall severity ratings are considered in the associations. Changes to sub-severity ratings will not be considered if you have not subsequently calculated overall ratings.)

You can point to the change icon to view a tooltip that indicates the most recent change to the source record. Be aware that only the most recent change is displayed; other changes may also have occurred.
• Red ● indicates that the source record has been deleted.

Right-clicking the notification icons provides the following commands:

Dismiss notification (orange only) resets the icon to green without making any changes. This is useful if you have determined that it is unnecessary to update the descendant in this particular case, but you still want notifications of subsequent changes to the source.

• You can dismiss notifications for just the selected record, the selected record and its dependents, the entire analysis or the entire project.

Go to Source (green and orange only) opens the project and FMEA that contain the source record, and highlights the source record.

Update from Source (green and orange only) opens the Update from Source window, where you can view the changes that have been made to the source and apply any that you deem appropriate to the descendant. This window compares the current state of the source record and descendant record, so it may have available changes even when the association status icon is green, if a change notification has previously been dismissed without making changes.

Disconnect from Source (green, orange and red) removes the association between the descendant and the source.

• You can remove associations for just the selected record, the selected record and its dependents, the entire analysis or the entire project.

• Select the **Apply only if source does not exist** check box if you want to remove only associations to deleted source records and preserve the associations to source records that still exist.

To access these commands from the FMEA worksheet view, right-click a descendant record in the worksheet and choose **Ancestry**.

Association Status - System Hierarchy
The status icons in the system hierarchy indicate the status of all associations that apply to the item. If the source record (or one of its dependents) for any descendant record included in the item's FMEA or test plan has changed, or if any source record has been deleted, the icon will be orange ●. A green icon ● indicates that no source records have been changed either since their descendants were created or since the last time a change notification for the descendants was dismissed.
Transfer Functions
To transfer functions to an existing FMEA, choose FMEA > FMEA Records > Functions > Add Associated Functions.

To use the Transfer Functions window:

1. Select where you want to transfer functions from.
 - **Database**: You can transfer from any FMEA in any project in the database, as long as the project has the same FMEA structure as the current project (e.g., if the current project uses Grouped Effects and Causes, you can transfer from any project with the Grouped Effects and Causes FMEA structure).

 If you select this option, you will need to select the project and the analysis that you want to transfer from. The **Select Project** area works similarly to the project list, but shows only those projects with the required FMEA structure. The **Select Analysis** area shows the system hierarchy items in the selected project that have FMEAs. Both areas can use the same **project and item filters** that are available in many other locations throughout ReliaSoft desktop applications.
 - **Parent**: You can transfer from the FMEA for the current item’s immediate parent item.
 - **Source Analyses**: You can transfer from any FMEA that has associated functions in the current FMEA. This allows you to transfer any newly added or previously unselected functions from those analyses.

2. Use the **Select Functions** area to select the function(s) that you want to add to the current analysis.

3. In the **Map Records for Transfer** area, select options from the drop-down lists to define how the data will be "mapped" from the original analysis to the new analysis.
 - If the source record type is the same as the descendant record type (e.g., if you choose to create new functions from original functions), then all record properties will be duplicated in the descendant.
 - If the record types do not match, only the descriptions will be duplicated in the descendant.
• If you create descendant effects from source failures and severity ratings are enabled in the project, then the highest severity of the effects of the source failure will be used as the descendant effect’s severity.

Tip: If you want to transfer controls and actions, choose to create new causes from original **Causes with Controls/Actions**. If you select only **Causes**, no controls or actions will be added.

4. In the **Other Options** area:

- Select **Track record associations** to maintain information about the association between the source records and the descendant records. This option is selected by default. If you clear the check box, no association information will be recorded. You cannot later add this information; it must be tracked from the time of the record transfer.

- **Transfer revised RPN ratings as initial ratings** if selected, each source record’s revised severity, occurrence and detection rating (if any) will be set as the descendant record’s initial rating; the descendant’s revised rating will be blank. This may be useful when, for example, you are creating an FMEA for the next version of a product. If this option is not selected, the source records’ initial and revised ratings will be unchanged in the descendant records.

- Select **Transfer actions and controls as new records** to create new action and control resources in the descendant records, rather than pointing to the existing resources. This option is available only when transferring functions within a single project; when transferring functions between projects, new actions/controls are always created.

Note: In projects using **sub-severity ratings**, only overall severity ratings are used in transferring records. Severity ratings will not be transferred if you have neither assigned nor calculated overall ratings.

Update from Source

The **Update from Source** window allows you to compare the currently selected descendant record to its source record and, if the source record has changed, to apply corresponding changes to the descendant record. To open this window, right-click the association status icon in the Ancestry - Source Record column of the FMEA hierarchy and choose **Update from Source**.
This window compares the current state of the source record and descendant record, so it may have available changes even when the association status icon is green, if a change notification has previously been dismissed without making changes.

Note: In projects using sub-severity ratings, only overall severity ratings are considered in this window.

Record Properties Comparison

The **Record Properties Comparison** table shows the fields that were transferred from the source record to the descendant record.

- If the source record and the descendant record are the same record type, all record properties are shown. Note that when comparing a source action and a descendant action, the detailed action properties (i.e., the properties Specifications, Requirements and Reports) are shown only if both actions are set as detailed actions.

- If the record types do not match, only the description is shown. In the case where the source is a failure and the descendant is an effect, the severity ratings are also shown.

Properties that are the same in the source and descendant records are shown in green. Properties that do not match are shown in white; you can select these properties for transfer to the descendant record.

Note: Certain action properties, having to do with the actual execution of the action, cannot be transferred to an existing descendant action.

Source Record Dependents

If the descendant record that you're working with can have dependents, the **Source Record Dependents** area is also displayed. Dependents that exist in the descendant record are shown in green. Dependents that do not exist in the descendant record are shown in white; you can select these dependents for transfer to the descendant record.

- **Add without dependents** if selected, only the selected dependents will be transferred, without any dependents of their own. For example, imagine you are working with a descendant function, and the source function has several new failures that you want to import. If you select **Add without dependents**, only the failures will be transferred; if you clear the check box, the failures and their dependent effects, causes, actions and controls will be transferred. This option is available only when you are working with a function, failure or effect; when you are working with a cause, its dependents (controls and/or actions) do not have dependents of their own, so this option is not relevant.

- **Transfer revised RPN ratings as initial ratings** if selected, each source record’s revised severity, occurrence and detection rating (if any) will be set as the descendant record’s initial rating; the descendant’s revised rating will be blank. This may be useful when, for
example, you are creating an FMEA for the next version of a product. If this option is not selected, the source records’ initial and revised ratings will be unchanged in the descendant records.

- **Transfer actions and controls as new records** if selected, creates new action and control resources in the descendant record, rather than pointing to the existing resources. This option is available only when transferring functions within a single project.

Select the **Dismiss notification** check box to reset the selected record’s notification icon to green when the selected updates are performed. Note that when the icon is reset, this does not necessarily indicate that all fields match between the source and descendant records; it simply indicates that you have viewed the changes and decided to reset the icon. If you clear this check box, the icon will remain orange.

View Descendants

For each source record, the Ancestry - Descendant Record(s) column in the FMEA hierarchy indicates the number of descendant records that have been created from the source record. Double-click the number to open the View Descendants window.

This window provides basic information about each descendant record. You can double-click a record or select it and click **Go To** to open the project and FMEA that contain the descendant record with the record highlighted.

To open this window from the FMEA worksheet view, right-click a source record in the worksheet and choose **Ancestry > View Descendants**.

RPNs and Related Metrics

XFMEA, RCM++ and RBI make it easy to calculate and display a variety of metrics based on the Severity, Occurrence and Detection ratings that have been assigned for effects and causes in the FMEA:

- **Risk Priority Number (RPN)** is the product of severity x occurrence x detection.
- **SxO** is the product of severity x occurrence.
- **SOD** and **SD** combine the ratings into a 3 or 2 digit number. For example, if the severity is 7, the occurrence is 5 and the detection is 6, then SOD = 756 and SD = 76. When the issues are sorted in descending order, they will be prioritized first by severity, then by occurrence and then by detection.
• **Quantitative Consequence Priority Number (QCPN)** is based on quantitative values associated with each rating in the severity, occurrence and detection rating scales. If you use actual dollar amounts for severity, the QCPN metric will reflect the total expected cost for each issue.

The severity and occurrence scales can also be applied to items in the system hierarchy to provide a quick estimate of the "Item Risk."

Configure Projects for RPN Metrics

There are two minimum requirements to configure a project to use RPNs or related metrics for risk assessment and prioritization. In a secure database, these tasks can be performed only by a user with the "Edit project properties" permission for the project.

1. Select or create the appropriate severity, occurrence and detection rating scales.
2. Enable at least one of the metrics in the project’s interface style.

If you want to use the customizable Risk Ranking logic in the FMEA, system hierarchy or risk matrix, you will also need to define the logic in the project's interface style. (See Risk Ranking Logic.)

Select or Create Rating Scales

The default library shipped with XFMEA/RCM++/RBI provides a variety of rating scales that have been published in the literature and popular FMEA standards. You can customize any of these scales or create your own.

To view, edit or select the rating scales for the current project, choose **Project > Management > Edit Project Properties**.

On the Configurable Settings tab, the FMEA Scales (Severity, Occurrence, Detection) are used for FMEA RPN metrics and item risk. The Criticality Scales (Severity Class, Failure Prob) are used for criticality analysis.
Enable Metric(s) in the Interface Style
To enable the applicable RPN metrics for the project, choose **Project > Management > Configurable Settings > Interface Style.**
For FMEA metrics (calculated for the failure cause), use the table on the FMEAs > RPNs page of the interface style. For Item Risk metrics (calculated for items in the system hierarchy), use the Item > Properties page.

Sub-Severity Ratings

New in Version 2019, you now have the option to enable sub-severity ratings for use in RPNs and related metrics. This feature allows you to rate effects according to several different types of severity and then use the sub-severity ratings to calculate an overall severity rating for each effect, based on either the maximum or the average of the sub-severity ratings (except for grouped effects). For example, your organization might rate effects based on safety, environmental impact and maintenance costs, but want to use the highest value of these to rate the effects’ overall severity for the FMEA.

Enable Sub-Severity Ratings

To enable sub-severity ratings, simply enable the desired Initial Sub-Severity and/or Revised Sub-Severity properties on the FMEA > RPNs page of the interface style for the project. These properties can be enabled only if the relevant severity type is enabled (e.g., you must have Initial Severity enabled in order to enable any of the Initial Sub-Severity properties). You should
modify the display name, short display name and tooltip for each sub-severity type to reflect what kind of severity it is measuring.

In a secure database, these tasks can be performed only by a user with the "Edit project properties" permission for the project.

Configure Severity Scale for Sub-Severity Ratings

All sub-severity types use the severity scale that has been assigned in the configurable settings for the current project. The criteria used for the sub-severity types are defined in the rating scales window. To edit these criteria, select the Show sub-severities criteria check box above the table, then supply criteria for the sub-severity types.

It is important to understand that the numerical values apply across all severity types, so if some of your severity types have a different number of levels, you will need to assign the criteria accordingly. For our example, let’s say that you have ten different levels of severity for safety, but only five levels for environmental impact and three for maintenance cost. You should assign the criteria so that the lowest values are in the same row across all severity types, the highest values are in the same row, and the intermediate values are assigned in proportion:
Assign and Use Sub-Severity Ratings

For any effect, you can simply assign an overall severity rating or you can assign sub-severity ratings. For projects that use the Grouped Effects and Causes FMEA structure, the sub-severity ratings are purely informational; you must also assign overall severity ratings to the effects.

For projects using other FMEA structures, the sub-severity ratings can be used to calculate the effects’ overall severity ratings. To calculate overall ratings from the sub-severity ratings, choose FMEA > Tools > Calculate Severities.

In the Update Seversities window that appears, you can specify:

- To update initial severities, revised severities or both
- For the overall severity values, whether to use the maximum value of the sub-severity ratings or the average of the sub-severity ratings (where decimals are rounded up)
• Whether to perform these calculations for just the current analysis or for all analyses within the current project

Important: If any effects have overall severity ratings AND sub-severity ratings applied, calculating the severities will replace the overall ratings that were manually applied with the calculated values. This cannot be undone.

Throughout the software, wherever severity values are used (e.g., in RPNs, in transferring records, etc.), it is the overall severity value that is used.

RPN Metrics in FMEAs, Reports and Plots

When you are working with an FMEA in the Analysis panel, the RPN metrics that have been enabled for a project (except QCPNs) will be displayed in the FMEA.

If you want to display these metrics in the FMEA hierarchy and filtered view, right-click the column headings then click **Customize Columns**. These settings are stored per computer/username in the **FMEA Hierarchy** page of the Application Setup.

Here’s an example that shows the causes sorted by initial RPN, and also shows the SxO and SOD.
Chapter 7: FMEA Analysis

Priority Highlights
In all three FMEA views, you also have the option to use color to highlight issues based on priority. Choose **FMEA > Tools > Highlight Priority** to turn the colors on or off.

The logic used to determine the priority for each issue is configurable and can be defined on the **FMEA > RPNs** page in the interface style for the project. The highlights can be based solely on the PRN values, or you can define a more complex risk ranking logic.

Here's an example that shows highlights based on initial RPN (High Priority >= 300, Low Priority <= 30).

![Image of FMEA view with highlights]

Queries and Reports
Any of the RPN metrics that have been enabled in the project can be used in the queries and reports that you create.

To open the Query Utility, choose **Home > Reporting > Queries**.

To open the Reports window, choose **Home > Reporting > Reports**.
As an example, the following query creates a list of failure causes with an initial RPN greater than 200.

Plot Viewer
To open the Plot Viewer, choose Home > Reporting > Plots.
Refer to the FMEA Plots topic for a list of the available plot types and their descriptions. As an example, the following plot shows the top 10 causes ranked by their initial RPN value.

Risk Ranking Logic
The risk ranking logic feature allows you to define your own custom criteria to prioritize issues based on any combination of Severity, Occurrence, Detection, RPN, SxO or SxD. This feature can be used for:

- Priority Highlights in FMEAs (if you have selected to highlight priority based on "Risk Ranking" in the project's interface style)
- Item Risk in the System Hierarchy
- Risk Matrix

To define or modify the risk ranking logic in the current project, first open the interface style (e.g., choose Project > Management > Configurable Settings > Interface Style). Then navigate to the FMEA > RPNs page and click the Risk Ranking Logic button.
If you want to use a risk ranking logic that has already been defined in a library or another project, use the Copy Existing feature to import an existing logic. If you want to define a new set of criteria, follow the instructions below.

Note: In projects using sub-severity ratings, only overall severity ratings are considered in the risk ranking logic.

Define the Priority Levels
Click the icon inside the **Priority** column heading to set the levels and colors. For example, this could be [High, Medium and Low], [Action Required and No Action Required], [Critical, High, Medium and Low], and so on.

![Define Priority Levels](image)

Define the Logic Statements
Each row in the table defines a logic statement based on up to three criteria. Each criterion specifies that a rating or metric must be equal to (=), greater than (>), greater than or equal to (>=), less than (<) or less than or equal to (<=) the specified value.
For example, the following logic identifies an issue as "High" priority if the severity rating for the effect is greater than or equal to 8 and the RPN is greater than or equal to 200.

<table>
<thead>
<tr>
<th>Criterion 1</th>
<th>AND</th>
<th>Criterion 2</th>
<th>AND</th>
<th>Criterion 3</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severity</td>
<td>>= 8</td>
<td>RPN</td>
<td>>= 200</td>
<td></td>
<td>High</td>
</tr>
</tbody>
</table>

The application considers the statements from top to bottom and applies the priority for the first true statement. For example, if the logic is defined as shown in the following table and an FMEA failure cause is set to S:9 x O:4 x D:6 = RPN:216, then the cause will match both statements. The priority from the first true statement (Medium) will be applied.

<table>
<thead>
<tr>
<th>Criterion 1</th>
<th>AND</th>
<th>Criterion 2</th>
<th>AND</th>
<th>Criterion 3</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPN</td>
<td>> 30</td>
<td>RPN</td>
<td>< 300</td>
<td></td>
<td>Medium</td>
</tr>
<tr>
<td>Severity</td>
<td>>= 8</td>
<td>RPN</td>
<td>>= 200</td>
<td></td>
<td>High</td>
</tr>
</tbody>
</table>

- To add a new logic statement to the bottom of the list, click inside the last row and enter the data.
- To delete a statement, select the row and click Delete Row. There is no undo for delete.
- To insert a new statement above an existing one, select the existing row and click Insert Row.
- To move an existing statement up or down in the list, select the row and click Move Up or Move Down.

What’s Changed? In Version 2019, we have added the ability to reorder the list of logic statements, making it easier to edit the risk ranking logic.

Item SxO and Item Risk

The Item Risk feature provides a quick way to evaluate the risk for items in the system hierarchy, using the same Severity and Occurrence rating scales that are available to calculate RPNs in FMEAs. The ratings can be used to calculate one or both of the following metrics:

- **Item SxO** is the severity x the occurrence from the ratings that were assigned at the item level.
- **Item Risk** uses the risk ranking logic defined for the project to apply a priority.
Tip: If you need more flexibility for the risk assessment, the Risk Discovery Ratings feature allows you to define your own set of categories, factors and rating scales. It also allows you to specify the calculation method (sum, product, max or average).

Enable Item Risk Metrics for the Project
To configure a project to calculate the Item SxO or Item Risk, you must enable the ratings and the desired metric(s) on the **Item > Properties** page of the project's interface style. (In a secure database, this can be performed only by a user with the "Edit project properties" permission for the project.)

![Property Configuration](image)

If you choose to use the Item Risk, you must also define the risk ranking logic on the **FMEA > RPNs** page. The following picture shows a simple example with three priority levels; you can configure the priorities to meet your needs, and set the criteria based on Severity, Occurrence or SxO. (See Risk Ranking Logic.)

![Risk Ranking Logic](image)

System Hierarchy and Item Properties
When the Item Severity and Item Occurrence ratings are enabled for the project, you can view and set the ratings for any item in the system hierarchy from the **Properties** tab in the Analysis panel.
The **Item Risk** priorities and highlight colors will be applied automatically if a risk ranking logic is defined for the project and the item's ratings meet the specified criteria.

To view these metrics in the System panel, right-click on the column headings then click **Customize Columns**. These settings are stored per computer/username in the [System Hierarchy page](http://xfmea.reliasoft.com) of the Application Setup.

Risk Matrix, Queries and Reports

You can use the same Risk Matrix utility that is available for FMEA RPNs to view the Item SxO or Item Risk for any items in the system hierarchy that have the ratings set. (See [Risk Matrix](http://xfmea.reliasoft.com).)

You can also consider these ratings and metrics in configurable *report templates* (by choosing **Home > Reporting > Reports**) and **queries** (by choosing **Home > Reporting > Queries**).

Risk Matrix

The Risk Matrix window provides a visual way to evaluate the risk based on RPN or criticality metrics. This utility can be used for any of the following (if the relevant ratings are enabled in the project's interface style):

- Failure causes in an FMEA (see [FMEA Analysis](http://xfmea.reliasoft.com))
- Items in the system hierarchy (see **Item Risk**)
- Starting in Version 2018, failure modes in FMECA (see [Criticality Analysis](http://xfmea.reliasoft.com))
- Starting in Version 2019, effects in an FMEA (see [Alpha/Beta Ratios Worksheet](http://xfmea.reliasoft.com))

For either of the first two, if you have configured a customized *risk ranking logic* for the project that assigns priorities based on SxO or SxD, the matrix will include highlight colors, as shown next.
Chapter 7: FMEA Analysis

To open the utility, choose **System Hierarchy > Tools > Risk Matrix.**

Select the Matrix Type
Use the **Matrix Type** drop-down list to select which ratings to display in the current matrix. The Severity or Severity Class scale will always be displayed on the horizontal axis; what is displayed on the vertical axis depends on your selection in the list.

The options will depend on which ratings and metrics are enabled in the project's interface style. For example, if Item Risk, FMEA RPNs, criticality analysis and the Alpha/Beta Ratios worksheet are enabled for the project, you can choose:

Tip: "Current" RPN ratings use revised ratings if they are present; if no revised rating is present for a record, then the initial rating is used.
Select the FMEA(s) or Items
In the System Hierarchy area, specify the FMEAs or system hierarchy items that will be included in the matrix.

- If you are viewing FMEA causes, failure modes or effects, the matrix can contain records from a single item's FMEA or the FMEAs for multiple selected items.
- If you are viewing Item Risk, the matrix will contain all of the selected items that have the Item Severity and Item Occurrence defined in the item properties.

Tip: If the Part Number, Reference Number and/or FMEA Document Number columns are displayed in the system hierarchy, these columns will also be displayed in the System Hierarchy area in this window.

View the Items or Records
The Risk Matrix shows the quantity of FMEA causes, failure modes, effects or items for each combination of ratings.

The panel below the matrix provides a list of all the records enumerated in the matrix. This panel offers the same filter, column configuration and grouping tools that are built in to other utilities that use a similar grid (e.g., the Resource Manager). For details about how to use each feature, see:

- Finding and Filtering Records
- Configuring Columns
- Grouping Panel

What's Changed? Prior to Version 2019, the panel displayed only the records with the combination of ratings for the cell that was selected in the matrix. Now you can see all records at once, or use the filtering tools to see only the records of interest. You can also still select a single cell in the matrix; this will have the effect of clearing any existing filters and showing the records with the selected combination of ratings.

Starting in Version 2018, for FMEA causes, if there are associated controls and/or actions, you can click the + to view them.

To see where a record appears in the FMEA or system hierarchy, double-click the row or click Go to Record. Note that if a control or action has focus, this will take you to the cause record.
In the example below, the panel shows a list of all the causes in all selected FMEAs where Si=7 and Oi=4, and the description contains the word "lens." Additionally, the controls and actions associated with one of these causes are displayed.

Quantitative Consequence Priority Numbers (QCPNs)
The Quantitative Consequence Priority Number (QCPN) is based on quantitative values associated with each rating in the severity, occurrence and detection rating scales.

- **OC** = Probability that the failure will occur (0 < OC <= 1)
- **PD** = Probability that the failure will be detected (0 < PD <= 1)
• **SD** and **SU** = Cost / impact / consequence / severity if the failure occurs and is either detected (SD) or undetected (SU). This can be any value => 0. It may be greater if the failure is undetected. (SD => 0, SU => 0 and SD <= SU)

\[
QCPN = OC \times PD \times SD + (1 - PD) \times SU
\]

If you use actual dollar amounts for severity, the QCPN metric will reflect the total expected cost for each issue.

Since this value is quantitative, it can be rolled up to the item level as a summation.

Enabling and Showing the QCPN Metrics

Similar to other RPN metrics, there are two requirements to configure a project to enable QCPN calculations. (See Configure Projects for RPN Metrics.)

1. Select or create the appropriate severity, occurrence and detection rating scales. For QCPN calculations, the scale must include appropriate quantitative values for all ratings, as discussed below.

2. Enable at least one of the metrics in the project's interface style. For QCPN calculations, you must enable at least S, O, D and QCPN on the **FMEAs > RPNs** page.

QCPNs can be displayed in the FMEA hierarchy, the filtered view and in customized queries and reports.

Quantitative Values for Rating Scales

The QCPN calculations are based on the quantitative values associated with each rating in the Severity, Occurrence and Detection scales defined for the current project. As an example, the following picture shows portions of three rating scales that were set to meet the needs of a particular project. Your organization can choose different scales or configure the values to fit your particular products and processes.
In this example, an effect rated $S = 2$ is expected to cost $\$7,000$ if detected or $\$10,000$ if undetected. The probability of occurrence for a cause rated $O = 2$ is $\frac{1}{100,000}$ (0.00001). The probability of detection for a cause rated $D = 2$ is 0.99. And so on. Therefore, if the $S = 2$, $O = 2$ and $D = 2$, the calculated QCPN would be:

$$QCPN = 0.00001 \times [0.99 \times 7000 + 0.01 \times 10000] = 0.0703$$

Criticality Analysis

XFMEA/RCM++/RBI provide three methods for performing Failure Modes, Effects and Criticality Analysis (FMECA).

Qualitative Criticality Analysis

For *qualitative* criticality analysis, analysts use predefined rating scales to rate the likelihood of occurrence for each failure mode and the severity of the potential effects of failure. A matrix with severity on the horizontal axis and occurrence on the vertical axis can be used to compare failure modes.

Steps to Perform Qualitative Analysis

1. Make sure that the applicable criticality analysis fields have been enabled for the project (on the FMEA > Criticality page of the interface style).
 - Qualitative analysis uses **Failure Probability** and **Severity Class**, as well as **Mission Phase/Operational Mode**, if desired.

2. Define the item(s) that will be included in the analysis.

3. For each item, create an FMEA and define the functions, failure modes, effects and causes.

4. Define the following for each failure mode. These factors can be specified via the Failure Properties window, FMEA worksheet, FMRA or MIL-1629A Criticality Analysis window (if it is enabled on your computer).
 - **Mission Phase/Operational Mode** is a description of the conditions when the failure mode might occur. For example, in an airplane, a failure might occur during takeoff, while flying or during landing. This is not required for the analysis but it is usually displayed as a column in MIL-STD style reports.
Chapter 7: FMEA Analysis

- **Failure Probability** rates the likelihood that the failure mode will occur, according to a predefined scale. The available ratings are based on the Failure Probability rating scale that has been defined for the Project Properties.

- **Severity Class** rates the severity of the potential effects of failure, according to a predefined scale. The available ratings are based on the Severity Class rating scale that has been defined for the Project Properties.

5. To generate a report, choose **Home > Reporting > Reports** to open the Reports window and select all of the items you wish to include in the analysis. Then select the desired criticality reports, which are located under the **Criticality** heading, as shown next.

<table>
<thead>
<tr>
<th>Criticality</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Criticality Analysis (Standard)</td>
<td>(1)</td>
</tr>
<tr>
<td>Criticality Analysis (MIL-STD Quantitative)</td>
<td>(2)</td>
</tr>
<tr>
<td>Criticality Matrix (MIL-STD Quantitative)</td>
<td>(3)</td>
</tr>
<tr>
<td>Criticality Analysis (MIL-STD Qualitative)</td>
<td>(4)</td>
</tr>
<tr>
<td>Criticality Matrix (MIL-STD Qualitative)</td>
<td>(5)</td>
</tr>
<tr>
<td>Criticality Ranks</td>
<td>(6)</td>
</tr>
</tbody>
</table>

The following reports are applicable for qualitative criticality analysis:

- (4) shows the qualitative criticality analysis in a traditional tabular format.
- (5) shows a matrix with the Severity Class on the horizontal axis and the Failure Probability on the vertical axis.

(These reports can also be generated from the **MIL-1629A Criticality Analysis window** if it is enabled on your computer.)

Quantitative Criticality Analysis

XFMEA/RCM++/RBI offer a methodology for quantitative criticality analysis that is patterned after MIL-STD-1629A but uses a more general approach that overcomes several inherent limitations and simplifications present in the military standard (including the assumption of a constant failure rate). Furthermore, instead of dealing with an arbitrary number, this methodology presents the computed criticality number in terms of the probability "that a failure will be caused by the current mode," which is significantly more meaningful and powerful. For specific details on this approach, see http://www.reliawiki.org/index.php/Criticality_Analysis.

This analysis is performed directly in the **FMRA** with report output generated from the **Reports window**. If your organization is obligated to use the original method instead, see [MIL-1629A Criticality Analysis](http://xfmea.reliasoft.com).
Steps to Calculate Criticality in the FMRA

1. Make sure that the applicable criticality analysis fields have been enabled for the project (on the FMEA > Criticality page of the interface style).
 - Quantitative analysis requires at least Mode Criticality for the quantitative calculation options to become available in the software.

2. Define the item(s) that will be included in the analysis.

3. For each item, create an FMEA and define the functions, failure modes, effects and causes.

4. If the FMRA is not already displayed in the System panel, choose View > FMRA > Show FMRA to make it visible.

5. If the criticality analysis columns are not already displayed in the FMRA hierarchy, right-click any of the column headers, then click Customize Columns. Select the four columns shown next and click OK to save the changes.

6. Click the first failure mode in the FMRA hierarchy to display its reliability-related properties in the Analysis panel. The following fields may be applicable for quantitative criticality analysis:
 - **Mission Phase/Operational Mode** is a description of the phase or conditions when the failure mode might occur. This is not required for the analysis but it is typically displayed as a column in MIL-STD style reports.
 - **Failure Probability** rates the likelihood that the failure mode will occur, according to a predefined scale. The available ratings are based on the Failure Probability rating scale that has been defined for the Project Properties. This is used if you want to define the Reliability Policy based on failure probability.
• **Severity Class** rates the severity of the potential effects of failure, according to a predefined scale. The available ratings are based on the Severity Class rating scale that has been defined for the Project Properties. This is needed if you want the failure mode to appear in the Criticality Matrix report form.

• **Mode Ratio** is the probability that the item's failure will be due to the failure mode under consideration (i.e., the percentage of all failures for the item that will be due to the given mode). This will be calculated automatically by the software based on all of the failure probabilities that have been defined for the analysis.

• **Probability of Loss (Model)** is a factor from 0 to 1 that describes the probability that this failure mode would result in a system failure. By default, this is set to 1 (Actual Loss). To enter a different value, double-click inside the field to display the Model Wizard. **Using a Constant or a Distribution:** Note that the software also allows you to define this factor with a time-dependent distribution for situations when the probability of loss increases as the operating time increases. In this case, the software will calculate the decimal based on the distribution/parameters and the operating time you have specified for the criticality analysis. To switch from a constant to a distribution (and vice-versa), click the buttons in the top-right corner of the Model Wizard. When a constant model is displayed in the wizard, the New Distribution icon allows you to switch to a distribution. When a distribution is displayed, the New Constant icon allows you to switch to a constant.

• **Reliability Policy** allows you to specify how the software will calculate the failure mode's probability of failure. The options include:

 • **Based on Failure Probability:** If the Failure Probability rating scale is enabled for this project and if you have selected a rating for this mode, then the software can automatically assign a quantitative model based on the specified rating. (See [Using Rating Scales to Set the Reliability Policies](#).)

 • **Define at this level:** If you know the probability for this failure mode, you can either create a new model or select an existing model to define it here.

 • **Inherit:** If you have defined the probabilities for all of the associated causes, the software can automatically calculate the probability that the failure mode will occur. For details, refer to [Setting the Reliability Policies](#).
7. Select the top-level item in the FMRA hierarchy and specify the relevant **Operation** properties.

- The **Operating Time** field must be entered.
- The software assumes that the item was new at the beginning of the mission (**Current Age** = 0) and it will operate for 100% of the operating time (**Duty Cycle** = 1), but you can adjust these factors if desired.
- The **Maintenance Group** field is not relevant for criticality calculations.

<table>
<thead>
<tr>
<th>Operation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Time</td>
<td>750 (Hr)</td>
</tr>
<tr>
<td>Current Age</td>
<td>0 (Hr)</td>
</tr>
<tr>
<td>Duty Cycle</td>
<td>1</td>
</tr>
<tr>
<td>Maintenance Group</td>
<td></td>
</tr>
</tbody>
</table>

Note: The operating time can be defined only for top-level (system) items in the hierarchy, and this time applies to all of the system's dependents. Thus, if your criticality analysis considers the failure modes associated with only one system, and if you want to compare the failure modes, then you only need to define the operating time for that system. However, if your criticality analysis considers multiple systems that you want to compare, then, to make a valid comparison, you need to enter the same operating time for each system.

8. Finally, to perform the calculations, choose **FMRA > Calculations > Calculate (Reliability)**.

The Calculation Options window provides the following options:

- **What items do you want to calculate?** If the project contains more than one top-level item, you can choose to perform the analysis only for the system that is currently selected, or for all systems defined in the hierarchy.

- **Calculation Method:** If the FMRA is synchronized with BlockSim, you can choose to use BlockSim's version to calculate the probabilities of failure; otherwise you must use the software's calculations, which assume a reliability-wise series configuration among all the records in the FMRA hierarchy.

When you click **OK**, the software will calculate the probability of failure for each failure mode and automatically determine the Mode Ratios based on all of the failure modes that have been defined for each item. (To give a very simple example, if the item has two failure modes that both have the same probability of failure, then they will both
contribute equally to the item’s probability of failure, and therefore they both have Mode Ratio = 0.5.)

Then the software will calculate the mode criticality and item criticality, and the results will be displayed in the Criticality column of the FMRA hierarchy.

Tip: To specify the displayed math precision for the calculated values, choose **File > Application Setup** then define your preferences on the Settings page.

9. To generate a report, choose **Home > Reporting > Reports** to open the Reports window and select all of the items you wish to include in the analysis. Then select the desired criticality reports, which are located under the **Criticality** heading, as shown next.

<table>
<thead>
<tr>
<th>Criticality</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Criticality Analysis (Standard)</td>
<td>(1)</td>
</tr>
<tr>
<td>Criticality Analysis (MIL-STD Quantitative)</td>
<td>(2)</td>
</tr>
<tr>
<td>Criticality Matrix (MIL-STD Quantitative)</td>
<td>(3)</td>
</tr>
<tr>
<td>Criticality Analysis (MIL-STD Qualitative)</td>
<td>(4)</td>
</tr>
<tr>
<td>Criticality Matrix (MIL-STD Qualitative)</td>
<td>(5)</td>
</tr>
<tr>
<td>Criticality Ranks</td>
<td>(6)</td>
</tr>
</tbody>
</table>

The following reports are applicable for quantitative criticality analysis:

- (1) or (2) will show the quantitative criticality analysis in a traditional tabular format.
- (3) shows a matrix with the Severity Class on the horizontal axis and Mode Criticality on the vertical axis.
- (6) displays the items/failure modes ranked by item criticality and then by mode criticality.

MIL-1629A Criticality Analysis

This topic describes how to enable and use the MIL-1629A Criticality Analysis utility. If you prefer to use the criticality analysis methods that are performed directly in the FMRA, see **Qualitative Criticality Analysis** or **Quantitative Criticality Analysis**.

Enabling and Accessing the MIL-1629A Analysis

If you wish to be able to access the MIL-1629A Criticality Analysis window on your computer, select the **Enable MIL-1629A Criticality** check box on the **Settings page** of the Application Setup. When this option is selected, the **MIL-1629A Criticality** command will be visible on the Home tab of the ribbon.
This command will be available only if at least one criticality analysis field is enabled in the project. Furthermore, in order to be able to calculate results, there must be at least one failure mode defined for each item before you open the window.

Using the Utility

When you open the utility, use the Select Items window to select one or more items from the current project that you want to include in the criticality analysis and click **OK**.

When the MIL-1629A Criticality Analysis window opens, the worksheet will display the specific data fields from the item, function and failure mode properties that are relevant for criticality analysis.

Note the following:

- For most of the fields that are editable in the worksheet, you will be able to view/edit the property in either the MIL-1629A Criticality Analysis window or the Item Properties/FMEA/FMRA. Any changes made in one location will be visible in the others. The only exceptions are the **Mode Ratio** and **Prob of Loss** columns. These properties can be entered and viewed only via the MIL-1629A Criticality Analysis window. The values that you enter are saved with the failure mode (and visible the next time you view this failure mode in the MIL-1629A Criticality Analysis window), but they are not visible in the Failure properties window in the FMEA or FMRA.

 For the **Prob of Loss**, if you want to assume a total loss, accept the default setting of 1 (actual loss). If you want to enter a specific decimal value (e.g., 0.3 or 0.73), click in the field and select or create a constant model defined with the appropriate value.

- The reliability type for each item must be set to **Define at this level**.

- The sum of the values in the **Mode Ratio** column must be equal to 1 for each item. For example, if an item has four failure modes, the ratios could be something like: Mode A - 0.1, Mode B - 0.3, Mode C - 0.45, Mode D - 0.15 (i.e., 0.1 + 0.3 + 0.45 + 0.15 = 1).

- The cells with a green background color will display the calculated results after you enter all required inputs and click the **Calculate** button.

The Display Options at the bottom of the window allow you to customize the worksheet to meet your specific needs:

- Select **Show current age, quantity and duty cycle** if you are using those properties in the item reliability calculations. If the Current Age is 0, the Quantity is 1 and the Duty Cycle is 1 (i.e., there is one item that operates continuously and is subjected to the same loads and/or stresses as the rest of the system), these fields are not relevant and do not need to be displayed. (See Setting the Operation Properties for an FMRA.) These values
are not considered in the original military standard methodology and should not be changed if you want to follow that standard exactly.

- Select **Show columns for qualitative analysis** if you want to display the Mission Phase/Operational Mode and Failure Probability columns, which are applicable only if you are performing qualitative analysis.

- Select **Include causes with failures** if you want to display the cause descriptions in the same column with the failure modes. If only the failure modes are displayed, you will be able to edit the descriptions directly in the MIL-1629A worksheet, if desired. If both the failure mode and cause descriptions are displayed in the same cell, you will not be able to edit the text without closing the MIL-1629A Criticality Analysis window and returning to the FMEA/FMRA.

- Select **Change 'Expected Failures' caption to 'Failure Rate'** if you want to change the name of the column from Expected Failures to Failure Rate. The values displayed in the column will remain unchanged.

When the worksheet displays all of the required inputs for quantitative criticality analysis, click **Calculate** to perform the calculations. You can then click **Send to Excel** to export all of the information currently displayed in the worksheet to an Excel file, or click **Reports** to select from a set of predefined report forms that can be generated in either Word or Excel.

FMEA Plots

You can create an ad hoc plot for an FMEA or RCM analysis by choosing **Home > Reporting > Plots**.

In the window that appears, select the item(s) you want to include in the plot. The selected item(s) must include at least one FMEA, functional failure analysis or risk discovery analysis; otherwise the plot will not display any data. Click **OK** to launch the Plot Viewer, which will display the plot and provide options for editing the plot.

Note that for all pareto charts, you can specify the range of the FMEA records to show on the plot by using the **Display Range** area on the Plot Viewer's control panel. The scaling of the dependent axis will be based on the minimum and maximum data values of the records in the specified range. If you wish to manually assign values for the scaling, clear the **Automatic Scaling** check box on the control panel and then enter the desired values in the **From** and **To** fields, as shown next.
To save an image of the plot, click the Export Plot Graphic icon on the Plot Viewer's control panel. Plot images can be saved in *.jpg, *.gif, *.png or *.wmf format.

Types of Plots
The following list describes all available plots that can be created for an FMEA analysis. For general information on working with plots, see ReliaSoft Plot Utilities.

- **RPN (Pareto)** shows the Risk Priority Numbers (RPNs) of the causes ranked from highest to lowest. Click the RPN Type drop-down list on the control panel to choose which values to display. You can view the initial RPNs only, the revised RPNs only, or both values in combination. If you view both values, you can select to sort by either initial or revised values.

- **RPN % Reduction Pareto** shows the reduction in the RPNs of the causes, from the initial values to the revised values, ranked from the greatest percentage reduction to the lowest percentage reduction.

- **Occurrence/Severity Matrix** displays the severity ratings on the horizontal axis and occurrence ratings on the vertical axis and then plots each cause at the intersection of its severity and occurrence ratings. You can specify whether you want to view the initial or the revised ratings, and you can use the Priority Area Coordinates area of the control panel to specify the end points for the high and low priority lines.

 Note: Pointing to a point on the generated occurrence/severity matrix will display information about the cause, including its severity and occurrence ratings. Note that if your analysis contains a very large number of cause descriptions, pointing to a symbol in the matrix may not display all of the causes represented by that point. However, all causes are still displayed in the Plot Summary.

- **SxO Pareto, Effect Severity Pareto, Cause Occurrence Pareto** and **Cause Detection Pareto** show the applicable values ranked from highest to lowest. Click the drop-down list on the control panel to chose which values to display. You can view the initial values only, the revised values only, or both values in combination. If you view both values, you can select to sort by either initial or revised values.

- **Effect Severity Pie, Cause Occurrence Pie** and **Cause Detection Pie** show the percentage of the effects or causes in the selected analysis that are represented by the rating value.
displayed in the plot legend. You can view the initial values or the revised values by clicking the drop-down list on the control panel.

- **Classification Pie** shows the percentage of the causes in the selected analysis that are represented by each special design manufacturing characteristic displayed in the plot legend.

- **Action Status Pie** shows the percentage of the actions in the selected analysis that are represented by each status type displayed in the plot legend. To exclude actions with a specific description, such as "None," you can select the Exclude Records with Description check box, then enter the specific values in the field.

- **Control Type Pie** shows the percentage of the controls in the selected analysis that are represented by each control type displayed in the plot legend.

- **RD Questions Pie** shows the percentage of the selected items that have a "Yes" answer to each risk discovery question displayed in the plot legend.

- **RD Ratings Pareto** shows the risk discovery rating values of the items ranked from highest to lowest.

- **Effect FEC Pie** is available only in RCM++ and RBI and shows the percentage of the effects in the selected analysis that are represented by each failure effect categorization type displayed in the plot legend.

Copy Information from the Plot

You can copy the plot data to the Clipboard so that you can paste it into another application by clicking the Copy Plot Data icon in the plot's control panel.

You can copy the plot summary information to the Clipboard so that you can paste it into another application by clicking the Copy Plot Summary icon in the plot's control panel.

FMEA Dashboards

You can now use the flexible Synthesis Dashboard utility for presenting data from the FMEA and FMRA analyses that you perform in XFMEA/RCM++/RBI.

To access this feature, open a project and choose Home > Reporting > Dashboard.
As with any other Synthesis dashboard, you can use the Dashboard Viewer to select any of the layouts that have been predefined for this type of data. In a secure database, only users with the "Manage dashboard layouts" permission can use the Dashboard Manager to create or edit layouts.

Tip: These dashboards always consider all of the FMEA/FMRA data in the current project, so it doesn’t matter which item is currently selected in the system hierarchy. If you wish to focus only on specific item(s) of interest, use the built-in filtering and drill-down capabilities when you configure the dashboard layout. (See Configuring a Drill Down and Configuring a Master Filter.)

Data Source Drop-Down List
When you are creating a dashboard layout based on FMEA/FMRA data, the drop-down list at the top of the Data Source panel gives three options.

- **All FMEA Record Types** returns data from items, functions, failures, effects and causes.
- **FMEA Causes** returns only data from cause records.
- **FMEA Cause Actions** (new in Version 2019) returns only data from actions assigned to causes in FMEAs.

As a simplified example, the following picture shows two dashboard grids for the same set of data. The first one uses the data fields for all FMEA record types, while the second uses the fields for FMEA causes only.
FMEA/FMRA Dashboard Data Fields

The data field names shown in this table are the default names. Starting in Version 2019, the field names use the display name from the interface style and consequently may not match the names shown here.

<table>
<thead>
<tr>
<th>Data Field</th>
<th>Description</th>
<th>FMEA Causes</th>
<th>FMEA Cause Actions</th>
<th>All FMEA Record Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Properties (these field names are preceded by the Property- prefix)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Record Type</td>
<td>This can be Item, Function, Failure, Effect or Cause.</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Name, Description</td>
<td>For system hierarchy items, the name is required but the description can be blank. For FMEA records, the description is required. If the name field contains an asterisk (*) or is blank when you save the record, the software automatically uses the first 50 characters of the full description.</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
</tbody>
</table>
Chapter 7: FMEA Analysis

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
<th>X</th>
<th>X</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause, Effect, Failure, Function, Item, Recommended Action</td>
<td>The description for the cause or action, as well as the cause (for actions), effect, failure, function and item that the record is associated with.</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>FMEA % Completed</td>
<td>The percentage that has been entered via the item properties.</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Target Reliability, Target Availability</td>
<td>The value that has been entered via the item properties (for items) or via the FMRA record properties (for causes).</td>
<td>X</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>Actual Completion Date, Actual Start Date, Planned Completion Date, Planned Start Date</td>
<td>The dates associated with the start and completion of the action.</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Action Status</td>
<td>The status of the action (e.g., Not Started, In Progress, etc.) as determined based on the actual and planned start/completion dates.</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Person Responsible</td>
<td>The person assigned responsibility for the action.</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Action Taken</td>
<td>The description of the outcome of the action.</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Review Date, Review Status, Reviewer</td>
<td>The fields associated with action review.</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
<tr>
<td>Action User [Type, #]</td>
<td>The various user-defined fields available for actions.</td>
<td>-</td>
<td>X</td>
<td>-</td>
</tr>
</tbody>
</table>

RPN metrics and qualitative ratings (these field names are preceded by the RPN- prefix)

<table>
<thead>
<tr>
<th>Field Description</th>
<th>Description</th>
<th>X</th>
<th>X</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si, Sr</td>
<td>The initial and revised severity rating.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Oi, Or</td>
<td>The initial and revised occurrence rating.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Di, Dr</td>
<td>The initial and revised detection rating.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>RPNi, RPNr</td>
<td>The initial and revised RPNs (S x O x D).</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Chapter 7: FMEA Analysis

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SxO)i, (SxO)r</td>
<td>The initial and revised severity times occurrence (S x O).</td>
</tr>
<tr>
<td>SODi, SODr, SDi, SDr</td>
<td>The initial and revised SOD or SD metrics.</td>
</tr>
<tr>
<td>RPN Reduction %</td>
<td>The percent reduction from the initial to revised RPN.</td>
</tr>
<tr>
<td>RRi, RRr</td>
<td>The initial and revised risk ranking.</td>
</tr>
</tbody>
</table>

QCPN metrics and quantitative values for ratings (these field names are preceded by the QCPN- prefix)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sev_Det_i, Sev_Det_r</td>
<td>The initial and revised severity if the failure is detected.</td>
</tr>
<tr>
<td>Sev_Un_i, Sev_Un_r</td>
<td>The initial and revised severity if the failure is undetected.</td>
</tr>
<tr>
<td>Occ_Prob_i, Occ_Prob_r</td>
<td>The initial and revised probability of occurrence.</td>
</tr>
<tr>
<td>Det_Prob_i, Det_Prob_r</td>
<td>The initial and revised probability of detection.</td>
</tr>
<tr>
<td>QCPNi, QCPNr</td>
<td>The initial and revised Quantitative Consequence Priority Number (QCPN).</td>
</tr>
<tr>
<td>QCPN Reduction %</td>
<td>The percent reduction from the initial to revised QCPN.</td>
</tr>
</tbody>
</table>

FMRA calculations and simulations (these field names are preceded by the FMRA- prefix)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability Prob of Failure</td>
<td>Values obtained from FMRA analytical calculations.</td>
</tr>
<tr>
<td>Availability Operating Cost</td>
<td>Values obtained from FMRA simulations.</td>
</tr>
<tr>
<td>Cost per Operating Time</td>
<td></td>
</tr>
<tr>
<td>RS DECI, RS DTCI, RS FCI</td>
<td></td>
</tr>
</tbody>
</table>
Criticality analysis (these field names are preceded by the Criticality- prefix)

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob of Loss</td>
<td>A quantitative criticality analysis factor defined via the FMRA properties for failure modes.</td>
<td></td>
</tr>
<tr>
<td>Mode Ratio, Criticality</td>
<td>Values obtained from criticality analysis calculations in the FMRA.</td>
<td></td>
</tr>
<tr>
<td>Failure Probability (Scale) Severity Class</td>
<td>The text labels associated with the failure probability and severity class ratings assigned for the failure mode (e.g., Level E – Extremely Unlikely and Category IV – Minor).</td>
<td></td>
</tr>
</tbody>
</table>

FMEA Tools

Find and Replace

In XFMEA, RCM++ and RBI, the Find and Replace tool allows you to search for and replace information within a specified project in the current database. To access the tool, choose **Home > Edit > Find and Replace**.

Starting in Version 2018, you can now search within any project that you have access to, even if you do not have permission to manage the project. You can replace information only in projects that you can manage.

The following picture shows an example of the Find and Replace tool in XFMEA.
To use the Find and Replace tool, follow these steps:

1. Use the **Search** area to specify which project, analyses and/or record types or properties to search. If you want to search all data in the current project, accept the default **All Analyses** option.

2. Use the **Find** area to choose which type of data to search (**Text**, **Date** or **Number**) and the criterion for the match (**Contains**, **Begins With**, **is**, **is empty**), and to enter the search word or value.

 As an option, you can select the **CaSe SeNSiTiVe** check box to limit the results to text that have the same case. For example, the search term "teXt" will not find "Text" because the case does not match.

3. In the **Replace With** area, specify the text or value that will be used to replace the existing data for any matches that you select. (Optional, available only in projects that you have permission to manage)

4. Click the **Find** button. The **Matches Found** area will display a list of any records that match your search criteria. To view the details of a record, double-click it, or select the record and click the **Go To** button. The project will open with the matching record selected.

 If you have permission to manage the project: to replace a text or value with the data that you have specified in the **Replace With** area, select the check box for each record
and click the **Replace** button. To select all matched records for replacement, click the check box in the table heading.

Transfer Projects

The Transfer Project utility allows you to create a new project with FMEA data transferred from an existing project. This might be used, for example, to create a new process FMEA with data transferred from an existing Design FMEA.

Note: This utility is intended to be used for transferring FMEA data from one project to another. Related analyses, such as design verification plans, control plans, etc. will not be transferred. This tool is not available for projects that contain linked FMEAs.

When you select an existing project in the project list and choose **Project > Management > Transfer Project**, the Transfer Project window will be displayed.

In the **Edit Project** area, type the name of the new project and choose the profile that will be used to set the configurable settings for the new project. Starting in Version 2018, you can also choose to use the settings from the current project.

![Edit Project Table](image)

In the **Map Records for Transfer** area, select options from the drop-down lists to define how the data will be "mapped" from the original project to the new project. If you click **Use Default** to reset all of the menus to their defaults, the new project will have all of the same items and functions from the original project. However, the failures in the new project will be based on the causes from the original project, the new effects will be based on the original failures and no causes will be created in the new project. You can then use the new project as a starting point for a new analysis.

![Map Records for Transfer Table](image)
Chapter 7: FMEA Analysis

If the default selections do not meet your needs, you can choose other options from the lists to specify how each type of record in the new project will be created.

Starting in Version 2018, the Other Options area provides additional capabilities for controlling the transfer:

a. Select the Track record association check box to maintain information about the association between the source record (i.e., the original record) and the descendant records (i.e., the transferred copies). This option is selected by default. If you clear the check box, no association information will be recorded. You cannot add this information later; it must be tracked from the time of the transfer.

b. If you create new effects based on the original effect and/or new causes based on the original causes, you can select the Transfer revised RPN ratings as initial ratings check box; this may be useful when, for example, you are creating an FMEA for the next version of a product.

Ratings Update
When using risk priority numbers in an FMEA, the revised RPN uses a second set of severity, occurrence and detection ratings to estimate the risk after the recommended actions have been implemented.

The Batch Update Revised RPN Ratings utility provides a quick way to set the revised ratings to match the initial ratings if they are not already defined. For example, if the recommended actions do not reduce the severity of an effect, then you can leave the Revised Severity field blank while recording the analysis and later use the utility to set all of the empty revised rating fields to match the initial ratings.

Choose FMEA > Tools > Ratings Update.

- **Update** - select to update the revised severity, occurrence and/or detection ratings that are not already set (if any).
- **Apply** - select to update only the records in the current FMEA or in all FMEAs in the current project.

When you click OK, you will be prompted to confirm because this cannot be undone. The specific changes will not be recorded in any history log or change log.

Tip: In projects using sub-severity ratings, this functionality uses only overall severity ratings and will not apply if you have neither assigned nor calculated overall ratings.
Failure - Cause Matrix
The Failure – Cause Matrix allows you to view the unique failure modes and causes that have been defined in the FMEA. This matrix helps to see when the same cause has been identified for more than one failure mode. To do this, open the FMEA and then choose FMEA > Tools > Failure – Cause Matrix.

In the matrix, the failures associated with the selected item will appear by row (i.e., vertically) and the unique causes will appear by column (i.e., horizontally). An X will appear in the intersecting cell when the failure is associated with the cause. You may have to scroll through the window to view all failures and causes associated with the selected item.

This report is not saved within the software. It is automatically generated based on current data each time you open the window. If desired, click Send to Excel to save the current report to an Excel spreadsheet.

FMEA Statistics Window
The FMEA Statistics window displays various statistics about the FMEA (both local and linked), including the number of causes, the percentage of causes that have RPN ratings assigned, the number of actions, etc. You can use these statistics to see how many items need ratings defined and what is the status of the actions assigned to the causes. To view them, open the FMEA and then choose FMEA > Tools > FMEA Statistics.

Information about the database, project and item is displayed at the top of the report followed by the statistics. If the Include sub-items option is selected, the totals represent the records associated with the FMEA for the selected item and the FMEAs for all of its sub-items. If this option is not selected, the totals represent the records in the current FMEA only.

This report is not saved within the software. It is automatically generated based on current data each time you open the window. Click Send to Excel to save the current report to an Excel spreadsheet.

Diagnostic Logic Assistant (DLA)
The product knowledge recorded in an FMEA can be a valuable resource for many other activities in the product life cycle. One practical application for this data is to assist in the
development of diagnostic/repair/troubleshooting documentation that may be provided in repair manuals and used by customer care agents.

The Diagnostic Logic Assistant window makes it easy to extract relevant data from the FMEA into Microsoft Excel, where you can organize and filter it as needed when preparing supporting documentation. To access the utility, choose System Hierarchy > Tools > Diagnostic Logic Assistant.

The table displays all of the effects from all of the FMEAs in the current project. The Component column indicates which item’s FMEA the effect appears in, while the Failure and Cause columns identify the possible failure modes that might result in this outcome.

You can use the check boxes at the top of the window to determine whether the table will also display the occurrence and detection ratings that were assigned to these potential failure modes in the FMEA (if any).
For example, the following picture in XFMEA shows fictional data from the FMEAs performed on the components of a chandelier, and the partial troubleshooting guide that might be developed based on the data for the "No light" effect.

Note that this report is not saved within the Synthesis repository. It is automatically generated based on current data each time you open the window. Click **Send to Excel** to save the current report to an Excel spreadsheet.
Chapter 8: RCM Analysis

RCM++ & RBI Only

ReliaSoft's RCM++ and RBI applications both offer a complete set of utilities to address the analysis steps specific to reliability centered maintenance (RCM).

Note About RCM Terminology: This application combines RCM and FMEA capabilities together in the same software interface. Although the property names within the software are fully configurable to fit the specific analysis terminology used by your organization, the ribbon commands, icons and window names are the same for all projects. Therefore, regardless of whether you are performing an RCM analysis or an FMEA, all of the information related to the functions and failure modes will be displayed in the FMEA tab of the Analysis panel and you will use the commands in the FMEA tab to manage this information. In other words, the term "FMEA" is often used within the software interface in place of "functional failure analysis."

In addition, when a name is not configurable, the term "Failure" is used to refer to the second level in the analysis hierarchy and the term "Cause" is used to refer to the fourth level. If you are performing an RCM analysis, you might refer to these levels as the "Functional Failure" and "Failure Mode." If you are performing an FMEA analysis, you might refer to these levels as the "Failure Mode" and "Cause."

RCM Background

RCM++ & RBI Only

Reliability Centered Maintenance (RCM) analysis provides a structured framework for analyzing the functions and potential failures for a physical asset (such as an airplane, a manufacturing production line, etc.) in order to develop a scheduled maintenance plan that will provide an acceptable level of operability, with an acceptable level of risk, in an efficient and cost effective manner.

According to the SAE JA1011 standard, which describes the minimum criteria that a process must comply with to be called "RCM," a reliability centered maintenance process answers the following seven questions:

- What are the functions and associated desired standards of performance of the asset in its present operating context (functions)?
- In what ways can it fail to fulfill its functions (functional failures)?
- What causes each functional failure (failure modes)?
Chapter 8: RCM Analysis

- What happens when each failure occurs (failure effects)?
- In what way does each failure matter (failure consequences)?
- What should be done to predict or prevent each failure (proactive tasks and task intervals)?
- What should be done if a suitable proactive task cannot be found (default actions)?

Although there is a great deal of variation in the application of RCM, this topic provides a brief general overview of common RCM techniques and requirements.

Prepare for the Analysis

As with almost any project, some preliminary work will be required to prepare for the RCM analysis. Some important up-front activities include:

- **Assemble Analysis Team**: One of the first steps in performing an RCM analysis is to assemble a cross-functional team of knowledgeable individuals to perform the analysis. The team should be large enough to make sure that relevant viewpoints and knowledge are represented but not too large. If the team is too large, it will be difficult to have productive discussions during meetings and it will be a waste of an extremely valuable resource – the time and patience of your organization’s subject matter experts.

 The composition of the team at any particular meeting may vary depending on the focus of the discussion. Team members should be familiar with the RCM analysis process, as it is practiced by the organization. In addition, a skilled facilitator can help to make sure that team meeting time is used effectively and the analysis is performed correctly.

- **Establish Ground Rules and Assumptions**: Identifying and documenting the ground rules and assumptions that will be followed can facilitate the analysis process by making sure that all members of the team understand and accept the conditions of the analysis.

 Issues to be discussed when preparing for the analysis may include:

 - Identify the scope of the analysis project and address other project management issues, such as schedule, budget, meeting procedures, etc.

 - Define the expected operational environment for the equipment and any other assumptions that may affect the analysis. For example, if the equipment is expected to be operated within a specific temperature/humidity range, will potential failures that occur beyond these ranges be considered in the analysis?

 - Agree on the definitions of failure that will be followed during the analysis.

- **Gather and Review Relevant Documentation**: The analysis team may identify existing references that will provide valuable input to the RCM analysis activity, such as operation manuals, previous maintenance plans, prior failure reports, etc.
Tip: You can use the analysis plan feature for a variety of project planning features, including the ability to document the members of the analysis team and the ground rules and assumptions.

Select the Equipment to Be Analyzed

Because RCM analysis requires an investment of time and resources, the organization may wish to focus analysis resources on selected pieces of equipment based on safety, legal, economic and other considerations. Two methods of equipment selection that are commonly employed are directly supported within the software.

The Selection Questions method consists of a series of yes/no questions that are designed to identify whether analysis is indicated for a particular piece of equipment. For example, the MSG-3 guideline, which is used to develop initial scheduled maintenance plans for the aircraft industry, proposes four questions (from the ATA MSG-3 Operator/Manufacturer Scheduled Maintenance Development guidelines, Revision 2003.1, Air Transport Association of America, 2003):

- Could failure be undetectable or not likely to be detected by the operating crew during normal duties?
- Could failure affect safety (on ground or in flight), including safety/emergency systems or equipment?
- Could failure have significant operational impact?
- Could failure have significant economic impact?

If the analysts answer "yes" for at least one of these questions, then detailed analysis is indicated for the equipment.

The Criticality Factors method consists of a set of rating scales designed to evaluate the criticality of the equipment in terms of relevant factors, such as safety, maintenance, operations and environmental impact. Each factor is rated according to a predefined scale where the higher ratings indicate higher criticality. The equipment’s overall criticality value can then be used as a ranking and/or as a threshold. For example, the analysis team may choose to start on the equipment with the highest criticality and proceed down the list as resources allow. Alternatively, the team may agree to perform detailed analysis for equipment with a criticality value higher than a specified threshold or to perform detailed analysis for all equipment with a criticality value in the top 20%.

Other methods may also be applied, such as Pareto analysis of equipment based on downtime, unreliability or another relevant metric. Whichever method (or combination of methods) is employed, the goal is to focus RCM analysis resources on the equipment that will provide the maximum benefit to the organization in terms of safety, legal, operational, economic and related priorities.
Chapter 8: RCM Analysis

Tip: You can use the [Risk Discovery (Equipment Selection)](http://xfmea.reliasoft.com) feature to apply the Selection Questions method or the Criticality Factors method.

Identify the Functions

One of the primary tenets of the RCM approach is that maintenance activities should be focused toward preserving equipment functionality. Therefore, it follows that the first step in analyzing a particular piece of equipment is to identify the functions it is intended to perform.

Many RCM references recommend including specific performance requirements in function descriptions, which will help to specifically identify functional failures. For example, "To provide hydraulic pressure of 3000 psi +/- 200 psi."

Identify the Functional Failures

Functional failures describe ways that the equipment may fail to perform its intended functions. This may include failure to perform a function, poor performance of a function, over-performance of a function, performing an unintended function, etc. As mentioned above, the performance limits that have been identified for the function may provide a guide to the functional failure description. For example, if the function is "To provide hydraulic pressure of 3000 psi +/- 200 psi" then the functional failures might include: "Provides hydraulic pressure of more than 3200 psi," "Provides hydraulic pressure of less than 2800 psi," etc.

Identify and Categorize the Effects of Failure

Identifying and evaluating the effects of failure will help the team to prioritize and choose the appropriate maintenance strategy to address a potential failure. Many RCM references contain logic diagrams that can be used to categorize the effects of failure. The following logic diagram is provided as an example in the SAE JA1012 “Guide to the Reliability-Centered Maintenance (RCM) Standard.” (From SAE JA1012 “A Guide to the Reliability-Centered Maintenance (RCM) Standard,” issued in January 2002) *Note: Only the Failure Effect Categorization portion of the logic is presented here. For the Task Selection portion, see [Select the Appropriate Maintenance Tasks](http://xfmea.reliasoft.com).*
This diagram has 5 questions with 6 failure effect categories. Other published logic diagrams may consist of 3 or 4 questions with 4 or 5 failure effect categories.

Tip: You can use any of the predefined logic diagrams that are shipped with the software or define your own custom logic diagram with 4, 5 or 6 categories.

Identify the Causes of Failure (Failure Modes)
The cause of failure (sometimes also called failure mode) represents the specific reason for the functional failure at the actionable level (i.e., the level at which it is possible to apply a maintenance strategy to address the potential failure). This determination is based on engineering judgment and relies on the team’s experience and skill with the RCM analysis process.

The SAE JA1012 guideline presents a useful demonstration of the many levels of detail that can be used to describe failure modes. For example (from SAE JA1012 "A Guide to the Reliability-Centered Maintenance (RCM) Standard," issued in January 2002):

- Pump set fails
 - Pump fails
 - Impeller fails
 - Impeller comes adrift
Chapter 8: RCM Analysis

- Mounting nut undone
- Nut not tightened correctly
- Assembly error

The recommendation states that "failure modes should be described in enough detail for it to be possible to select an appropriate failure management policy, but not in so much detail that excessive amounts of time are wasted on the analysis process itself."

Select the Appropriate Maintenance Tasks

Once you have identified the ways that the equipment might fail to perform its intended functions and evaluated the consequences of these failures, the next step is to define the appropriate maintenance strategy for the equipment. Although there is variation among practitioners regarding the terminology used to describe the available maintenance techniques, the typical options that the RCM analysis team may recommend include:

- Run-to-Failure – fix the equipment when it fails but do not perform any scheduled maintenance actions.

- Scheduled Inspections
 - Failure Finding Inspections – inspect the equipment on a scheduled basis to discover hidden failures. If the equipment is found to be failed, initiate corrective maintenance.
 - On-Condition Inspections – inspect the equipment on a scheduled or ongoing basis (condition monitoring) to discover conditions that indicate a failure is about to occur. If the equipment is found to be about to fail, initiate preventive maintenance.

- Scheduled Preventive Maintenance
 - Service – perform lubrication or other minor servicing actions on a scheduled basis. These actions may renew the equipment to some extent but they are not expected to have the same effect as a full repair or replacement.
 - Repair – repair or overhaul the equipment on a scheduled basis.
 - Replace – replace the equipment on a scheduled basis.
 - Design Change – re-design the equipment, select different equipment or make some other one-time change to improve the reliability/availability of the equipment.

The RCM analysis team’s decision of which strategy (or strategies) to employ for each potential failure may be based on judgment/experience, a predefined logic diagram (often connected to the failure effect categorization), cost comparisons, or some combination of factors. To
continue with the SAE JA1012 example introduced in Identify and Evaluate (Categorize) the Effects of Failure, the following picture shows the questions to be considered for failures with effects that have been categorized as "Hidden Operational." The full logic diagram also includes a separate set of questions for each of the other five categories.

![Logic Diagram]

Tip: You can use one of the predefined sets of task selection questions that are shipped with the software or define your own custom questions and task types.

Another approach is to compare normalized cost values and select the maintenance task that provides the desired level of availability for the minimum cost. For example, the team may recommend a run-to-failure maintenance strategy if a) the issue does not have an impact on safety, b) the run-to-failure approach provides an acceptable level of equipment availability (uptime) and c) the cost per uptime is less than it would be with a scheduled repair/replacement.
Chapter 8: RCM Analysis

Tip: You can simulate the operation of the equipment for a specified period of time in order to make estimates about the cost and availability that you can expect from potential maintenance strategies.

RCM References

- "Practical Application of Reliability-Centered Maintenance" by the Reliability Analysis Center, issued in 2003.

Functional Failure Analysis (FFA)

After you have determined which pieces of equipment will be analyzed with RCM techniques, the next step is to perform a functional failure analysis on the equipment. You do this in a manner similar to creating a Failure Modes and Effects Analysis (FMEA).

Tip: This section provides basic instructions for this portion of the analysis. The FMEA Analysis section of this documentation provides more detailed information about the features available in the Analysis
1. Select an item in the system hierarchy and choose **Analyses > FMEA > Add FMEA**. The FMEA analysis tab will open in the Analysis panel. In addition, the FMEA icon (F) will appear in the FMEA column in the system hierarchy, if the column is displayed.

When working in the Analysis panel, you have a choice of several ways to enter and edit the information. To use one of these views, click its tab at the bottom of the Analysis panel.

- The **Hierarchy** view displays the analysis records defined in your analysis (e.g., functions, actions, etc.) at a glance in a hierarchical tree structure. For more information about using this view, refer to **FMEA Hierarchy View**.

- The **Worksheet** view displays the functional failure analysis in a tabular format. The worksheet presents a column for each data field that has been enabled in the interface style for the project. For more information about using this view, refer to **FMEA Worksheet View**.

- The **Alpha/Beta** Ratios worksheet allows you to calculate the likelihood of each effect occurring, assuming a known overall failure rate for the item. For more information, refer to **Alpha/Beta Ratios Worksheet**.

- The **Filtered** view displays only records of a specific type (e.g., functions, tasks, etc.). Choose the record type that you want to view from the drop-down list at the upper right corner of the Analysis panel. For more information about using this view, refer to **FMEA Filtered View**.

2. Describe the functions the equipment is intended to perform.

 To add a function to the analysis, choose **FMEA > FMEA Records > Functions** and then provide information about what functions the equipment is intended to perform (e.g., for an airplane fire extinguishing system, a function might be "Store extinguishing agent under pressure").

3. Describe the potential functional failures.

 To add a functional failure to the analysis, choose **FMEA > FMEA Records > Failures** and then provide information about the ways that the equipment might fail to perform its intended functions (e.g., for an airplane fire extinguishing system, a functional failure might be "Fails to maintain full quantity of agent at correct pressure").
4. Describe the effects of each functional failure.

To add an effect to the analysis, choose FMEA > FMEA Records > Effects and provide information about the potential consequences if a failure occurs (e.g., for an airplane fire extinguishing system, an effect might be "Insufficient agent available in the Fire Extinguisher bottle for effective discharge").

5. Describe the potential failure modes.

To add a failure mode to the analysis, choose FMEA > FMEA Records > Causes and provide information about the specific reason for the functional failure at the actionable level (e.g., for an airplane fire extinguishing system, a failure mode might be "Leakage from Fire Extinguisher bottle assembly").

The following sections describe how to apply an RCM logic diagram and/or cost-based comparisons in order to determine the appropriate maintenance strategy to address the issues that have been identified in the functional failure analysis.

Failure Effect Categorization (FEC)

RCM++ & RBI Only

The Failure Effect Categorization window allows you to evaluate and categorize the effects of each functional failure, which can help the RCM analysis team to prioritize and choose the appropriate maintenance strategy to address the issues that have been identified.

Authorized users can define the questions and categories that will be used for this portion of the analysis. If you want to edit the questions and categories for the current project only, go to the Configurable Settings page of the Project Properties window and click the View/Edit Settings icon at the right side of the FEC Logic drop-down list.

If you want to define questions and categories that could be applied to other projects also, use the Profiles/Library Manager to update the active library and then return to the Project Properties window and apply the questions and categories to the current project. If you want the settings to apply only to the current project, change the settings in the Project Properties window only.
Note: As a reminder, settings are copied from the active library to each project, not linked. You can reselect a profile and have the most current settings applied to the project.

There are three ways to access the Failure Effect Categorization window, you can:

- Select an existing effect and choose FMEA > FMEA Records > Effects > Effect Categorization.
- Click the View/Edit Effect Categorization button that appears when you click the FEC field in the Effect Properties window.
- In the Task Manager, click Effect Categorization.

To begin the failure effect categorization process, answer Question 1 by selecting the Yes or No option. After doing so, the Answer 1 field on the right side of the window becomes available. You can use this field to document the reasons why the team chose the answer they did. To save time and ensure consistency, you can select from responses that have been set for this question for other effects. Click the Select Existing button next to the input field to open the Select Existing Text window.

Your answer to a question determines which of the following questions must be answered. Continue answering the rest of the applicable questions by selecting the Yes or No option and documenting the reasons, if desired. After you have answered the last question, the FEC category will be highlighted at the bottom of the window.

The FEC will also appear in the Category box on the right side of the window. You can select the category directly from the drop-down list in the Category box; doing this will automatically set the answers to the categorization questions and enable the appropriate answer fields.

Click OK to set the category. The failure effect categorization will also appear in the FEC column in the Analysis panel, if the column is displayed. To hide or display columns, right-click the column headers in the FMEA hierarchy view, then click Customize Columns to select which columns you want to display. These settings are stored per computer/username in the FMEA Hierarchy page of the Application Setup, so any project that you open on this computer will have the same columns displayed.

Clear All: Clears all entries and selections made in the window.

Spelling: Checks the spelling of the text in all input boxes within the window.
Chapter 8: RCM Analysis

The status bar at the bottom of the window displays the date/time of the last change to the failure effect categorization and the user who made the change.

Task Manager and Task Selection

RCM++ & RBI Only

The Task Manager allows you to work with tasks assigned to causes within the FMEA and to choose an appropriate maintenance strategy by using one or both of the available task selection methods.

To open the Task Manager from the FMEA hierarchy, double-click the Tasks node associated with the relevant cause or right-click it and choose Task Manager from the shortcut menu.

Note: For a general explanation of how to create and edit task records, refer to the Tasks topic. For instructions on how to use simulation to compare potential maintenance strategies based on cost and/or availability, refer to Using Simulation and Cost Calculations.

You can use the commands in the Tasks group of the Task Manager's ribbon to add a new task to the cause's URD, add an existing task to the URD, edit a task already associated with the URD or delete (i.e., remove) a task from the URD. You can use the commands in the Related Records group to view and/or edit the associated URD, model and corrective task.

Task Selection

The software's Task Manager supports two different methods that can help with the maintenance task selection portion of the analysis. One approach uses a series of questions that can guide you through the process of selecting an appropriate maintenance strategy. The other approach allows you to simulate the operation of the equipment with a given maintenance strategy in order to make estimates that can be used to compare tasks. You can choose to use one approach or the other, or a combination of both.

- Using Maintenance Task Selection Logic: For instructions on how to use a predefined set of questions to help you choose the appropriate maintenance strategy, refer to Using Maintenance Task Selection Logic.

- Using Simulation and Cost Calculations: For instructions on how to use simulation to compare potential maintenance strategies based on cost and/or availability, refer to Using Simulation and Cost Calculations.

In addition, once you have determined which scheduled tasks are most appropriate to address each failure mode, you may wish to use the software’s built-in utility for calculating the optimum maintenance interval.
Finally, once you have defined the maintenance tasks, you may wish to use the Scheduled Task Packaging window to review the entire maintenance plan and/or create groups of tasks.

Using Maintenance Task Selection Logic

This section provides instructions on how to use a predefined maintenance task selection logic to choose the appropriate maintenance strategy.

Note: For a general explanation of how to create and edit task records, refer to the Tasks topic. For instructions on how to use simulation to compare potential maintenance strategies based on cost and/or availability, refer to Using Simulation and Cost Calculations.

Maintenance task selection logic is shown in the Task Manager. To use the maintenance task selection logic approach, you must first have performed failure effect categorization for the associated effect. If this has already been done, the failure effect category of the associated effect will be displayed at the top of the Task Manager. If it has not, you can click Effect Categorization to open the Failure Effect Categorization window.

To begin the maintenance task selection process, answer the first question by clicking inside the Yes/No column. You can use the Explanation column to document the reasons why the team chose each answer. To save time and ensure consistency, you can select from responses that have been set for this question in other tasks. Click the input field and then click the Select Existing button next to the input field to open the Select Existing Text window.

The answers to the questions will help you determine which type(s) of tasks will be applicable and effective to address the current failure mode.

Authorized users can define the questions that will be used for this portion of the analysis. If you want to edit the questions for the current project only, go to the Configurable Settings page of the Project Properties window and click the View/Edit Settings icon at the right side of the Task Selection Logic drop-down list.

If you want to define questions that could be applied to other projects also, use the Profiles/Library Manager to update the active library and then return to the Project Properties window and apply the questions to the current project.
Simulation and Cost Calculations

RCM++ & RBI Only

This section provides instructions on how to use simulation to compare potential maintenance strategies based on cost and/or availability.

Note: For a general explanation of how to create and edit task records, refer to the Tasks topic. For instructions on how to use a predefined maintenance task selection logic to choose the appropriate maintenance strategy refer to Using Maintenance Task Selection Logic.

If you are using the simulation and cost calculations approach, you will be able to define different types of tasks, simulate the operation of the equipment for a specified time and then compare the results to select which task(s) will be most cost-effective in addressing the failure mode.

What's Changed? In previous versions of RCM++, you needed to specify time units in order to use the simulation and cost calculations approach. Units were defined via the interface style. Starting in Version 8, time units are required for all time inputs, allowing compatibility across all ReliaSoft applications. Authorized users define units at the database level, via the Define Units window.

Define the Probability of Occurrence for the Failure Mode
The model assigned to the cause record (via the URD assigned to the cause record) is used to define the probability that the item will fail due to the particular failure mode. (For information about using the exponential distribution, refer to A Note About the Exponential Distribution (Failure Rate or MTBF).)

Although models can be assigned at various levels in the analysis via the FMRA, you must have a model assigned at the failure mode level in order to use simulation to compare potential maintenance strategies based on cost and/or availability.

Define the Corrective Maintenance Scenario
The corrective maintenance scenario is defined by assigning a corrective task to the URD that is assigned to the cause record. This information is used to estimate the average availability and cost per operating time that could be expected from a run-to-failure maintenance strategy (i.e., performing corrective maintenance only) and it is also required for the simulations of any preventive maintenance strategies that you define.
The following corrective task properties are considered when simulating the run-to-failure maintenance strategy:

- Whether or not the failure mode is detectable. This is based on your selection in the **Start corrective task** field; select **Upon item failure** if the failure mode is detectable or **When found failed during an inspection** if the failure is undetectable.

- The **Task duration**, which is the amount of time that the equipment is expected to be down for each corrective maintenance action. This may include logistical delays and actual repair time.

- Whether the task brings the system down, in addition to bringing the item down. This is defined using the **Task Consequences** properties.

- How much the task restores the equipment, specified using the **Restoration** properties.

- The costs associated directly with the task, as specified in the **Additional Costs to Consider** properties. This may include downtime costs, labor costs, material costs and any other miscellaneous costs. (Note that if you have provided information on crews and/or **spare part pools** for the task, then labor costs and material costs may be accounted for via those resources.)

Define the Preventive Maintenance Scenario(s)

In order to use simulation to compare potential maintenance strategies based on cost and/or availability, you will need to define a task record for each potential maintenance strategy that you are considering. Any scheduled task can be part of the preventive maintenance strategy. Authorized users can **define the task types** that will be used for this portion of the analysis.

Scheduled tasks can be assigned to the URD that is assigned to the cause record either via the **Task Manager** or via the **URD window**.

Perform Simulation

Once you have defined the probability of occurrence for the failure mode, the corrective task and the possible scheduled tasks, you can click **Simulate** in the Task Manager. You will be asked to define the simulation settings. The software will then simulate the operation of the equipment for the specified operating time, given the reliability and maintainability characteristics that you have specified.

In the middle of the Task Manager, the cost per operating time and the average availability associated with a run-to-failure maintenance strategy will be displayed. At the bottom of the Task Manager, the table will display the same metrics for each proposed scheduled task.

Compare the Maintenance Strategies and Assign the Tasks

The final step when using the simulation and cost calculations method is to compare the results from the potential maintenance strategies and choose which task(s) will be performed. For
each task that you choose not to add to the scheduled maintenance plan, you can either
remove the task from the URD or, if it is not used anywhere else, you can delete the task
resource entirely.

Simulation Settings

When using the simulation and cost calculations method, once you have defined the probability
of failure and the maintenance scenarios for the failure mode, you can then define the
simulation settings and run the simulation. To do this, click **Simulate** in the Task Manager.

The Simulate window will appear, allowing you to specify the settings used in simulation.

*Note: The Simulate window is also used to specify simulation settings in order to predict system
availability and operation costs at the system level in the FMRA. In this case, it is accessed by selecting
the system that you want to simulate and choosing **FMRA > Calculations > Simulate (Availability)**.*

The software uses the simulation engines from ReliaSoft’s BlockSim software for system
reliability, maintainability and availability analysis.

- **Simulation Setup**
 - **Operation Time**: Specify the amount of operating time to be simulated (i.e., the
 simulation time) and the time units. The value you enter here will change the
 system’s operating time, shown in the item properties.
 - **Number of Simulations**: Enter the number of simulations that will be performed.
 A higher number of simulations will take longer to process but may yield more
 accurate results.

- **Repeatability**
 - **Use Starting Seed**: If you need your results to be repeatable, select this option
 and enter a seed, which specifies a starting point from which the random
 numbers used in simulation will be generated. The same random numbers and,
 therefore, the same simulation results will be generated when the same seed
 value is used.
 - **Number of Threads**: You can run simulations in multiple threads, which may
 improve performance and save time when simulating complex configurations. In
general, using twice as many threads as the number of cores in your computer is
appropriate; a ratio of threads to cores greater than this 2:1 ratio is likely to
degrade performance. To have the application automatically determine the number of cores in your system and set the number of threads accordingly, click the Suggested button beside the Number of Threads field.

The number of threads you use affects repeatability of results. In order for your results to be repeatable, you must use the same number of threads and the same seed each time you simulate the diagram. When you are using multithreading, the seed that you specify is the seed for the first thread; seeds for additional threads are sequential (e.g., if you are using 3 threads and your starting seed is 7, the threads will use 7, 8 and 9 as the starting points for random number generation).

Click OK to perform the simulation.

What's Changed? In previous versions of RCM++, the simulation time was set in the item properties or the cause properties.

A Note About the Exponential Distribution (Failure Rate or MTBF)

When deciding whether an item should be replaced preventively, there are two requirements that must be met: the item’s reliability must get worse with time (i.e., it has an increasing failure rate) and the cost of preventive maintenance must be less than the cost of the corrective maintenance. If both of these requirements are not met, then preventive maintenance will not be effective, either on a reliability basis or on a cost basis.

If you want to use mean time before/between failure (MTBF) or failure rate to describe the probability of failure, then you will be defining a constant failure rate (i.e., a rate that does not vary with time). In other words, you are assuming an exponential distribution. On the Settings page of the Application Setup, RCM++ and RBI provide two options for defining the exponential parameter: Lambda (which is also called failure rate) or Mean Time (which is also called MTBF).

Therefore, it is important to note that if the equipment’s failure behavior follows an exponential distribution, then preventive maintenance will not improve the overall reliability of the equipment. The following simple example illustrates this point.

Suppose that two components follow an exponential distribution with MTBF = 100 hours (or failure rate = 0.01). Component 1 is preventively replaced every 50 hours, while component 2 is never maintained. If we compare the reliabilities of the two components from 0 to 60 hours:

- **Component 1, with PM:** With PM, the reliability from 0 to 60 hours is based on the reliability of the original item operating for 50 hours, R(t=50)=60.65%, multiplied by the reliability of the new item operating for 10 hours, R(t=10)=90.48%. The overall result is 54.88%.
• **Component 2, without PM**: Without PM, the reliability from 0 to 60 hours is based on the reliability of the original item operating to 60 hours, \(R(60) = 54.88\% \).

Likewise, if we compare the reliabilities of the two components from 50 to 60 hours:

• **Component 1, with PM**: With PM, the reliability from 50 to 60 hours is based on the reliability of the new item operating for 10 hours, \(R(t=10) = 90.48\% \).

• **Component 2, without PM**: Without PM, the reliability from 50 to 60 hours is based on the conditional reliability of the original item operating to 60 hours, having already survived to 50 hours, or \(RC(T=60|50) = R(60)/R(50) = 90.48\% \).

As this example demonstrates, both maintenance strategies result in the same reliability. In other words, the preventive maintenance does not improve the equipment’s reliability. If you choose to perform preventive maintenance on equipment that does not exhibit an increasing failure rate (i.e., wearout), you may be wasting resources on maintenance actions that provide no benefit. In addition, the unnecessary maintenance may actually reduce the equipment’s reliability by reintroducing infant mortality and/or introducing new failures due to maintenance errors.

Task Types in RCM++/RBI

RCM++ and RBI allow users to define a variety of task types for scheduled maintenance, so that the available task types match their organization's terminology. In order for simulation and cost calculation results in RCM++ and RBI to be accurate, it is necessary to map these task types to the **three scheduled task classes** used in URDs (i.e., **preventive**, **inspection** or **on condition**). To
define the available task types, including their task class association, choose **File > Manage Repository > Task Types**.

(In a secure database, this is available only to users with the "Manage other repository settings" permission.)

The table in the window displays a list of the existing task types defined for the database. For each task type, you must specify a name, an abbreviation of up to three characters, and a task class that it corresponds to. Click the cell in the Task Class column to choose one of the three scheduled task classes from the drop-down list. You can have multiple task types that use the same task class. This can be helpful in indicating to users which properties should be defined for a given task. For example, a service task and a failure finding task could both be classified as inspection tasks for the purposes of the simulation; however, for the service task, a user will want to define a restoration factor, whereas for the failure finding task, no restoration occurs.

- To edit an existing task type, click inside the cell and either edit the text (in the Name and Abbreviation columns) or choose a new option from the drop-down list (in the Task Class column).
- To add a new task type to the bottom of the list, click inside the last row and enter the data.
- To delete a task type, select the row and click the **Delete** icon. **There is no undo for delete.**
- To insert a new task type above an existing one, select the existing row and click **Insert**.
- To move an existing option up or down in the list, select the row and click the **Move Up** or **Move Down** icon.

What's Changed? In previous versions of RCM++, task types and the cost calculation methods associated with them were defined via the task selection logic.
Optimum Replacement Window

The Optimum Replacement window helps you to determine the best time to replace components, based on the costs for planned (i.e., preventive) and unplanned (i.e., corrective) maintenance.

Preventive maintenance is a logical choice if, and only if, the following two conditions are met:

- Condition #1: The failure rate of the component in question increases with time, implying wearout.
- Condition #2: The overall cost of the preventive maintenance action is less than the overall cost of a corrective action. (The overall cost for a corrective action should include ancillary tangible and/or intangible costs, such as downtime costs, loss of production costs, lawsuits over the failure of a safety-critical item, loss of goodwill, etc.)

To access the Optimum Replacement window, choose FMRA > Calculations > Optimum Replacement.

Available Items

The Available Items area on the left side of the window shows, for the current branch of the system hierarchy, any item, function, failure or cause that has an associated URD. The following requirements must be met for an item to be available for inclusion in the optimization calculations:

- Must have a failure distribution.
- The failure model must meet the following requirements.
 - Fixed reliability and exponential distributions are not allowed.
 - Weibull distributions must have beta > 1.
 - Gamma distributions must have k > 1.
 - Loglogistic distributions must have std < 1.
 - For generalized gamma distributions and mixed Weibull distributions, there must be an increasing failure rate within at least one time period. A local optimum can then be found within intervals with an increasing failure rate.
Planned and Unplanned Replacement Costs
In the table, the columns with white backgrounds require input. The Planned Replacement Cost and Unplanned Replacement Cost are always required. Simply type the cost directly into each cell.

Calculation Options
When you click Calculate, you can choose from the following options:

- Calculate the individual optimum replacement time for each item.
- Calculate a common optimum replacement time, which is the most cost-effective time to replace all of the selected items concurrently.
- Calculate clustered optimum replacement times, which allows you to specify a number of times to replace groups of the selected items concurrently. For example, if you enter 3 in the Number of clusters field, the software will determine the three best times to replace groups of items such that all of the selected items are replaced at one of the three times.

Results and Plots
The table shows the results for each item. The total costs per unit time based on all included items are displayed under the table.

Click Cost vs. Time Plot to show a plot of the results.

Create Tasks
You can click Create Maintenance Task(s) > At Replacement Time to create preventive tasks for one or more of the items.

The window that appears allows you to select which items to create tasks for. The preventive tasks created in this way restore the item to as good as new condition and are scheduled at fixed intervals based on item age, equal to the optimum replacement time.
Task Packaging

Scheduled Task Packaging Window

For a given project, you can use the Scheduled Task Packaging window to review all of the tasks that have been proposed to be performed at fixed intervals (based either on item age or calendar time), choose which ones to incorporate in the final maintenance plan and, if desired, group tasks into task packages for the most efficient allocation of resources.

To open this window, choose System Hierarchy > Tools > Task Packaging.

This window consists of two tabs: the Tasks tab and the Plot tab. The Tasks tab allows you to group tasks according to a variety of criteria, and the Plot tab provides a graphical view of how the tasks are currently grouped. You can move tasks into and out of groups as many times as needed, until you come up with a configuration that meets your needs. None of the changes that you make in this window are permanent until you click one of the following:

- **Apply Changes** accepts all changes that you have made in the Scheduled Task Packaging window and commits them to the database.
- **Create Selected Packages** takes the groups that are currently selected in the window and commits them to the database as task packages.

You can tell the difference between a group (which is a proposed task package that has not yet been committed to the database) and a task package (which exists as a resource in the database) by looking at their icons.

To use the Scheduled Task Packaging window, first decide whether you want to view only unpackaged tasks, only packaged tasks or all tasks proposed to be performed at fixed intervals, and make the appropriate selection in the Filter Tasks field.
Grouping Tasks
You can select any group (including Unpackaged) or package and group the tasks that are in it. Tasks can be automatically grouped by:

- Task type
- Zone, provided this property is enabled for tasks in the interface style.
- Access, provided this property is enabled for tasks in the interface style.
- Time, in three ways:
 - Clusters of time, based on Euclidean distance:
 - Click Time - Bisect to divide the tasks into two groups.
 - In the Time - Clusters field, specify the number of time clusters to group the tasks into and then click the button.
 - Click Time - Fixed Interval to create a group scheduled to be performed at a specified interval.

In the window that appears:

- In the Perform every field, enter the length of the interval at which the tasks will be performed. You must specify time units for this value.
- The Packaging Intervals fields allow you to specify a range of scheduled intervals that will automatically be incorporated into the task package. The time units for these fields are the same as those specified for the Perform every field. For example, if you enter 150 hours in the Start Time field and 200 hours in the End Time field, then tasks that are scheduled to be performed at fixed intervals from 150 to 200 hours can automatically be included in the group to be performed at the scheduled time rather than at their individually scheduled times.

The groups that are created by automatic grouping are named according to the way in which they were created, but you can double-click a group to change its name.

You can also drag any task into a group or package. Note that you can do this regardless of whether the task meets any criteria that may have been used to create the group or package; it is the user's responsibility to determine whether or not the move is appropriate.
Managing Groups and Packages

The following commands are available for working with the groups and packages shown in the Scheduled Task Packaging window.

- To move all tasks out of a group or package and into the Unpackaged group, click **Ungroup Selected**. Note that if you move all tasks out of a group, the group is deleted. If you move all tasks out of a package, the package is not deleted but is empty. While groups may occasionally appear empty, such groups are automatically deleted the next time you perform any operation that refreshes the Tasks tab.

- To remove all empty packages, click **Delete Empty Packages**.

If you want to delete a single package, you can do so through the **Resource Manager**.

- You can delete a group level by clicking **Remove Level**.

The effect of this command varies depending on what is selected.

 - If you have selected a group that has subgroups, the selected level will be deleted, leaving all tasks within the subgroups that they are currently assigned to.

 - If you have selected a group that has tasks assigned to it, the group and all of its "sibling" groups (i.e., all groups of that level that share the same parent group) will be deleted and the tasks will be moved up into the parent group. If there is no parent group (i.e., if the selected group is at the top level), the tasks will be moved into the Unpackaged group.

The reason for this behavior is that a group can contain tasks or it can contain subgroups; no group can ever contain both tasks and subgroups. Thus, if you delete one group and move its tasks into its parent group, the same operation must be performed for all of its sibling groups.

- You can return to the packaging state saved in the database by clicking **Start Over**. As mentioned above, no changes that you make in the Scheduled Task Packaging window are saved in the database until you click either **Apply Changes** (to accept all changes) or **Create Selected Packages** (to create only the package(s) currently selected).
To mark groups and/or packages as complete or incomplete, select the groups and/or packages and then click **Complete** or **Incomplete**. A flag will appear in the Flag column for each selected group or package. You can remove the flag by selecting the group or package and clicking **Clear**.

Display Options
In addition to the **Filter** drop-down list, which allows you to specify whether you want to view only packaged tasks, only unpackaged tasks or all tasks, there are several other tools to help you control how information is displayed in the Tasks tab.

- You can use the **Time Units** drop-down list to change the units displayed in the window.
- The **Color Code** drop-down list allows you to apply a color-coding gradient to the tasks shown in the window, based on their assigned intervals, from green (shortest interval) to red (longest interval). Choose **Overall** to apply a single gradient to all tasks, regardless of their package. Choose **Within Packages** to apply a separate gradient to the tasks within each package. Remove all color-coding by choosing **None**.
- Click **Expand All** to show all levels of the hierarchy in the window, or **Collapse All** to show only the top level. Clicking **Collapse Tasks** collapses the tasks within each group or package, so that you see only the hierarchical structure of the groups/packages without seeing any of the associated tasks. This command is a toggle; if it is selected, you can expand a group or package, and the next time you perform an action that refreshes the Tasks tab, the tasks will be collapsed again.

Additional Tools
You can click **Send View to Excel** to send the current contents of the Tasks tab to a new Excel file. The file will then open automatically if the software is installed on your computer.
The Plot tab provides a graphical view of the task grouping/packaging, as it currently stands within the Task tab. Note that this is not a reflection of changes that have been committed to the database, but of the current proposed grouping. The following plot types are available for the Scheduled Task Packaging window:

- **Packages** displays the groups and packages with vertical lines demarcating their start and end intervals. Tasks assigned to each group are shown with a +, while unpackaged tasks are shown with an X. Note that tasks that share an assigned interval are plotted in the exact same location, so only one is visible. You can select **Include Interval** to display the interval at which each group is scheduled to be performed as an additional vertical line.

- **Packages - Horizontal** displays the groups and packages as horizontal lines with points demarcating their start and end intervals. Tasks assigned to each group are shown with a +. Note that tasks that share an assigned interval are plotted in the exact same location, so only one is visible. Unpackaged tasks are not shown in this plot. You can select **Include Interval** to display the interval at which each group is scheduled to be performed as an additional point on the group line.
Chapter 9: RBI Analysis

RBI Only

ReliaSoft RBI software risk based inspection (RBI) analysis for the oil & gas, chemical and power plants in adherence to the principles and guidelines presented in the American Petroleum Institute's recommendations in the API RP 580 and RP 581 publications, as well as the American Society of Mechanical Engineers’ recommendations in the ASME PCC-3-2007 publication.

Important: Starting in Version 2019, the RBI software adheres to the 3rd edition of RP 581. Consequently, results may differ from those obtained using previous versions.

When you open an RBI analysis created in a previous version, any existing results will be cleared. There are several new properties that you will need to define for any components that you want to calculate results for.

RBI Background

RBI Only

The American Petroleum Institute (API) recommends to develop an inspection program using risk-based methods. You can use ReliaSoft RBI to record the data relating to the potential damage to specific equipment and components, and then forecast future physical and economic consequences of failure as well as the probabilities of failure for individual components, equipment and entire plants. In addition, you will be able to better plan when to inspect, maintain and replace weak components before failure occurs.

The program is primarily based on two publications: API RP 580 and API RP 581. Both provide guidance on developing a risk-based inspection program for fixed equipment in refining, petrochemical and chemical process plants. The documents are written to include RBI methods for pressurized fixed equipment such as pressure vessels, piping, tanks, pressure relief devices and heat exchanger tube bundles, among others.

Note: RBI corrects several errors that are present in the API RP 580 and API RP 581 standards so the results obtained in the RBI software may differ from those calculated using other methods. These changes included correcting several property values in tables (e.g., the nominal boiling point of NO is 22°C and not the 135°C shown in the standard), correcting inconsistencies in equations and correcting some theoretical inconsistencies.
Introduction
The RBI software calculates the probability of failure and the consequence of failure for given components in a pressurized environment. These calculations are used to help plan inspections and reduce the risk of failure.

The API defines failure as the loss of containment from a pressure boundary resulting in leakage to the atmosphere or a rupture of the pressurized component. Throughout a given period of time, damage will accumulate within a pressurized environment. That damage causes increased risk of failure to equipment and components. After a significant amount of damage, a predetermined risk target is exceeded and an inspection of that component is recommended to better understand and measure the damage.

Consequences of Failure
Within RBI, there are two types of consequence analyses: area and financial. The loss of containment by leakage, rupture or other causes can cause damage to nearby equipment, the environment and/or be harmful to personnel. Some components must have both types of consequence analysis performed, while others do not. The consequence properties help to rank components based on risk.

The consequence analysis in the RBI software is modeled after API RP 581’s Level 1 consequence analysis, which is a method used to evaluate the consequences of fluid or gas release.

Probability of Failure
In an RBI assessment, the probability of a component failing is based on several factors:

- Each component has its own set of internal properties including its generic failure frequency (GFF), which is the frequency of failure prior to any specific damage occurring from exposure to the operating environment. The RBI software calculates the GFF value using four different damage hole sizes and uses adjustment factors to reflect departures from industry data and to account for damage within a given component’s normal operating environment. Hole sizes are Small, Medium, Large and Rupture.

- The Management Systems Score is an adjustment factor that accounts for the management influence of a given plant’s supervisors and management on the mechanical integrity of the plant equipment. This factor helps to measure how likely it will be that management finds issues related to the plant’s mechanical integrity. The factor is calculated based on a Management Score Survey that evaluates the facility’s management systems and their effect on a given plant’s risk.

- Each Damage Factor is determined in accordance with API RP 581 and is based upon damage mechanisms relevant to construction, process services, current condition and prior damage inspections. According to API 581, the purpose of these damage factors is
to provide a way to statistically evaluate the amount of damage that may be present as a function of time in service and effectiveness of an inspection activity to quantify damage.

Program Parts
The API RBI program can be broken down into three parts:

- Determining the Management Score.
- Defining the probability of failure in an RBI Assessment.
- Modeling the consequences in API RBI.

Date Definitions
In a risk based inspection, the following dates are used:

- The installation date is the date the component was installed or replaced. This is set on the General Properties tab.
- The plan date is the next date when the component is scheduled to undergo major maintenance or replacement. It is also set on the General Properties tab.
- The RBI date is the date when you perform the calculations. This is displayed on the Results tab.
- If the RBI analysis indicates that inspections are needed before the plan date, then the target date is the date when the inspections should be performed to reduce the risk to an acceptable level on the plan date. It is also displayed on the Results tab.
The following graphic shows the risk vs. time curve (i.e., the risk increases as time increases). When you perform an inspection, the risk should go down.

Risk Categories (Current Repository)

The Risk Priority labels that are assigned on the Results tab from an RBI analysis (i.e., Low, Medium, Medium High and High) are determined based on two scoring matrices that can be customized to reflect the specific risk tolerance of your organization. Both scoring systems use the same 5-point scale to assign a rating based on the failure probability. In one, this is combined with a second 5-point scale that focuses on the financial consequences of failure (in terms of US dollars). In the other, the second 5-point scale focuses on the size of the
surrounding area that might be affected if a containment failure occurs (in terms of square meters).

To view or modify the rating scales that will be used for all RBI analyses in the current database, choose **System Hierarchy > Risk Based Inspection > Risk Categories**.

For each 5-point rating scale, you can set the **Range** of values that determine which rating will be applied in the RBI analysis results. For example, with the default settings shown in the picture below, the application assigns the lowest (best case) rating of 1 if the calculated failure probability is between 0 and 0.1; whereas, the application assigns the highest (worst case) rating of 5 if the probability is between 0.5 and 1.

You also have the option to customize the **Display** preferences for these rating scales. For example, with the default settings shown in the picture, the failure probability ratings will be displayed in the RBI analysis results as numbers from 1 to 5, but the consequence ratings will be displayed as letters from A to E. Therefore, if the analysis indicates that the failure probability and consequence both fall into the lowest (best case) rating, the results will display 1 for the failure probability and A for the consequence, while the highest (worst case) ratings will display 5 and E, and so on. The application then uses the scoring matrix table shown below to apply applicable Risk Priority label (Low, Medium, Medium High or High).
When you click OK to save the changes, any existing RBI analysis will be updated automatically.
The Scoring Matrix
The following table shows the scoring matrix.

```
  5  4  3  2  1
A  B  C  D  E
```

Defining the Management Score

![RBI Only][1]

Each project must include a Management Systems Evaluation score, which is made up of 13 different types of questions and is used in the RBI evaluation results. There are a total of 101 questions with a maximum of 1,000 points. The questions pertain to the areas of plant management, operations, maintenance, safety, inspection, training and engineering. Typically, this is done by auditors who are qualified to answer the specific questions.

To open the Management Systems Score window, choose System Hierarchy > Risk Based Inspection > Management Score.

In the Management Score Options area, choose one of the following options:

- If you already know what the score is, such as from a recent inspection, choose Enter score from 0 to 1000 without answering questions and enter a value in the Score field.
Chapter 9: RBI Analysis

- If you decide not to or cannot conduct an audit, choose **Assume average score of 500**. In this case the **Score** field value is automatically set to 500.

- If you are ready to perform the audit, choose **Answer questionnaire and calculate score**, then do the following:

 - Select any row in the **Categories** area on the left. The **Questions** area on the right then displays the applicable questions.

 - The Possible Score column shows the maximum value (i.e., best case scenario) for each question while the Actual Score column allows you to select the applicable score from the drop-down lists.

 - If desired, you can use the Comments column to record any additional information that is relevant to your rating for the question (up to 255 characters). You can type directly in this field or click anywhere in the field to display the **Select Existing** icon. This icon opens the **Select Existing Text window** that allows you to choose comments used in other data sources.

The **Score** field at the top of the window displays the sum of all the individual question scores.

Building the RBI System Hierarchy

For RBI analyses, you have the option to define systems, subsystems and components as you do for any system hierarchy. However, the risk based inspection analysis can be performed only for specialized items that represent specific equipment and component types that are addressed in the API RP 580/1 guidelines. To perform an RBI analysis, the hierarchy must include:

- At least one piece of equipment that is eligible for RBI analysis. The Add RBI Equipment window provides a list of the equipment types that can be analyzed (e.g., compressor, heat exchanger, etc.).

- At least one component for each piece of equipment. The Add RBI Component window provides a list of the component types that are available for the equipment type that is currently selected.
Note: The specific types of equipment and components are defined by the RBI methodology and cannot be modified or deleted. You can have multiple instances of each type of equipment and component in the same project.

RBI items have the same **item properties** as other items in the system hierarchy and can have additional analyses attached (i.e., they can include [FMEAs](#), [Risk Discovery Analyses](#), etc.). They do have the following differences:

- While you can place an RBI item under a non-RBI item, you cannot place a non-RBI item under an RBI item.

- An RBI component item must always be under the relevant equipment type and cannot be placed or promoted above it.

Adding RBI Equipment

When you add an RBI equipment to the system hierarchy, it will be added to the bottom of the list.

- Select any item in the system hierarchy other than an RBI component item and choose **System Hierarchy > Risk Based Inspection > Add RBI Equipment.**

 The command opens a window that displays the list of equipment types that have been predefined for RBI analysis. Use the check boxes to select one or more items to add to the system configuration and click **OK.**

Adding RBI Components

When you add an RBI component to a piece of equipment, it will be added to the bottom of the list for that equipment.

- Select an RBI equipment item and choose **System Hierarchy > Risk Based Inspection > Add Component.**

 The command opens a window that displays the list of components for that type of equipment (based on the RBI standards). When adding a component, you have the option to create the item immediately or work through the wizard to define the **general properties** and **damage factors** first. If you choose not to define the properties when adding the component, you can still view/edit these properties at any time from the tabs in the Analysis panel.
Converting System Hierarchy Items to RBI Equipment

You can convert a non-RBI item in the system hierarchy to an RBI item if it is at the lowest level in its branch or if it has no more than one level of dependents. In addition, the item must not have any RBI equipment items as dependents.

- Select the item and choose System Hierarchy > Risk Based Inspection > Convert to Equipment.

The command opens a window where you can choose which equipment type to convert the item to.

- If the item is at the lowest level in its branch, select the desired RBI equipment type and click OK to convert the item.
- If the item has dependents, select the desired RBI equipment type and then click Next >. On the second page, choose which RBI component type each dependent item will be converted to, then click OK.

All converted items retain the original item properties they had before the conversion.

RBI Assessment

RBI Properties

When you have selected an RBI component in the system hierarchy, the RBI properties tab will be visible in the Analysis panel. There are six tabs at the bottom of the panel that lead you through the steps in the RBI assessment process. For each component, you will be able to:

1. Define the general properties.
2. Select which damage factors are relevant.
3. Set the analysis properties for the relevant damage factors.
4. Set the consequence properties.
5. Generate and evaluate the results.
6. View the generated plot.

Note that the selections you make in earlier steps determine which properties you must set in later steps. You have the option to perform the first two steps when you are adding the RBI
component item to the system hierarchy. You can then view and/or edit these properties in the Analysis panel at any time after the item is created.

Specifying the Default Unit of Measure for Each Field
When you set the unit of measurement for a field, the software will use the last selected unit of measure for future uses of that field. (For example, on the General Properties tab, if you set the Operating Temperature to be "81 (F)" then the next time that you create a component, its unit of measure will be degrees Fahrenheit. If you then change the unit of measure to kelvin, then kelvin becomes the default unit of measure.) This applies to the every use of the same property by any component.

On the Results tab, the **Area Consequence Results** will display the same unit of measure that is used with the **Risk Target for Area Consequence** field on the Consequence Properties tab.

General Properties

The General Properties tab contains properties that are later used both for the potential screening of possible damage factors and the screening of possible consequences, as well as for calculations of failure and consequence.

Note: These properties also appear in the Add RBI Component window when adding a component to the system hierarchy.

Note the following:

- The **Material of Construction** and **Processed Fluid Type** fields are optional. For each field, if you select an option, the software will hide the non-relevant damage factors on the Damage Factors Selection tab. If the applicable construction material or fluid type is not shown in the drop-down list, then leave the field blank.

- The **Operating Temperature** value must be >= -250 and <= 1,000 degrees Celsius or the equivalent in other units.

- The **Operating Pressure** value must be >= 101,325 pascals or the equivalent in other units. If you accept the default (i.e., atmospheric pressure) then the component is treated as being non-pressurized.

Note: For Tank650 equipment, if a COURSE or TANKBOTTOM component is not pressurized then the analysis is simplified and has fewer consequence properties.
Chapter 9: RBI Analysis

- Use the **Date of Component Installation** to specify when the component was installed in the system. It must be before the current date.

- Use the **Plan Date** to specify the date when the component is scheduled to be maintained. It must be later than the current date.

If desired, you can use the Notes column, ![Notes Icon], to record any notes about the information supplied. These notes appear only in the RBI Properties tab and are not displayed in any reports. Double-click inside the cell to open the Notes window. An icon in the cell indicates that notes have been saved for that field.

IMPORTANT: If you change a measurement unit, you must also manually change the specified value, as the RBI software will not change the values.

Damage Factors Selection

RBI Only

The Damage Factors Selection tab allows you to select which damage factors apply to the component. The list of factors that may be considered will depend on the component and your answers on the **General Properties tab**. For example, for a tank bottom, assuming that the other values remain at their defaults, nine damage factors will be displayed if the material of construction is carbon or low alloy steel, but only three damage factors will be displayed if the material is austenitic stainless steel.

Note: These factors also appear in the Add RBI Component window when adding a component to the system hierarchy.

For each factor, click inside the Applies? column to answer Yes or No. If the factor applies, it will be highlighted in red and you will be prompted to specify the relevant properties on the **Damage Factors Properties tab**.

Each factor also includes a Comments field where you can enter any additional information (up to 255 characters) that is relevant to your response to the damage factor. You can type directly in this field or click anywhere in the field to display the **Select Existing** icon. This icon opens the **Select Existing Text window** that allows you to choose comments used in other data sources.
Damage Factor Properties

The Damage Factors Properties tab allows you to make the required inputs for the damage factors that are applicable for the component (based on your selections on the Damage Factors Selection tab).

The properties are grouped into nodes based on the relevant damage factor. However, if a property applies to multiple damage factors, then it will appear in the Apply to Multiple Damage Factors node at the top of the tab and will only need to be specified once regardless of how many damage factors share the property.

All damage factor properties and consequences properties must be filled out before you can calculate the RBI results.

If desired, you can use the Notes column, , to record any notes about the information supplied. These notes appear only in the RBI Properties tab and are not displayed in any reports. Double-click inside the cell to open the Notes window. An icon in the cell indicates that notes have been saved for that field.

IMPORTANT: If you change a measurement unit, you must also manually change the specified value, as the RBI software will not change the values.

Consequence Properties

The Consequences Properties tab allows you to make the required inputs to evaluate the consequences of failure in terms of flammability, toxicity and financial loss. These properties apply regardless of the selected damage factors and damage factor properties.

Note: For Tank650 equipment, if a COURSE or TANKBOTTOM component is not pressurized (i.e., the operating pressure is 101325 Pa) then the analysis is simplified and has fewer consequence properties.

RBI performs an API RBI RP Level 1 consequence analysis to calculate the risk based upon releases for common risk-causing fluids. Flammable and non-flammable consequence areas are calculated for each hole release rate based upon a given hole size within the component, and these are all combined based on the relative frequency of failure for each hole size. (See the Fluid List.)

If desired, you can use the Notes column, , to record any notes about the information supplied. These notes appear only in the RBI Properties tab and are not displayed in any.
reports. Double-click inside the cell to open the Notes window. An icon in the cell indicates that notes have been saved for that field.

IMPORTANT: If you change a measurement unit, you must also manually change the specified value, as the RBI software will not change the values.

Flow Rates/Flammability
The Flow Rates/Flammability properties define the general properties of the process fluid and the storage/process area. Note the following:

- Use the **Representative Process Fluid** drop-down list to select the fluid that the component most often handles.
- In the **Atmospheric Temperature** field, enter a value that must be >= -100 and <= 100 degrees Celsius or the equivalent in other units.
- In the **Component Mass** (i.e., the amount of material stored in the component) and **Inventory Mass** (i.e., the amount of material included in the component and that can flow into the component from other connected components) fields, enter values greater than 0.

Toxicity
The Toxicity properties are used to determine the physical damage from loss of containment or rupture that may occur to the surrounding equipment, components, personnel and environment. The impact areas may occur from pool fires, flash fires, fireballs, jet fires and/or vapor cloud explosions. Note the following:

- In the **Toxicity Mitigation Reduction (%)** field, enter a value greater than or equal to 0 that specifies the percentage by which the toxic effects are lessened due to mitigation systems.
- In the remaining fields, enter the specific **mass fractions** (i.e., the fraction of the process fluid that is composed of that compound) as decimal values that must be >= 0.0 and <= 1.0.

Financial
The Financial properties are used to determine the monetary cost of failure. These calculations take into consideration or calculate the hole costs, material costs, plant downtime, cost of the equipment, the cost on the surrounding area and the personal injury costs.
Fluid List
The following table shows the risk-causing fluids that can be considered in the analysis.

<table>
<thead>
<tr>
<th>Representative Fluid</th>
<th>Examples of Applicable Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1 - C2</td>
<td>Fuel gas, methane, ethane, ethylene, LNG</td>
</tr>
<tr>
<td>C3 - C4</td>
<td>Propane, butane, isobutane, LPG</td>
</tr>
<tr>
<td>C5</td>
<td>Pentane</td>
</tr>
<tr>
<td>C6 - C8</td>
<td>Gasoline, naptha, light straight run, heptane</td>
</tr>
<tr>
<td>C9 - C12</td>
<td>Diesel, kerosene</td>
</tr>
<tr>
<td>C13 - C16</td>
<td>Jet fuel, kerosene, atmospheric gas oil</td>
</tr>
<tr>
<td>C17 - C25</td>
<td>Gas oil, typical crude oil</td>
</tr>
<tr>
<td>C25+</td>
<td>Residuum, heavy crude, lube oil, seal oil</td>
</tr>
<tr>
<td>Hydrogen (gas)</td>
<td>Hydrogen only</td>
</tr>
<tr>
<td>Hydrogen Sulfide (H2S)</td>
<td>Hydrogen sulfide only</td>
</tr>
<tr>
<td>Hydrogen Fluoride</td>
<td>Hydrogen fluoride</td>
</tr>
<tr>
<td>Water</td>
<td>Water</td>
</tr>
<tr>
<td>Steam</td>
<td>Steam</td>
</tr>
<tr>
<td>Acid (low)</td>
<td>Acid, caustic</td>
</tr>
<tr>
<td>Aromatics</td>
<td>Benzene, Toluene, Xylene, Cunene</td>
</tr>
<tr>
<td>Note: Styrene is an aromatic and is treated as such for calculation purposes. (This is per API RP 581, page 3-50.)</td>
<td></td>
</tr>
<tr>
<td>Aluminum Trichloride</td>
<td>Aluminum Chloride</td>
</tr>
</tbody>
</table>
Pyrophoric vs. Pyrophoric Materials

<table>
<thead>
<tr>
<th>Pyrophoric</th>
<th>Pyrophoric Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia</td>
<td>Ammonia</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Chlorine</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td>Carbon Monoxide</td>
</tr>
<tr>
<td>Diethyl Ether</td>
<td>Diethyl Ether</td>
</tr>
<tr>
<td>Hydrogen Chloride (HCl)</td>
<td>Hydrogen Chloride</td>
</tr>
<tr>
<td>Nitric Acid</td>
<td>Nitric Acid</td>
</tr>
<tr>
<td>Nitrogen Dioxide</td>
<td>Nitrogen Dioxide</td>
</tr>
<tr>
<td>Phosgene</td>
<td>Phosgene</td>
</tr>
<tr>
<td>Toluene Diisocyanate (TDI)</td>
<td>Toluene Diisocyanate</td>
</tr>
<tr>
<td>Methanol</td>
<td>Methanol</td>
</tr>
<tr>
<td>Propylene Oxide</td>
<td>Propylene Oxide</td>
</tr>
<tr>
<td>Ethylene Glycol Monoethyl Ether Acetate</td>
<td>Ethylene Glycol Monoethyl Ether Acetate</td>
</tr>
<tr>
<td>Ethylene Glycol Monoethyl Ether</td>
<td>Ethylene Glycol Monoethyl Ether</td>
</tr>
<tr>
<td>Ethylene Glycol</td>
<td>Ethylene Glycol</td>
</tr>
<tr>
<td>Ethylene Oxide (EO)</td>
<td>Ethylene Oxide</td>
</tr>
</tbody>
</table>

RBI Results

RBI Only

After you have entered all of the component data, you can calculate the results by choosing
System Hierarchy > Risk Based Inspection > Calculate Risk.

http://xfmea.reliasoft.com
The Calculations Options window allows you to select which components to calculate.

Calculation Options

If you select **Ignore incomplete components**, the software will not attempt to calculate the results for components that do not have all of their RBI properties defined. If not selected, RBI will validate all components before calculating the results and will stop validation on the incomplete component and not calculate the results for any component.

If you select the **Set reliability policy to 'Based on RBI Analysis'** check box, the software will use the model created from the RBI results as the reliability policy on the Properties tab of the Analysis panel.

Calculated Results

- **Area and Financial Consequence Results:**
 - **Area Consequence Results** displays the estimated effect of a failure based on safety.
 - **Financial Consequence Results** displays the estimated monetary effect of a failure (i.e., the repair, clean-up, replacement and other costs).
- **RBI Date Results** displays results on the date the results were calculated:
 - **Overall Damage Factor and Probability of Failure** displays the total damage factor associated with the component as well as the probability of failure associated with the total damage factor.
 - **Risk Analysis (Area)** displays the calculated *area at risk* (*i.e.*, the total area value times the probability of failure at the given date) and the probability category and consequence category of the component failing (as based on the Risk Category values for the project) at the given date. It also displays the calculated Risk Priority value based on the scoring matrix (*i.e.*, Low, Medium, Medium High or High).
 - **Risk Analysis (Financial)** displays similar information for the financial consequences of failure.

- **Plan Date Results** displays the same type of results as the RBI Date Results node, but shows the risk values on the plan date (*i.e.*, the date of the planned maintenance) assuming you do nothing until then.

- If the analysis indicates that an inspection is required before the plan date, the **Target Date Results** node specifies the *target date* (*i.e.*, the date at which the component will exceed the maximum acceptable risk(s) and therefore the date when the next set of inspection(s) should take place) and provides information about when you should inspect the component and the anticipated state of the component on that date.

 If the risk on the plan date is less than the maximum acceptable risk, then no target date is given as no inspections are needed until the plan date.

- **Recommended Inspection(s):** If applicable, this node displays the number of inspections needed for each type of damage and the level of inspection that you will need to perform on the target date when you inspect the component to get your desired results.

 While the exact meaning of effectiveness varies depending on the component and what its properties are, the following table shows a generic version of the inspection levels that can be recommended to be performed.

<table>
<thead>
<tr>
<th>Level</th>
<th>Generic Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Highly Effective</td>
</tr>
<tr>
<td>B</td>
<td>Usually Effective</td>
</tr>
<tr>
<td>C</td>
<td>Fairly Effective</td>
</tr>
</tbody>
</table>

http://xfmea.reliasoft.com
• **Plan Date with Inspection Results** displays the same type of results as the RBI Date Results node, but shows the risk values on the plan date assuming that the recommended inspections on the target date are carried out. If no inspections are needed, the node states that.

Generated URDs

If you select the **Set reliability policy to 'Based on RBI Analysis'** check box when calculating RBI results, the software will generate a URD based on the RBI analysis results. In this case, the failure model is always a 2-parameter Weibull with the time units set to Years. These models cannot be directly modified by any user. To change them, you must change the analysis and recalculate the model.

If you already have an existing model for the component, you can clear the **Set reliability policy to 'Based on RBI Analysis'** check box and base the reliability on it instead. (In other words, the model generated by the RBI software is best used in cases where you do not already have an established reliability model.)

Models are not created for pressure relief devices (PRDs), which are replaced either at the date the maximum acceptable risk is reached or when the plan date is reached, whichever is sooner.

Generating Scheduled Tasks

When the URD is created, the software also creates a scheduled task for the component:

• For non-HEXTUBE components:
 • If inspections are needed, then an **inspection task** is created and scheduled for the date given in the Target Date Results node on the Results tab.
 • If inspections are not needed, then a **preventive task** is created, scheduled for the plan date.

• For HEXTUBE components:
 • If no life extension will be performed, then an inspection task is created.
 • If life extension will be performed, then a preventive task is created.

The task is scheduled for the target date, if it exists. Otherwise, the task is scheduled for the plan date.

Using the Generated URD in Other Analyses

The generated URD and model can be used in many places in your analyses. For example:
Chapter 9: RBI Analysis

- You can use it with a Functional Failure Analysis (FFA) to generate the maintenance tasks for the component.
- You can use it in the Failure Modes and Reliability Analysis (FMRA) to determine the reliability of the entire system (including synchronizing the hierarchy with BlockSim) or calculate the system availability and cost values.
- You can use it when performing simulations and cost calculations.

RBI Plots

The RBI Plot tab shows the risks associated with the component versus the various critical dates during the analysis. You can choose to view a plot of either the financial risk or the area risk. Note that for components that do not have a calculated area risk (e.g., tank components at atmospheric pressure), the area risk plot will not show any meaningful data.

The risk values that always appear for a component are those associated with the RBI date and the plan date without any recommended inspections. If calculated results indicate that the component requires inspections prior to the plan date, then the risks at the target date (for inspections) and the plan date (with inspections performed) are also shown. In addition, if by estimation the component reaches minimum wall thickness, a red line will be shown to signify the date associated with reaching minimum wall thickness.

Plot Capabilities

When working with the RBI Plot tab, you have the same capabilities that you have when working with plots in an FMEA or functional failure analysis. (See Basic Plot Features.)

Special Item Types

Configuring a HEXTUBE Component

Used in heat exchangers, HEXTUBEs are used to carry gas and/or liquids from one side of the heat exchanger to the other. They only require that you define the general properties and then review the calculated results.

General Properties

The General Properties tab contains information about the HEXTUBE and is divided into two nodes: General and Financial.
IMPORTANT: If you change a measurement unit, you must also manually change the specified value, as the RBI software will not change the values.

General
The properties in this node determine the basic properties of the HEXTUBE. Note the following:

- The Initial HexTube Model is optional and allows you to assign a model, which may represent a fixed time or a distribution, to describe the damage properties of the HEXTUBE. You can choose an existing model or create a new one. If no model is assigned, it is assumed that the HEXTUBE cannot fail.

 The model can be generated from previous inspection data of HEXTUBEs in identical or similar process environments. If no previous data is available, you can create a model from whatever information is available, such as estimated corrosion rates and corrosion allowance information.

- Use the Date of Component Installation to specify when the HEXTUBE was installed in the system. It must be before the current date.

- Use the Plan Date to specify the date when the HEXTUBE is scheduled to be maintained. It must be later than the current date.

- Use the Planned Shutdown Date After Current Plan Date to specify the date of inspection (shutdown) following the plan date.

Financial
The Financial properties are used to determine the monetary cost of the HEXTUBE failing. These calculations take into consideration or calculate the hole costs, material costs, plant downtime, cost of the equipment, the cost on the surrounding area and the personal injury costs. Note the following:

- Use the Date of Last Inspection to indicate the last date that the component was inspected. If there was no inspection, use the date the component was installed.

If desired, you can use the Notes column, to record any notes about the information supplied. These notes appear only in the RBI Properties tab and are not displayed in any reports. Double-click inside the cell to open the Notes window. An icon in the cell indicates that notes have been saved for that field.

Results Properties
The results are displayed in the following nodes:

- The Financial Consequence Results node displays the total cost of the HEXTUBE if it breaks (i.e., the repair, clean-up, replacement and other costs).
Chapter 9: RBI Analysis

- The **RBI Date Results** node displays the results as of the date the results were calculated:
 - The **Probability Category** displays the probability of the component failing (as based on the Risk Category values for the project) at the given date.
 - The **Consequence Category** displays similar information for the financial consequences of failure.
 - The **Risk Priority** displays the calculated value based on the scoring matrix (i.e., Low, Medium, Medium High or High).

- **Plan Date Results**: This node displays the same type of results as the RBI Date Results node, but shows the risk values on the plan date (i.e., the date of the planned maintenance) assuming you do nothing until then.

- If the analysis indicates that an inspection is required before the plan date, the **Target Date Results** node specifies the target date (i.e., the date at which the component will exceed the maximum acceptable risk(s) and therefore the date when the next set of inspection(s) should take place) and provides information about when you should inspect the HEXTUBE and the anticipated state of the HEXTUBE on that date.

 If the risk on the plan date is less than the maximum acceptable risk, then no target date is given as no inspections are needed until the plan date.

- **Plan Date with Inspection Results**: This node displays the same type of results as the RBI Date Results node, but shows the risk values on the plan date assuming that the recommended inspections on the target date are carried out. If no inspections are needed, the node states that.

- **Inspection Planning without Repair**: This node displays the recommended actions if you do not repair the HEXTUBE, but only inspect and replace it.
 - **Perform Inspection** displays Yes if you should inspect the HEXTUBE at the next plan date, or No if you should wait until following plan date to inspect the HEXTUBE.
 - **Perform Replacement** displays Yes if you should replace the HEXTUBE at the next plan date, or No if you should wait until following plan date to replace the HEXTUBE.
 - **Optimal Replacement Frequency** is the optimal time between replacements assuming no repairs are done.
RBI Plot
The RBI Plot tab shows the risks associated with the HEXTUBE versus the various critical dates during the analysis in a financial risk plot. (Note that the Area Risk plot does not show any data as HEXTUBES are not concerned with the risk to the surrounding area.)

The risk values that always appear for a component are those associated with the RBI date and the plan date without any recommended inspections. If calculated results indicate that the component require inspections prior to the plan date, then the risks at the target date (for inspections) and the plan date (with inspections performed) are also shown. In addition, if by estimation the component reaches minimum wall thickness, a red line will be shown to signify the date associated with reaching minimum wall thickness.

Configuring Pressure Relief Devices
RBI Only
Pressure relief devices (PRDs) are used to relieve excess pressure build-up in a plant and they are the only pieces of RBI equipment that include RBI-specific properties.

General Properties
The General Properties tab contains information about the pressure relief device and is divided into three nodes: General, Financial and Demand.

IMPORTANT: If you change a measurement unit, you must also manually change the specified value, as the RBI software will not change the values.

General
The properties in this node determine the basic properties of the pressure relief device. Note the following:

- The **Maximum Allowed Working Pressure** value must be greater than 101,325 pascals or the equivalent in other units.

- The **Failure on Demand Model Available** field allows you to specify that there is a model available that describes the failure properties of the pressure relief device. You can then use the **Reliability Model for PRD FOD** field to assign a model, which may represent a fixed time or a distribution. You can choose an existing model or create a new one.

- The **Leakage Model Available** field allows you to specify that there is a model available that describes the leakage properties of the pressure relief device. You can then use the **Reliability Model for PRD POL** field to assign a model, which may represent a fixed time or a distribution. You can choose an existing model or create a new one.
Chapter 9: RBI Analysis

If no models are available, then you must answer other several other questions that RBI uses to generate the internal models that will be used in the RBI calculations. (These internal models are not resources and cannot be modified by the user.)

- Use the **Last Installation Date/Inspection Re-furbish Date** to specify when the pressure relief device was installed or last refurbished. It must be before the current date.
- Use the **Plan Date** to specify the date when the pressure relief device is scheduled to be maintained. It must be later than the current date.
- Use the **Regulatory Inspection Interval (yrs)** to specify the maximum number of years allowed between the refurbishing of the pressure relief device.

Financial
The Financial properties are used to determine the monetary cost of failure. These calculations take into consideration or calculate the hole costs, material costs, plant downtime, cost of the equipment, the cost on the surrounding area and the personal injury costs.

Demand
The Demand properties are used to determine the properties that relate to the various overpressure demands to which the pressure relief device can be subjected. Note the following:

- In the **Overpressure Multiplier** field, enter a value between 1 and 4, where 1 indicates the best case scenario and 4 indicates the worst case scenario (i.e., the component is expected to rupture).

If desired, you can use the Notes column, 📝, to record any notes about the information supplied. These notes appear only in the RBI Properties tab and are not displayed in any reports. Double-click inside the cell to open the Notes window. An icon in the cell indicates that notes have been saved for that field.

Assigning Components
For each pressure relief device, you must assign the components that are being protected by the device. The possible component types that can be assigned are:

- All component types for the Compressor, Pipe, Pump and Vessel-FinFan equipment types.
- The HEXSS and HEXTS component types for the Heat Exchanger equipment.

Each assigned component must already have its properties defined in its parent piece of equipment before being used by the pressure relief device.
To assign a component to the PRD, while on the General Properties tab, choose **System Hierarchy > Risk Based Inspection > PRD Components > Assign Components**.

In the window that is displayed, select the applicable components. You can assign the same component to multiple pressure relief devices.

Results Properties
The displayed results include the following information:

- The **Area - Based Risk** and **Financial - Based Risk ($)** fields display the risk at the next recommended inspection/refurbishment date.
- The **Target Date** displays the date of the next recommended inspection/refurbishment.

Table of Steel Types

<table>
<thead>
<tr>
<th>Group</th>
<th>Material (A), (B), (C)</th>
</tr>
</thead>
</table>
| 1 | 1. All carbon and low alloy steel bars, plates and structural shapes not otherwise listed in this table.
 | 2. SA-216: Grades WCC and WCB, and SA - 217: Grade WC6, if they are water-quenched or normalized, and tempered.
 | 4. Obsolete 1934 ASME Code, Section VIII material specifications: S1, S2, S25, S26, and S27 (E).
 | 5. Steel made using A201 and A212 specifications unless it can be established that the steel was produced by a fine-grain practice (F). |
1. SA-216: Grade WCA if water-quenched or normalized, and tempered.
 SA-216: Grades WCB and WCC if water-quenched and tempered, produced to a fine grain practice and the thickness does not exceed 2 inches.
 SA-217: Grade WC9 if tempered and normalized
 SA-285: Grades A and B and SA-414: Grade A
 SA-442: Grade 55 if normalized, not produced using a fine grain particle and is > 1 inch thick
 SA-442: Grade 60 if it is normalized and not produced using a fine grain practice
 SA-515: Grades 55 and 60
 SA-516: Grades 65 and 70, SA-612 and SA-662: Grade B if not normalized

2. All materials from Group 1 that are produced using a fine grain practice and are normalized and are not listed in Groups 3 and 4 below. This does not apply for cast steels.

3. All fittings, forgings, pipes and tubing not listed in Groups 3 and 4 below.

4. If the parts were fabricated using the guidelines from paragraph UG-11, Section VIII, Division 1 of the ASME Code must be included in this group, regardless of which group they should otherwise be in.

5. Steel made using A201 and A212 specifications if it can be established that the steel was produced by a fine-grain practice.

1. SA-182: Grades 21 and 22, SA-336: Grades F21 and F22, and SA-387: Grades 21 and 22, if tempered and normalized
 SA-302: Grades C and D
 SA-442: Grades 55 < 1 in. if normalized and not produced using a fine grain practice
 SA-516: Grades 55 and 60 if not normalized
 SA-533: Grades B and C, SA-662: Grade A

2. All material of Group 2 if normalized and produced to fine grain practice and not listed in Group 4 below.
SA-203
SA-442, if normalized and produced using a fine grain practice
SA-508: Class 1
SA-516, SA 612 and SA 662 if normalized
SA-524 and SA 537: Classes 1 and 2
SA-738: Grade A

Notes:
A. When a material sub-classification is not shown, all sub-classifications of the material are included.
B. For all material assignment notes:
 i. As permitted by the material specifications, all cooling rates faster than those by air, followed by tempering, are considered to be equal to tempering and normalizing heat treatments.
 ii. As described in SA-20, the production to fine grain practice is the necessary procedures for obtaining a fine austenitic grain size.
C. Unless specific information to the contrary is available, all product forms containing materials made using obsolete specifications for pipes, tubes, castings, forgings and bars should be assigned to Group 1.
D. Discontinued in 1956, the API Code for Unfired Pressure Vessels, 1st edition, included these ASTM specifications for carbon steel plates, which were intended to be used for structural steel for locomotives, bridges and rail cars. Additional uses included locomotive and stationary service boilers and firebox steel. The A149 and A150 ASTM codes were designed for pressure vessels containing high-tensile-strength carbon steel plates.
E. The S1 and S2 forge welding, S26 and S27 carbon steel plates and S25 open-hearth iron standards were included in Section VIII of the 1934 edition of the ASME Code for steel specifications and the titles of some of these specifications are similar to those ASTM specifications given in the API Code for Unfired Pressure Vessels, 1934 edition.
F. The four grades included in the ASTM A 515 and the four grades included in the ASTM 516 specifications replaced the A201 and A212 steels. In addition, steel that was made using the ASTM A 212 specification was made in strength grades equivalent to Grades 65 and 70, which have accounted for several know brittle failures. Unless it can be established that the steel was enhanced in toughness properties using the fine grain practice production method, steel made using the ASTM A 201 and A 212 specifications should be assigned to Group 1.
Chapter 10: Analysis Plans

The Analysis Plan utility allows you to:

- Specify the members and leaders of a project team.
- Define the tasks involved in your analysis and keep track of their completion.
- List the information that all members of the analysis team will use to make judgments in the analysis.
- Specify the expected conditions of use.
- Track the time spent working on the analysis and the members who have attended the sessions.
- Track team members’ assessments of how effective the FMEA analysis process has been.

You can assign an analysis plan to an item at any level of the system hierarchy. For instance, if you want the entire project to be covered by one plan, you could assign an analysis plan only to the top-level system. Conversely, you might prefer to have a separate analysis plan for each subsystem.

Analysis Plan Window

To access the Analysis Plan window, select the item in the System panel that the analysis plan will be applied to, then choose Analyses > Planning > Add Analysis Plan.

You can manage analysis plans by clicking the Analysis Plan tab in the Analysis panel.

The Analysis Plan window consists of six tabs. The information on these tabs is included in the Analysis Plans Summary and Analysis Plan Details reports created in the Reports window. Each tab and its components are presented next.

Note that the name, description and status of the analysis plan are displayed at the top of all tabs. The status of the analysis plan is shown above the four dates fields and is based on the dates given in those fields:

- **Scheduled** - This indicates that a starting date for the project has been defined but the project has not started (i.e., the planned start date is later than the current date, and no start date or completion date has been entered).
Chapter 10: Analysis Plans

- **Late Start** - This indicates that the planned starting date for the project has passed and the project has not started (i.e., the planned start date is later than the current data, and no actual start date or completion date has been entered).

- **In Progress** - This indicates that the project is in progress and the due date has not arrived (i.e., the actual start date is earlier than the current date, and there is no completion date).

- **Overdue** - This indicates that the project is in progress but the due date has passed (i.e., there is an actual start date, the current date is later than the due date, and there is no completion date).

- **Complete** - This indicates that the project has been completed (i.e., there is a completion date).

Team Tab

The Team tab of the Analysis Plan window allows you to specify the members of the team who are involved with the project.

To add a team member, click inside a cell to enter their information. First Name, Last Name and Display Name are required fields. All others are optional. You can also import existing users as team members by clicking the Import Existing Users button and selecting existing database users. If you do so, or if you pick an existing user from the Display Name drop-down list, then the remaining fields (except for the Leader field) are populated with data and cannot be changed.

To mark whether a team member is a project leader, click inside the cell in the Leader column to select Yes or No using the drop-down list. More than one team member can be a project leader.

At the bottom of the Import Existing Users window is the Show repository users only check box. If this check box is selected, then only users who have access to the database are displayed. Clear the check box to display the users who have access to the database and all persons who have been added as a team member to any analysis plan in the database.

Analysis Checklist Tab

The Analysis Checklist tab allows you to define the tasks involved in your analysis and keep track of their completion.

You can work from an analysis checklist in the active library by selecting a checklist from the Reset Checklist from Library drop-down list, or you can create your own. If you create your own analysis checklist or make changes to one from the library, you can click the Save Checklist in Library button to name and store your new checklist in the library for future use.
You can enter estimated and actual completion dates for each task in the checklist. When you click in a date cell, you can enter a date manually or click the calendar icon and select a date in the calendar that appears.

In the bottom right corner of the window, you can estimate the level of completion of the analysis, either by entering your own estimate in the **Completion Estimate** field or by reviewing the automatically generated values that show the number of checklist tasks completed or the number of actions completed for the item(s) to which the analysis plan applies. These figures will refresh automatically whenever you make changes to the actual completion dates or in the analysis plan.

Ground Rules and Assumptions Tab
The Ground Rules and Assumptions tab of the Analysis Plan window allows you to list the information that all members of the analysis team will use to make judgments in the analysis.

You can work from a list of assumptions in the active library by selecting an assumptions list from the **Reset Assumptions from Library** drop-down list, or you can create your own. If you create your own list of assumptions or make changes to one from the library, you can click the **Save Assumptions in Library** button to name and store your new assumption list in the library for future use.

Conditions of Use Tab
Starting in Version 2018, the Conditions of Use tab allows you to list conditions under which you expect the product to be used (e.g., Screen set to 75% brightness).

You can work from a list of conditions in the active library by selecting a list from the **Reset Conditions from Library** drop-down list, or you can create your own. If you create your own list of conditions or make changes to one from the library, you can click the **Save Conditions in Library** button to name and store your new conditions list in the library for future use.

Work Sessions Tab
The Work Sessions tab allows you to track the time spent working on the analysis and the members who have attended the sessions. The time can be entered using multiple formats (e.g., 8 AM, 3pm, 1700, etc.).

You can specify which members of the analysis team attended each work session listed by clicking the **Enter Attendance** button or by clicking a cell in the Attendance column to open the Enter Attendance window.

If you have made changes on the tab, the **Total Work Session Time (Hours)** field will update automatically. This calculation is based on the start and end times entered for each work session.
Quality Survey Tab
The Quality Survey tab allows you to track team members’ assessments of how effective the FMEA analysis process has been.

You can work from a survey in the active library by selecting a survey from the Reset Survey from Library drop-down list, or you can create your own. If you create your own survey or make changes to one from the library, you can click the Save Survey in Library button to open the Save Survey in Library window, which allows you to store your new survey in the library for future use.

Each user involved in the process may answer the survey questions after the analysis is complete. When you have the answers to the survey, click in the Average Rating cell for each question and enter the average rating, which must be a numerical value of zero or greater. The Overall Average Rating will update automatically based on your changes.
Chapter 11: Risk Discovery

The Risk Discovery tab in the Analysis panel allows you to perform a preliminary analysis that can help you select the equipment that will receive more detailed analysis.

- For FMEA, this may be referred to as a Change Point Analysis or Preliminary Risk Assessment.
- For RCM, this may be referred to as the Equipment Selection.
- For RBI, this may be referred to as Qualitative RBI.

There are two configurable methods available for performing this analysis; the one you use depends on your choice in the project properties.

- **Risk discovery questions** allows you to answer a series of yes/no questions.
- **Risk discovery ratings** allows you to assign ratings for a variety of different factors and then calculate an overall criticality value for each item or piece of equipment.

Whichever method is selected, the goal of this task is to provide a systematic approach to focus limited analysis resources where they will provide the maximum benefit and ensure the highest return on investment.

To add a Risk Discovery analysis, select an item in the System panel then choose Analyses > Planning > Add Risk Discovery.

The Risk Discovery tab will open in the Analysis panel. In addition, the Risk Discovery icon will appear in the corresponding column in the System Hierarchy tab of the System panel while the Risk Discovery value will appear in the Risk Discovery Details column (if those columns have been selected for display on your computer).

Showing Results in the System Panel

In the System panel, the Risk Discovery column displays a green icon if a Risk Discovery analysis is associated with the item. Additionally, if the Mark item for more detailed analysis check box is selected at the bottom of the Risk Discovery analysis, then the Risk Discovery icon will display in red.
Chapter 11: Risk Discovery

In the System panel, what the Risk Discovery Details column displays depends on the Risk Discovery type:

- If the project is using risk discovery questions, then this column will display the number of questions with "Yes" answers. More "Yes" answers indicates greater risk.

- If the project is using risk discovery ratings, then this column will display the calculated value of all categories, which is based on the method in use for the ratings used in the project. Higher values indicate greater risk.

Generating a Report

To generate a report of the Risk Discovery data, choose **Home > Reporting > Reports**.

In the **Reports window**, select any of the predefined report forms under the Risk Discovery heading.

Using Questions

If the project is configured to use questions for Risk Discovery analysis, you can answer a variety of yes/no questions and then calculate a value for each item or piece of equipment.

The questions will depend on the configurable settings for the current project. To view or change the settings, choose **Project > Management > Configurable Settings > RD Questions**. (In a secure database, this is only available for users with the "Edit project properties" permission.)

When you select a response for a question, the label changes color to give a visual indication of the question's status, where green indicates a No answer (not critical) and red indicates a Yes answer (critical). (See **Risk Discovery Questions**.)
If desired, use the Comments field to provide any additional information that is relevant to your answer (up to 255 characters per question). Click anywhere in the field to display the Select Existing icon. This icon opens the Select Existing Text window that allows you to choose comments used in other data sources.

Showing Results in the System Panel

In the System panel, if the Risk Discovery Details column has been selected for display on your computer, then it will display the number of questions with "Yes" answers. More "Yes" answers indicates greater risk. Additionally, if the Mark item for more detailed analysis check box is selected, then the Risk Discovery icon will display in red.

Generating a Report

To generate a report of the Risk Discovery data, choose Home > Reporting > Reports.

In the Reports window, select any of the predefined report forms under the Risk Discovery heading.
Using Ratings

If the project is configured to use ratings for Risk Discovery analysis, you can assign ratings for a variety of different factors and then calculate an overall item criticality value for each item or piece of equipment.

The categories, factors and rating scale options will depend on the configurable settings for the current project. To view or change the settings, choose Project > Management > Configurable Settings > RD Ratings. (In a secure database, this is only available for users with the "Edit project properties" permission.)

When you select a rating for each factor, the software calculates a Category Rating for each category and an Overall Rating for the item. Starting in Version 11, the calculation method can use the product, sum, max or average. (See Risk Discovery Ratings.)

<table>
<thead>
<tr>
<th>Category</th>
<th>Factor</th>
<th>Rating</th>
<th>Comments</th>
<th>Category Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>Potential for Personal Injury</td>
<td>3 - Moderate</td>
<td>10.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Severity of Personal Injury</td>
<td>2 - Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Health Hazards</td>
<td>3 - Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fire/Explosion Event Possible</td>
<td>2 - Not Possible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance</td>
<td>Downtime Impact</td>
<td>3 - Moderate</td>
<td>14.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repair Costs</td>
<td>4 - Significant</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spare Parts Availability</td>
<td>3 - 2 to 4 weeks</td>
<td>7.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Affected Downtime Area</td>
<td>4 - Areas A and B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operations</td>
<td>Capacity Reduction Impact</td>
<td>3 - Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Regulatory Requirements</td>
<td>1 - No</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impact on Energy Consumption</td>
<td>1 - No</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impact on Scrap</td>
<td>1 - No</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Failure Frequency Potential</td>
<td>1 - > Annually</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If desired, use the Comments field to provide any additional information that is relevant to your ratings (up to 255 characters per factor). Click anywhere in the field to display the Select Existing icon. This icon opens the Select Existing Text window that allows you to choose comments used in other data sources.

Showing Results in the System Panel

In the System panel, if the Risk Discovery Details column has been selected for display on your computer, then it will display the calculated value of the overall rating used in the analysis. Higher values indicate greater risk. Additionally, if the Mark item for more detailed analysis check box is selected, then the Risk Discovery icon will display in red.
Chapter 11: Risk Discovery

Generating a Report
To generate a report of the Risk Discovery data, choose **Home > Reporting > Reports**.

In the **Reports window**, select any of the predefined report forms under the Risk Discovery heading.
Chapter 12: Parameter Diagrams (P-Diagrams)

A Parameter Diagram (P-Diagram) is a structured tool that identifies the inputs from a system and relates those inputs to the desired system outputs, while considering the controlled and uncontrolled factors. It is useful in brainstorming and documenting input signals, noise factors, control factors, error states and ideal responses, and helps the FMEA team understand and make visible the robustness of the design that is being analyzed. It can provide important input to System and Design FMEAs.

Add a P-Diagram
To add a P-Diagram for any item in the system hierarchy, select or right-click the item and choose Analyses > Add P-Diagram.

The P-Diagram tab will open in the Analysis panel. In addition, the P-Diagram icon will appear in the corresponding column in the System Hierarchy tab of the System panel (if that column has been selected for display on your computer).

Enter the Data
The P-Diagram tab provides input boxes for the elements that are typically recorded in this type of analysis: Input Signals, Noise Factors, Control Factors, Ideal Response and Error States. (Refer to P-Diagram Elements for more information about what to enter for each element, and opportunities to share specific inputs and outputs with other relevant analyses.)

You can type directly into the rows for each input box, and use the ribbon commands to insert a row, delete a row, or move a selected row up or down in the list.
Select Existing Text

There are two ways to use the Select Existing Text window to copy and reuse text from existing P-Diagrams or other relevant analyses:

- **Replace or append text in the current row** - If you click the icon inside a row in one of the input boxes, the utility will either replace the current text in that row, or append text to the end of the current description.

![Input Signal](image)

- **Create one or multiple new rows** - If you click the command in the P-Diagram tab of the ribbon, the utility will create a new row for each description that you select.

In both cases you can use the filters at the top of the window to specify which descriptions are displayed. The following example shows the options for creating new rows in the Control Factors input box. For this type of input, you can select control factors from existing P-Diagrams or causes from existing FMEAs.

![Select Existing Text](image)

Import Elements from Excel

If you have the text elements in an Excel file, you can right-click the P-Diagram analysis tab in the Analysis panel and choose Import from Excel.
You can then select an Excel file and import the data from Excel. If a P-Diagram does not already exist, then one is created. If a P-Diagram already exists, then the new records are added to the end of the affected elements.

Reports and Queries

To generate a report of the P-Diagram, choose Home > Reporting > Reports to open the Reports window.

Select the system hierarchy item and then select any of the predefined or custom reports under the P-Diagram heading. (For custom reporting needs, see XFMEA/RCM++/RBI Report Templates.)

To query P-Diagram data, choose Home > Reporting > Queries to open the Query Utility.

Select any of the P-Diagram elements from the drop-down list.

P-Diagram Elements

Creating a P-Diagram is an optional step when preparing a System or Subsystem FMEA. It is most useful when the item being analyzed is a complex system with many system interactions, operating conditions and design parameters as it helps the FMEA team to visually see these elements. While it can be a time-intensive step, it does provide great value in helping the FMEA team to understand and control the system and identify the outputs to the FMEA.
Chapter 12: Parameter Diagrams (P-Diagrams)

This topic discusses the typical elements in a P-Diagram and opportunities to share specific inputs and outputs with other relevant analyses (including the system hierarchy, FMEA analysis plans and the FMEA).

Input Signals
These are descriptions of the energy sources required for fulfilling the system functionality, such as speed, acceleration, input torque, etc. They can help the FMEA team to understand the nature of the system being analyzed and can use the same text as the items in the system hierarchy.

Control Factors
These are typically the system design parameters that the engineering team can change, such as a shaft diameter, stiffness, density, hardness, etc. and can be used to identify significant product characteristics. They can help the FMEA team to identify potential cause descriptions for the FMEA and can use the same text as the FMEA Causes.

Noise Factors
These are things that can influence the design but that are not under the direct control of the engineer, such as those listed below. These factors, if not protected against, can make the design ineffective (i.e., the design is not robust against the expected noise factors). There are five types of noise factors:

- The uncontrollable **Piece to Piece** variation in parts or manufacturing processes. They can use the same text as the Analysis Plan Assumptions, FMEA Causes and the PFD Worksheet Product Characteristics.

- The **Change Over Time**, or the anticipated degradation of the system components or materials. They can help to identify the specific failure mode descriptions that are associated with the cause descriptions and can use the same text as the Conditions of Use and the FMEA Causes.

- The **Usage** in the ways the customer uses the system, either intended or unintended. They can use the same text as the Conditions of Use.

- The set of anticipated **Environments** that the system must operate within. They can use the same text as the Conditions of Use.

- The **System Interactions** with other components.

Ideal Responses
These are the primary intended functional outputs of the system, such as output torque, speed, etc. They can be used as inputs to the function descriptions in the FMEA and can use the same text as the FMEA Functions.
Error States
These are any kind of inherent loss of energy transfer or other undesirable system outputs, such as exhaust gases, heat, vibration, leakage, unusual noise or bad odor. They can help the FMEA team as inputs to failure mode descriptions in the FMEA and can use the same text as the FMEA Failures.
Chapter 13: Test Plans

A test plan is a list of actions that describe specific tests that need to be performed. You may choose to use this feature instead of the legacy DVP&R analysis.

Starting in Version 2018, the test plan is now an analysis, and can be copied, pasted and deleted in the same way as any other type of analysis. Any action in the project can now be selected to be displayed in the test plan, regardless of whether it is used in the FMEA or not.

Add a Test Plan
To add a test plan analysis, select an item in the System panel then choose Analyses > Planning > Add Test Plan.

The Test Plan analysis tab will open in the Analysis panel. In addition, the Test Plan icon will appear in the corresponding column in the System Hierarchy tab of the System panel (if that column has been selected for display on your computer).

Add Actions to the Test Plan
There are several ways to add actions to the test plan.

- **Add or insert a new action**: To create a new action to describe a test, choose Test Plan > Action > Add Action.

 To create a new action and insert it in a specific location within the test plan, select the action below the desired location and choose Test Plan > Action > Insert Action.

- **Reuse an action from an FMEA**: To add actions already used in an FMEA, or to duplicate FMEA actions and add the duplicates to the test plan, choose Test Plan > Action > Reuse FMEA Actions to open the Reuse FMEA Actions window.

- **Reuse a control from an FMEA**: To create and add actions based on controls used in an FMEA, choose Test Plan > Action > Reuse FMEA Controls to open the Reuse FMEA Controls window.
Chapter 13: Test Plans

- **Reuse any action**: Any action in the project can be added to the test plan. To add one or more existing actions using the Select Resource window, choose Test Plan > Action > Reuse Action Resources.

Test Plan Columns

To hide or display test plan columns, right-click the column headings then click **Customize Columns**. You can also change the column order by dragging and dropping column headings into the desired positions. These settings are stored per computer/username, and different users may have different display preferences without affecting the stored data.

The available columns and the names displayed in the column headings are based on the settings for actions defined in the current project’s interface style (e.g., for Action Description, Planned Start Date, etc.). In addition:

- **#** is assigned automatically based on the current position of the action in the test plan. This number will change if the action's position within the test plan changes.

- **Attachment** displays a paper clip icon if there are any links or attachments for the action.

- **Ancestry - Source Record** is available only for actions created by reusing either FMEA actions or FMEA controls. It indicates the status of the association with the source record.

The Specifications, Requirements and Reports columns correspond to fields that are displayed in the action window if the record is configured as a "detailed action." These properties are not configurable; they may be of interest when an action is used to describe a specific test that needs to be performed. Consequently, they are shown by default when an action is created from a test plan, but are hidden by default in all other cases.

Test Plan View

When you’re working with a test plan, you will usually view just the actions that are assigned to the test plan for the current item. To do this, choose **Selected item only** at the top of the test plan.
In this view, you can add, edit, delete and reorder actions. To move a record up or down in the list, drag and drop the row to the desired location, or select the row and choose Home > Move Record > [Up or Down]. Reordering can be performed only if the list is sorted by action number in ascending order.

Occasionally, you may want the actions assigned to the test plans for the current item and all of its sub-items. To do this, choose Selected item and dependents at the top of the test plan. In this view, you can still edit actions and their attachment, but you cannot add, edit or reorder actions, nor can you delete the analysis.

Reports and Queries

To query test plan actions, choose Home > Reporting > Queries to open the Query Utility. Select Test Plan Actions from the drop-down list.

You can create custom report templates for test plan actions via the Templates Manager. Saved custom reports and saved queries will be available in the Reports window.

Reuse Records in a Test Plan

The Reuse FMEA Actions/Controls window allows you to reuse FMEA records in a test plan. This window offers convenient filtering and searching features, along with advanced creation capabilities.

- If you want to add actions already used in an FMEA, or duplicate FMEA actions and add the duplicates to the test plan, choose Test Plan > Action > Reuse FMEA Actions.
To create and add actions based on controls used in an FMEA, choose Test Plan > Action > Reuse FMEA Controls.

You can choose to search for records within the FMEA for the current system hierarchy item, any FMEA within the current branch of the system hierarchy or any FMEA within the current project.

The Reuse FMEA Actions/Controls window offers the same filter, column configuration and grouping tools that are built in to other utilities that use a similar grid (e.g., the Synthesis Explorer, Actions Explorer, etc.). For details about how to use each feature, see:

- Finding and Filtering Records
- Configuring Columns
- Grouping Panel

Reusing Actions

Select the check box for each action that you would like to use in the test plan. Actions that are already included in the test plan are displayed with their check boxes selected and with a gray background.

Once you have selected the desired actions, specify in the Transfer Options area whether you want to reuse the actions or to create new actions for the test plan by duplicating the selected actions. If you are creating new actions, you will have two additional options:

- Select **Track record associations** to maintain information about the association between the source action (i.e., the original record) and the descendant actions (i.e., the new copies). If this option is not selected, no association information will be recorded. You cannot add this information later; it must be tracked from the time of action creation.

- Select **Incorporate cause description** to include the associated cause description in each new action’s description. For example, if Action 1 of Cause 1 will be duplicated, the new action description will be "Cause 1: Action 1."

Reusing Controls

Select the check box for each control that you would like to base an action on. Controls that already have been used in this way and the resulting actions included in the test plan are displayed with their check boxes selected and with a gray background.

Once you have selected the desired controls, specify any additional settings in the Transfer Options area:
• Select **Associate new actions with controls** to automatically associate the new actions with the originating controls in addition to including them in the test plan. The new actions will be **control actions**.

• Select **Track record associations** to maintain information about the association between the source control and the new descendant actions. If this option is not selected, no association information will be recorded. You cannot add this information later; it must be tracked from the time of action creation.

• Select **Incorporate cause description** to include the associated cause description in each new action’s description. For example, if an action is created based on Control 1 of Cause 1, the new action description will be "Cause 1: Control 1."
Chapter 14: Design Verification Plans (DVP&R)

The software allows you to add a design verification plan and report (DVP&R) analysis for any item in the system hierarchy. A DVP&R is a worksheet that is used to track the progress of design verification tests. The lessons learned from the Design FMEA can be a valuable input to the DVP&R (and vice-versa).

If you wish to be able to add a DVP&R analysis to an item in your project, select the Enable Legacy DVP&R check box Configurable Settings page of the Project Properties window. When this option is selected, the Add DVP&R command will be visible on the Analyses tab of the ribbon.

The DVP&R analysis tab will open in the Analysis panel. In addition, the DVP&R icon will appear in the corresponding column in the System Hierarchy tab of the System panel (if that column has been selected for display on your computer).

The DVP&R analysis contains two tabs: a Header tab and a Worksheet tab. The Header tab contains general information about the entire analysis that will be displayed in the header of the report output while the Worksheet tab contains the analysis data. A DVP&R can have zero, one or many plan records. Each plan can be associated with one or many report records. The background color in each cell of the DVP&R worksheet identifies the record type (plan = blue and report = green).

Typically, DVP&Rs are used in one of two ways:

- As a stand-alone analysis. In this case, you:
 - Add the DVP&R analysis.
 - Define the header information on the Header tab.
 - Use the Worksheet tab to record all of the test plans and reports that need to be tracked.

- In tandem with a Design FMEA. In this case, you:
 - Create an FMEA for the item.
 - Add the DVP&R analysis to the item. The software automatically transfers the controls and/or actions from the FMEA to be the starting point for the new DVP&R.
Chapter 14: Design Verification Plans (DVP&R)

- Define the header information on the Header tab.
- Use the Worksheet tab to record all of the test plans and reports that need to be tracked. This may require that you edit or add to the data transferred from the DFMEA.

DVP&R Header
The following fields may be found on the DVP&R Header tab.

Note: The fields that are enabled in the interface and the options available in configurable drop-down lists will depend on the interface style settings that have been defined for the current project. You can choose **Project > Management > Configurable Settings > Interface Style** to open the **Edit Interface Style (This Project) window** and change the settings for the current project.

- **DVP&R Number**: A unique document identifier.
- **Date (Orig.)**: The original DVP&R completion date.
- **Date (Rev.)**: The latest DVP&R revision date.
- **Revision Level/Description**: The revision identifier for the DVP&R document.
- **Part Number**: The part number for the item that the DVP&R applies to.
- **Latest Change Level**: The latest change level for the part number.
- **Part Name/Description**: The name and description for the item that the DVP&R applies to.
- **Specification/Drawing Number**: The specification or drawing number for the item that the DVP&R applies to.
- **Model Year(s)/Program(s)**: The model year and/or program identifier that the DVP&R applies to.
- **Supplier/Plant**: The supplier/plant that will be manufacturing the item.
- **Supplier Code**: An identifying code for the supplier/plant.
- **Key Contact**: The primary contact for the DVP&R.
- **Key Contact Phone**: The phone number of the primary contact for the DVP&R.
- **Core Team**: The primary team involved with preparing the DVP&R.
- **Engineer1/2/3Approval**: An engineer who approved the DVP&R.
• **Engineer1/2/3 Approval Date:** The date when the engineer approved the DVP&R.

• **User-Defined Fields:** Up to two text fields, one date field, one number field and one drop-down list.

• **Last Updated By:** The date when the DVP&R header was last updated. This is populated by the software.

• **Last Updated:** The user who last updated the DVP&R header. This is populated by the software.

For text fields, you can click the **Select Existing** icon inside the field. This will open a window that allows you to reuse text that has already been entered in this type of field.

For date fields, you can click the field once to open a calendar or twice to type the date. You must use the mm/dd/yy or mm/dd/yyyy format.

DVP&R Worksheet

The Worksheet tab displays the test plans (blue fields) and reports (green fields) that will be tracked with the DVP&R. If you have the permissions necessary to edit the project properties, you can choose which fields will be enabled and what they will be called. This includes user-defined fields and the ability to define the options in the user-defined drop-down menus, when applicable. The following image shows the relationship of the plan and report records in the DVP&R.
Example of the data-entry columns that you could enable or configure in a DVP&R

When using the DVP&R worksheet, you have the following options:

- To enter or edit data, double-click the cell.
 - For text columns, you can use the **HOME**, **END** and arrow keys to move through the text in the cell. For date columns, you can click the column once to open a calendar or twice to type the date. You must use the mm/dd/yy or mm/dd/yyyy format.
 - To save the changes, either press **ENTER** or **TAB** or click somewhere outside of the cell.
- The following options apply to plans and reports. While the examples given are for plans, the commands are similar for each record type:
 - To add a plan, choose **DVP&R > Plan > Add Plan**.
 - To insert a plan above the currently selected one, choose **DVP&R > Plan > Insert Plan**.
 - To copy, select the plan in the worksheet area and choose **Home > Clipboard > Copy**. To paste a copied plan, choose **Home > Clipboard > Paste**.
 - To move a record up or down one place in the list of plans, select the plan in the worksheet area, then right-click the worksheet and choose **Up** or **Down** from the shortcut menu or choose **Home > Move Record > Up** or **Home > Move Record > Down**.

<table>
<thead>
<tr>
<th>Test Request #</th>
<th>Test/Specification Method</th>
<th>Planned End</th>
<th>Assigned To</th>
<th>Test Report #</th>
<th>Actual End</th>
<th>Test Results</th>
<th>Completed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan 1</td>
<td>A short description of the test that needs to be performed.</td>
<td>9/23/2011</td>
<td>The person responsible for performing the test.</td>
<td>Test Plan 1, Report 1</td>
<td>9/22/2011</td>
<td>The results of the test.</td>
<td>The person or group who completed the test.</td>
</tr>
<tr>
<td>Plan 2</td>
<td>A short description of the test that needs to be performed.</td>
<td>9/27/2011</td>
<td>The person responsible for performing the test.</td>
<td>Test Plan 2, Report 1</td>
<td>9/23/2011</td>
<td>The results of the test.</td>
<td>The person or group who completed the test.</td>
</tr>
<tr>
<td>Plan 3</td>
<td>A short description of the test that needs to be performed.</td>
<td>9/30/2011</td>
<td>The person responsible for performing the test.</td>
<td>Test Plan 3, Report 1</td>
<td>9/30/2011</td>
<td>The results of the test.</td>
<td>The person or group who completed the test.</td>
</tr>
<tr>
<td>Plan 4</td>
<td>A short description of the test that needs to be performed.</td>
<td>10/3/2011</td>
<td>The person responsible for performing the test.</td>
<td>Test Plan 3, Report 3</td>
<td>10/3/2011</td>
<td>The results of the test.</td>
<td>The person or group who completed the test.</td>
</tr>
</tbody>
</table>
• To delete, select the plan in the worksheet area and either choose Home > Edit > Delete or press DELETE.

• To delete, select the plan in the worksheet area and either choose Home > Edit > Delete or press DELETE.

• To transfer data from the associated FMEA to the DVP&R, choose DVP&R > Sync > Sync with FMEA.

• To import data from an Excel spreadsheet, choose System Hierarchy > Add Items > Import > Import from Excel. To export data from the DVP&R worksheet to an Excel spreadsheet, choose System Hierarchy > Tools > Reporting > Export to Excel.

• To import data from an Excel spreadsheet, choose System Hierarchy > Add Items > Import > Import from Excel. To export data from the DVP&R worksheet to an Excel spreadsheet, choose System Hierarchy > Tools > Reporting > Export to Excel.

• To generate a report of the DVP&R data, choose Home > Reporting > Reports. In the Reports window, the DVP&R reports are located in the DVP&R Spreadsheet and DVP&R Records sections of the Available Reports area.

• To split the worksheet view so that you can view text at one side of the worksheet without moving the text at the other side, right-click a column heading and choose Split. A split bar will be placed to the left of the column. To remove the bar, right-click any column heading and choose Remove Split. (For example, you use this to see the test request number while working on the reports.)

• To rearrange the order in which the columns are displayed, select a column heading and drag it to the place in the worksheet area you want it to appear. This updates the interface style for the project. You also can change the column order through the Interface Style window.

• To change the descriptive information about each column that displays in tooltip form when you move the pointer over the column headings, open the Project Interface Style window and change the text in the appropriate DVP&R pages.

• To populate the gray areas in the worksheet with the relevant text from a prior row, choose File > Application Setup. On the Settings page select the Repeat data in worksheet views check box.

DVP&R Worksheet Columns
This topic describes the fields found on the Worksheet tab of the DVP&R worksheet. For a description on how to use the Worksheet tab to document the process steps, see DVP&R Worksheet.

Note: The fields that are enabled in the interface and the options available in configurable drop-down lists will depend on the interface style settings that have been defined for the current project. You can choose Project > Management > Configurable Settings > Interface Style to open the Edit Interface Style (This Project) window and change the settings for the current project.
Plan Records
- **Test Request #**: The number of the test that needs to be performed. This is a required column.
- **Test Identifier (Name)**: A short name for the test that needs to be performed.
- **Test/Specification Method**: A short description of the test that needs to be performed. This is a required column.
- **Acceptance Criteria**: The criteria that must be met in order to pass the test.
- **Requirement Source**: The source of the requirement that must be met in order to pass the test.
- **Requirement**: The requirement that must be met in order to pass the test.
- **Specification Type**: The type of specification that must be met in order to pass the test.
- **Classification**: The special characteristic classification.
- **Planned Test Location**: The location where the test will be performed.
- **Planned Test Phase**: The phase of development in which the test will be performed.
- **Planned Sample Size**: The sample size that is planned for the test.
- **Planned Sample Type**: The type of sample that is planned to be used for the test.
- **Planned Test Duration**: The planned duration of the test.
- **Planned Start**: The planned start date for the test.
- **Planned End**: The planned end date for the test.
- **Assigned To**: The person or group responsible for performing the test.
- **Notes (Plan)**: Any notes related to the planned test.
- **User-Defined Fields**: Up to three text fields, one date field, one number field and one drop-down list.

Report Records
- **Test Report #**: The number of the report for the completed test. This is a required column.
- **Test Report Identifier**: A short name for the report for the completed test.
Chapter 14: Design Verification Plans (DVP&R)

- **Status**: The status of the test report (e.g., "active" or "replaced by test YYY," etc.).
- **Actual Start**: The actual start date for the test.
- **Actual End**: The actual end date for the test.
- **Actual Sample Size**: The actual sample size that was used in the test.
- **Test Results**: The results of the test. This is a required column.
- **Completed By**: The person or group who completed the test.
- **Notes (Results)**: Any notes related to the completed test.
- **User-Defined Fields**: Up to three text fields, one date field, one number field and one drop-down list.

Synchronizing a DVP&R with a DFMEA

You can choose to transfer data automatically from the FMEA each time that you create a **DVP&R analysis**. In this case, the logic is set in the interface style that has been defined for the project. You can also manually sync at any time. In this case, the logic is set in the Synchronization Options window.

Please note that the data is transferred, not linked. Changes made in the FMEA do not appear automatically in the DVP&R and vice versa. The synchronization functionality is intended to provide you with a starting point for the DVP&R by transferring relevant data from the FMEA. You can then make any necessary modifications and additions to the DVP&R.

The following data from the analysis can be transferred to the header or worksheet area in the DVP&R.

<table>
<thead>
<tr>
<th>FMEA</th>
<th>DVP&R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item Number/Item Name</td>
<td>Part Name/Description (Header tab)</td>
</tr>
<tr>
<td>Model Year(s)/Program(s)</td>
<td>Model Year/Program (Header tab)</td>
</tr>
<tr>
<td>Control Number or Action Number</td>
<td>Test Request # (Worksheet tab)</td>
</tr>
</tbody>
</table>
Chapter 14: Design Verification Plans (DVP&R)

<table>
<thead>
<tr>
<th>Current Design Controls or Recommended Actions</th>
<th>Test/Specification Method (Worksheet tab)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause Class</td>
<td>Classification (Worksheet tab)</td>
</tr>
<tr>
<td>Action Due Date</td>
<td>Planned Start (Worksheet tab)</td>
</tr>
<tr>
<td>Action Person Responsible</td>
<td>Assigned To (Worksheet tab)</td>
</tr>
</tbody>
</table>

Sync Options for New DVP&Rs

The following options are available on the DVP&R > Sync Options page of the interface style when you select the **Integrate New DVP&Rs with FMEA** check box, as shown next.

When you choose to transfer data automatically from the FMEA to the DVP&R, you have the option to:

- Create new Test Plan records in the DVP&R by transferring control and/or action descriptions from the FMEA.

 - If the Control Category property is enabled for the project (from the FMEA > Controls page of the interface style) or if the **Controls where type =** field is empty, then all controls descriptions will be transferred to the DVP&R. If the Control Category property is enabled, you can use the **Controls where type =** field to limit the transfer to only those controls descriptions with the specified categories. To define multiple control categories, use commas to separate the labels.

 - If the Action Category property is enabled for the project (from the FMEA > Actions page of the interface style) or if the **Actions where category =** field is empty, then all actions descriptions will be transferred to the DVP&R. If the Action Category property is enabled, you can use the **Actions where category =** field to limit the transfer to only those actions descriptions with the specified categories. To define multiple action categories, use commas to separate the labels.
empty, then all action descriptions will be transferred to the DVP&R. If the Action Category property is enabled, you can use the Actions where category = field to limit the transfer to only those action descriptions with the specified categories that you select. To define multiple action categories, select multiple items. Or you can select the No Actions option to not transfer any actions.

- Transfer the cause description along with each control or action description. For example, if the Incorporate cause description with controls and actions transferred to DVP&R check box is selected and the cause description in the FMEA is "Failure cause" and the control description is "Design control" then the transferred test plan will be "Design control : Failure cause."

Sync Options for Existing DVP&Rs
You can choose DVP&R > Sync > Sync with FMEA to update the DVP&R with new data transferred from the FMEA.

- Header
 - To clear all of the information on the Header tab of the DVP&R and replace it with data from the associated FMEA, select the Clear the header and replace from FMEA option.
 - To leave the data in the header as-is, select the Do not change the header option.

- Worksheet
 - To clear all of the information in the worksheet area of the DVP&R and replace it with the data from the associated FMEA, select the Clear the worksheet and replace from FMEA option.
 - To add the data from the FMEA to the end of the existing data in the DVP&R worksheet, select the Append data from FMEA to end of worksheet option.

- Transfer Controls/Actions Options
 - To transfer all eligible data (i.e., controls and actions) from the FMEA to the DVP&R, select the All Controls and All Actions options.
 - To transfer only the data that meet the desired requirements, select the Controls where Type = and/or Actions where Category = option and then select the desired options.
• To further limit the transfer, enter as many criteria elements as desired in the following fields:

 • **Classification** transfers only the data with the selected classification. Select All if you want all data, no matter the classification, to be transferred. This includes data with no classification. Select Any if you want to transfer the record if any classification has been assigned to it. If there is no classification assigned to it, the data will not be transferred.

 • **Cause RPN (Initial) >=** transfers only the data with an initial cause RPN that is greater than or equal to the value that you specify in the input box.

 • **Cause RPN (Revised) >=** transfers only the data with a revised cause RPN that is greater than or equal to the value that you specify in the input box.

 • **Cause Initial SxO >=** transfers only the data with an initial cause severity x occurrence rating that is greater than or equal to the value that you specify in the input box.

 • **Cause Revised SxO >=** transfers only the data with a revised cause severity x occurrence rating that is greater than or equal to the value that you specify in the input box.

 • To transfer the cause description along with each control or action description, select the **Cause Description with Controls and Actions** check box. For example, if this check box is selected and the cause description in the FMEA is "Failure cause" and the control description is "Design control," then the transferred test plan will be "Design control : Failure cause."

• After making your selections, click **OK** to transfer the data from the FMEA to the DVP&R.
Chapter 15: PFD Worksheets (Process Flow Diagrams)

In the software, there are two kinds of process flow diagrams (PFDs): a graphical process flow diagram, which is a high-level chart of a process; and a PFD worksheet, which integrates the chart into a worksheet that records more detailed information about what the product goes through in each step of the manufacturing or assembly process.

A PFD worksheet serves as a starting point for documenting a process. It defines every possible step that a product undergoes, including processing of individual components, transportation of materials, storage, etc. For each step, the process characteristics (inputs) and product characteristics (outputs) are identified. The inputs are the factors in the process that need to be controlled in order to achieve the desired outputs. For example, the input may be the temperature range for wax that will be sprayed onto the finished vehicle, and the output may be the required wax thickness.

A complete PFD worksheet provides a structure for preparing process FMEAs (PFMEAs) and control plans. The outputs of a PFD worksheet can be translated into the PFMEA as potential failure modes, while the inputs can be translated into potential causes. The information from the PFD worksheet or PFMEA can then form the basis for a control plan. Put simply, the PFD worksheet defines the process, the PFMEA analyzes the process for ways to prevent or mitigate risk, and the control plan records the strategy for controlling the critical characteristics that have been identified.

Adding a PFD Worksheet

PFD worksheets can be created for complete processes or sub-processes defined in the system hierarchy.

To add a PFD worksheet to a project, select an item in the System panel then choose Analyses > Other > Add PFD Worksheet.
The item’s description, reference number and dependents are automatically copied to the appropriate fields in the new PFD worksheet, as shown in the following picture. In addition, the PFD worksheet icon appears in the corresponding column in the system hierarchy (if that column has been selected for display on your computer).

If you make changes to the system hierarchy, you can copy those changes to the PFD worksheet by choosing PFD Worksheet > Sync > Sync with System Hierarchy.

New system hierarchy items will be appended to the bottom of the PFD worksheet, while any modifications to the reference numbers and descriptions will be reflected in the existing records.

Deleted system hierarchy items will not be automatically deleted from the PFD worksheet, and any items steps that you add to the PFD worksheet will remain after you resync. In addition, if you reorganize the items in the system hierarchy, the new positions of the items will not be reflected in the PFD worksheet; however, you can manually edit their positions.

If desired, you can use the information in the PFD worksheet to automatically populate relevant fields in the PFMEA and/or control plan. (See Sync Options for PFD Worksheets.)
PFD Worksheet Header

The Header tab contains information that may be displayed in the header of a report output. This topic describes the fields found on the Header tab of a PFD worksheet.

Note: The fields that are enabled in the interface and the options available in configurable drop-down lists will depend on the interface style settings that have been defined for the current project. You can choose **Project > Management > Configurable Settings > Interface Style** to open the **Edit Interface Style (This Project)** window and change the settings for the current project.

- **Product:** The name of the item being analyzed.
- **Revision Date:** The latest revision date for the PFD worksheet.
- **Prepared By:** The name of the person who prepared the PFD worksheet.
- **Part Number:** The part number for the item being analyzed.
- **Alternate Part Number:** The alternate part number, if any, for the item being analyzed.
- **User-Defined Fields:** Up to three text fields, one date field, one number field and one drop-down list.
- **Last Updated By:** The name of the last user who updated the PFD worksheet header.
- **Last Updated:** The date and time of the last update to the PFD worksheet header.

For text fields, you can click the **Select Existing** icon inside the field. This will open a window that allows you to reuse text that has already been entered in this type of field.

For date fields, you can click the field once to open a calendar or twice to type the date. You must use the mm/dd/yy or mm/dd/yyyy format.

PFD Worksheet Tab

This topic describes how to enter data in the Worksheet tab. For a description of all columns that could be displayed in a PFD worksheet analysis, see **PFD Worksheet Columns**.

The Worksheet tab provides the structure for documenting each step that a product goes through in a manufacturing or assembly process. There are three types of records in the analysis: operation records, product characteristics records and process characteristics records. The following figure shows an example of a PFD worksheet based on the Standard FMEA profile that is shipped with the software. You can vary the format of the PFD worksheet based on your...
company's guidelines and standards. If you have the permissions necessary to edit the project properties, you can choose which columns will be enabled for each type of record and what they will be called. This includes user-defined fields and the ability to define the options in the configurable drop-down lists, when applicable.

<table>
<thead>
<tr>
<th>Op Seq Number</th>
<th>Symbol</th>
<th>Changeover</th>
<th>Operation Description</th>
<th>Class</th>
<th>Significant Product Characteristics (Outputs)</th>
<th>Class</th>
<th>Significant Process Characteristics (Inputs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.5</td>
<td>△</td>
<td>P</td>
<td>Get set of wheel spokes from parts presentation device</td>
<td></td>
<td>Correct wheel spoke set selected</td>
<td></td>
<td>Correct spokes are in parts presentation device</td>
</tr>
<tr>
<td>1.2.6</td>
<td>○</td>
<td>T</td>
<td>Orient and place wheel spokes in wheel assembly fixture</td>
<td></td>
<td>Correct number of wheel spokes</td>
<td></td>
<td>Correct lot of 36 wheel spokes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Correctly oriented spokes properly connected in wheel assembly fixture</td>
<td></td>
<td>Error-proofed wheel assembly fixture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2.7</td>
<td>◯</td>
<td></td>
<td>Attach and tighten spokes to wheel rim and wheel hub</td>
<td>KPC</td>
<td>Spokes correctly tightened to required specs</td>
<td>KCC</td>
<td>Spoke tightening gun correctly calibrated</td>
</tr>
<tr>
<td>1.2.8</td>
<td>◯</td>
<td></td>
<td>Adjust spoke tightness to ensure wheel rim is round to specs</td>
<td>KPC</td>
<td>Wheel roundness meets specifications</td>
<td></td>
<td>Correct spoke adjustment procedure</td>
</tr>
<tr>
<td>1.2.9</td>
<td>△</td>
<td>P</td>
<td>Get tire liner from parts presentation device</td>
<td></td>
<td>Correct tire liner selected</td>
<td></td>
<td>Correct tire liners in parts presentation device</td>
</tr>
</tbody>
</table>

Example of a PFD worksheet based on the Standard FMEA profile that is shipped with the software.

When using the PFD worksheet, you have the following options:

- To enter or edit data, double-click the cell.
 - For text columns, you can use the HOME, END and arrow keys to move through the text in the cell. For date columns, you can click the column once to open a calendar or twice to type the date. You must use the mm/dd/yy or mm/dd/yyyy format.
 - After entering the desired information, either press ENTER, TAB or click somewhere outside of the cell to save the changes.
The following options apply to operation, product characteristics and process characteristics records. While the examples given are for operation records, the commands are similar for each record type:

- To add an operation, choose **PFD Worksheet > Operation > Add Operation**.
- To insert an operation above the currently selected one, choose **PFD Worksheet > Operation > Insert Operation**.
- To copy, select the operation in the worksheet area and choose **Home > Clipboard > Copy**. To paste a copied operation, choose **Home > Clipboard > Paste**.
- To move a record up or down one place in the list of operations, select the operation in the worksheet area, then right-click the worksheet and choose **Up** or **Down** from the shortcut menu or choose **Home > Move Record > Up** or **Home > Move Record > Down**.
- To delete, select the operation in the worksheet area and either choose **Home > Edit > Delete** or press DELETE. **You can undo the last deletion only.**

- To import data from an Excel spreadsheet, choose **System Hierarchy > Add Items > Import > Import from Excel**. To export data from the PFD worksheet to an Excel spreadsheet, choose **System Hierarchy > Tools > Reporting > Export to Excel**.

- To generate a report of the PFD worksheet data, choose **Home > Reporting > Reports**. In the Reports window, the PFD worksheet reports are located in the "PFD Spreadsheet" and "PFD Records" sections of the Available Reports list.

- To split the worksheet view so that you can view text at one side of the worksheet without losing sight of text at the other side, right-click a column heading and choose **Split**. To remove the split bar, right-click a column heading and choose **Remove Split**. (For example, you could use this to see the Operation Description column while working with the Process Characteristic column.)

- To rearrange the order in which the columns are displayed, select a column heading and drag it to the place in the worksheet area you want it to appear. This updates the interface style for the project. You also can change the column order through the **PFD Worksheet > Worksheet Columns page** of the Interface Style window.

- To change the descriptive information about each column that displays in tooltip form when you move the pointer over the column headings, open the **Interface Style window** and change the text in the appropriate PFD worksheet pages.
• To populate the gray areas in the worksheet with the relevant text from a prior row, choose File > Application Setup. On the Settings page select the Repeat data in worksheet views check box.

PFD Worksheet Columns

This topic describes the fields found on the Worksheet tab of the PFD worksheet. For a description on how to use the Worksheet tab to document the process steps, see PFD Worksheet Tab.

Note: The fields that are enabled in the interface and the options available in configurable drop-down lists will depend on the interface style settings that have been defined for the current project. You can choose Project > Management > Configurable Settings > Interface Style to open the Edit Interface Style (This Project) window and change the settings for the current project.

• **Process Step/Operation Records**

 • **Sources of Variation:** A description of the process inputs or variables that affect the results in each process step, such as improper setup, machine calibration and maintenance, contamination of materials, etc.

 • **Op Seq Number:** The reference number for the process step. This is a required column.

 • **Operation Type:** The type of process or activity, such as an assembly, an inspection, a fabrication, etc. The drop-down list in this column can be configured per project.

 • **Operation Type Symbol:** The graphic symbol associated with the type of process or activity; for example, inspection procedures may be represented by a square symbol. The symbols can be configured per project.

 • **Deliverables:** A description of the results of each process step.

 • **Changeover:** Allows you to flag the process steps that are affected by changeover activities. The drop-down list in this column can be configured per project.

 • **Operation Description:** A description of the process step from the product's perspective. The process that the product goes through must be described step by step. This is a required column.

 • **User-defined fields:** Up to five text fields, two date fields, two number fields and two drop-down lists.
Chapter 15: PFD Worksheets (Process Flow Diagrams)

- **Product Characteristics Records**
 - **Classification**: An abbreviation of the classification that has been assigned to the product characteristic, if any. This field is used to identify characteristics that require special manufacturing control (e.g., Critical, Significant, Key Leading, etc.).
 - **Product Characteristics Description**: A description of the product characteristics (outputs) that are affected by each process step; for example, thread depth, wax thickness, length of a cut, etc.
 - **User-defined fields**: Up to three text fields, one date field, one number field and one drop-down list.

- **Process Characteristics Records**
 - **Classification**: An abbreviation of the classification that has been assigned to the process characteristic, if any. This field is used to identify design characteristics that require special manufacturing control (e.g., Critical, Significant, Key Leading, etc.).
 - **Process Characteristics Description**: A description of the process characteristics (inputs) that require control to ensure that the product characteristics meet the specification; for example, furnace temperature, flow pressure, coolant concentration, etc.
 - **User-defined fields**: Up to three text fields, one date field, one number field and one drop-down list.

Sync Options for PFD Worksheets

In the software, there are several ways that a PFD worksheet, process FMEA and control plan can be used together to document a manufacturing or assembly process. In this topic, we will describe the sync options available and provide some recommendations.

Note: The descriptions in this topic are based on the default names of the fields. Your worksheet may have different fields depending on the interface style settings that have been defined for the current project. If you have the permissions necessary to edit the project properties, you can enable, hide or rename any of the fields in the worksheets that are part of the synchronization process via the Interface Style window.
General Sync Workflow

The synchronization functionality is intended to provide you with a starting point for a new analysis by copying relevant data. In general, the information flows as shown below (the dotted arrows represent alternative sync actions).

![Diagram of General Sync Workflow]

Note: When syncing data, the data are copied, not linked. Changes made in one analysis worksheet do not automatically appear in the related worksheets and vice versa.

Generally, the system hierarchy is synced with the PFD worksheet, which is then synced with the PFMEA. The PFMEA is then synced with the PCP. The main advantage of the general sync workflow is that you’ll be able to track each process step across all worksheets via the reference numbers (operation sequence numbers). For example, process step #1.2.5 in the system hierarchy will have the same reference number in the PFD worksheet, PFMEA and PCP. In addition, the same operation descriptions will be copied across all worksheets. You’ll have the option to edit the descriptions after each sync process, if desired.

The software offers alternative sync workflows and several options for choosing which data to sync in each worksheet. Your sync approach may vary depending on how your organization performs the analyses. The following sections describe the available sync options for each worksheet.
Sync with PFD Worksheet
The PFD worksheet is always synced with the system hierarchy. This means that when you create a new PFD worksheet for a top-level item, the descriptions and reference numbers of all its dependents are automatically copied to the relevant fields in the new PFD worksheet, as shown in the following example. This provides you with a starting point for filling out the rest of the PFD worksheet.

![Sync with PFD Worksheet Diagram](image)

Sync with PFMEAs
You can choose to start with a blank PFMEA or with data imported automatically from either the PFD worksheet or the system hierarchy. The settings are configured via the FMEA > Sync Options page of the Interface Style window.

- **Sync with PFD worksheet** - Uses the operation descriptions in the PFD worksheet to populate the function description fields in the new PFMEA. You might select this option if you want the same descriptions for both fields. Special care with the wording of the descriptions may be required in order for them to make sense within the context of each worksheet. Alternatively, you can opt to edit the descriptions after the sync.

 Or

- **Sync with system hierarchy** - Uses the item descriptions in the system hierarchy to populate the function description fields in the new PFMEA. You might select this option if you prefer to use a graphical process flow diagram or other analysis method, instead of the PFD worksheet.

The following example highlights the FMEA columns that can be automatically populated by the sync process. In addition to the automatic sync, you can use the Select Existing icon (also...
highlighted) to manually copy selected product and process characteristic descriptions in the PFD worksheet to the failures and causes fields in the PFMEA, if desired.

Sync with Control Plans (PCPs)

You can choose to start with a blank control plan or with data imported automatically from either the PFMEA or PFD worksheet. The settings are configured via the Control Plan > Sync Options page of the Interface Style window.

- **Sync with PFMEA** - Uses the function, cause, classification and control descriptions in the PFMEA to populate the operation description, characteristics, classification and control method fields in the new PCP. (Alternatively, if you prefer to sync with the item descriptions in the system hierarchy, choose the Transfer from Items option in the Control Plan > Sync Options page of the Interface Style window.)

 Or

- **Sync with PFD worksheet** - Uses the operation descriptions and characteristics defined in the PFD worksheet to populate the relevant fields in the new PCP. You might select this option, for example, if you use the PFD worksheet to define the key product and control characteristics (KPCs and KCCs) of the process steps that are currently in place, and then use the PFMEA to analyze subsequent changes to the process steps, with new KPCs and KCCs being identified. In this case, syncing the PCP with the PFD worksheet provides continuity to the analyses of the KPCs and KCC identified in the PFD worksheet.
Chapter 15: PFD Worksheets (Process Flow Diagrams)

The following example highlights the PCP columns that can be automatically populated by the sync process. (Note that the Control Method column can be synced only with PFMEAs.) In addition, you can use the Select Existing Text icon (also highlighted) to manually copy text from either the PFD worksheet or PFMEA, if desired.

In the PCP, you can use the Select Existing icon to:

- Copy selected functions and control descriptions in the PFMEAs to the operation description and control method fields in the PCP.
- Copy selected failure and cause descriptions in the PFMEA to the product and process characteristics fields in the PCP.
- Copy selected product and process characteristic descriptions in the PFD worksheet to the product and process characteristics fields in the PCP.
Chapter 16: Process Control Plans

Control plans are used to track critical characteristics that must be kept in control during a manufacturing or assembly process, and record the methods for maintaining control. Examples of critical process characteristics that might need to be controlled are the temperature range for wax that will be sprayed onto the finished vehicle, uniformity of a cut, calibration for a machine tool, and the like. These characteristics may be kept under control by performing inspections, maintenance procedures, error-proofing and other methods.

Adding a Control Plan

A control plan can be created for any complete systems or sub-systems defined in the system hierarchy.

To add a control plan to a project, select an item in the System panel then choose Analyses > Other > Add Control Plan.

The Control Plan tab will open in the Analysis panel. In addition, the control plan icon will appear in the corresponding column in the System Hierarchy tab of the System panel (if that column has been selected for display on your computer).

The control plan analysis contains two tabs: a Header tab and a Worksheet tab. Use the Header tab to enter general information about the entire analysis and use the Worksheet tab to enter descriptions about the manufacturing or assembly process, the associated characteristics that need to be tracked and the strategy for controlling the characteristics that have been identified.

If desired, you can automatically import data from process FMEAs (PFMEA) or PFD worksheets. (See Sync Options for Control Plans.)

Control Plan Header

The Header tab contains information that may be displayed in the header of a report output. The following fields may be found on the Header tab of a Control Plan.

Note: The fields that are enabled in the interface and the options available in configurable drop-down lists will depend on the interface style settings that have been defined for the current project. You can choose Project > Management > Configurable Settings > Interface Style to open the Edit Interface Style (This Project) window and change the settings for the current project.
Chapter 16: Process Control Plans

- **Control Plan Type**: The type of control plan.
- **Control Plan Number**: A unique identifier for the control plan document.
- **Date (Orig.)**: The original completion date for the control plan.
- **Date (Rev.)**: The latest revision date for the control plan.
- **Part Number**: The part number for the item.
- **Latest Change Level**: The latest change level for the part number.
- **Part Name/Description**: The name and description for the item.
- **Supplier/Plant**: The supplier/plant that will be manufacturing the item.
- **Supplier Code**: An identifying number for the supplier/plant.
- **Key Contact**: The primary contact for the control plan.
- **Key Contact Phone**: The phone number for the primary contact.
- **Core Team**: The primary team involved with preparing the control plan.
- **Approval Fields**: Up to four approval fields that allow you to identify the representative who approved the control plan.
- **Approval Date Fields**: Up to four approval data fields that allow you to enter the date when the representative approved the control plan.
- **User-Defined Fields**: Up to two text fields, one date field, one number field and one drop-down list.
- **Last Updated**: The date when the control plan header was last updated. This is populated by the software.
- **Last Updated By**: The user who last updated the control plan header. This is populated by the software.

For text fields, you can click the **Select Existing** icon inside the field. This will open a window that allows you to reuse text that has already been entered in this type of field.

For date fields, you can click the field once to open a calendar or twice to type the date. You must use the mm/dd/yy or mm/dd/yyyy format.
Control Plan Worksheet

This topic describes how to enter data in the Worksheet tab. For a description of all columns that could be displayed in a Control Plan worksheet analysis, see Control Plan Worksheet Columns.

The Worksheet tab provides the structure for documenting the characteristics that will be tracked in the control plan and the strategy for keeping those characteristics under control. There are three types of records in the control plan Worksheet tab: part/process records (purple fields), characteristic records (green fields) and method records (tan fields). The following figure shows an example of a control plan. Note that you can vary the format of the control plan based on the needs of your analysis. If you have the permissions necessary to edit the project properties, you can choose which columns will be enabled for each type of record and what they will be called. This includes user-defined fields and the ability to define the options in the configurable drop-down lists, when applicable.

Example of the data-entry columns that you could enable or configure in a control plan.

When using the control plan worksheet, you have the following options:

- To enter or edit data, double-click the cell.
• For text columns, you can use the HOME, END and arrow keys to move through the text in the cell. For date columns, you can click the column once to open a calendar or twice to type the date. You must use the mm/dd/yy or mm/dd/yyyy format.

• After entering the desired information, either press ENTER, TAB or click somewhere outside of the cell to save the changes.

• The following options apply to the part/process, characteristic and method records. While the examples given are for the part/process records, the commands are similar for each record type:

 • To add a part/process record, choose Control Plan > Part/Process > Add Part/Process.

 • To insert a part/process record above the currently selected one, choose Control Plan > Part/Process > Insert Part/Process.

 • To copy, select the part/process record in the worksheet area and choose Home > Clipboard > Copy. To paste a copied part/process record, choose Home > Clipboard > Paste.

 • To move a record up or down one place in the list of parts/processes, select the record in the worksheet area, then right-click the worksheet and choose Up or Down from the shortcut menu or choose Home > Move Record > Up or Home > Move Record > Down.

 • To delete, select the part/process record in the worksheet area and choose either Home > Edit > Delete or press DELETE. **You can undo the last deletion only.**

 • To import data from an Excel spreadsheet, choose System Hierarchy > Add Items > Import > Import from Excel. To export data from the control plan worksheet to an Excel spreadsheet, choose System Hierarchy > Tools > Reporting > Export to Excel.

 • To generate a report of the control plan data, choose Home > Reporting > Reports. In the Reports window, the control plan reports are located in the "Control Plan Spreadsheet" and "Control Plan Records" sections of the Available Reports area.

 • To split the worksheet view so that you can view text at one side of the worksheet without moving the text at the other side, right-click a column heading and choose Split. A split bar will be placed to the left of the column. To remove the bar, right-click any column heading and choose Remove Split. (For example, you could use this to see the Process Name/Operation Description column while working on the Reaction column.)
• To rearrange the order in which the columns are displayed, select a column heading and
drag it to the place in the worksheet area you want it to appear. This updates the
interface style for the project. You also can change the column order on the Control Plan
> Worksheet Columns page of the Interface Style window.

• To change the descriptive information about each column that displays in tooltip form
when you move the pointer over the column headings, open the Interface Style window
and change the text in the appropriate control plan pages.

• To populate the gray areas in the worksheet with the relevant text from a prior row,
choose File > Application Setup. On the Settings page select the Repeat data in
worksheet views check box.

Control Plan Worksheet Columns
This topic describes the fields found on the Worksheet tab of the control plan. For a description
on how to use the Worksheet tab to build a control plan, see Control Plan Worksheet Tab.

Note: The fields that are enabled in the interface and the options available in configurable drop-down
lists will depend on the interface style settings that have been defined for the current project. You can
choose Project > Management > Configurable Settings > Interface Style to open the Edit Interface Style
(This Project) window and change the settings for the current project.

• Part/Process Records
 • Part/Process Number: The reference number for the part or process step. This is
 a required column.
 • Process Name/Operation Description: The process name and/or a description of
 the operation. This is a required column.
 • Machine, Device, Jig, Tools for Mfg: The name or a description of the device
 where the operation is performed.
 • User-Defined Fields: Up to two text fields, one date field, one number field and
 one drop-down list.

• Characteristic Records
 • Characteristic Number: The identifying number for the characteristic that must
 be controlled. This is a required column.
 • Product Characteristic: A description of the product characteristics that need to
 be tracked; for example, thread depth, wax thickness, length of a cut, etc.
• **Process Characteristic**: A description of the process characteristics that require control to ensure that the product characteristics meet the specification; for example, furnace temperature, flow pressure, coolant concentration, etc.

• **Special Char. Class**: An abbreviation of the classification that has been assigned to the process characteristics, if any. This field is used to identify characteristics that require special manufacturing control (e.g., Critical, Significant, Key Leading, etc.).

• **User-Defined Fields**: Up to two text fields, one date field, one number field and one drop-down list.

• **Method Records**

 • **Specification/Tolerance**: A description of the specification or tolerance that will be used to evaluate the characteristic.

 • **Evaluation/Measurement Technique**: A description of the measurement method that will be used to make sure the characteristic meets the specification/tolerance.

 • **Sample Size**: When sampling is required, the number of units that will be sampled.

 • **Sample Frequency**: When sampling is required, the frequency at which the units will be sampled.

 • **Control Method**: A description of how the operation will be controlled, including procedure numbers when applicable. This is a required column.

 • **Reaction Plan**: A description of the corrective actions that will occur if the characteristic does not meet the specification/tolerance.

 • **Responsibility**: The person or group responsible for carrying out the reaction plan.

 • **Remarks**: Any remarks related to the control method.

 • **User-Defined Fields**: Up to three text fields, one date field, one number field and one drop-down list.

Sync Options for Control Plans

You can start a control plan with a blank worksheet or with data imported from either FMEAs or a PFD worksheet. Automatically importing the data provides you with a starting point for preparing the control plan. You can then make any necessary modifications and additions to
Automatic Transfer
You can choose to transfer data automatically from either FMEAs or PFD worksheets each time you create a new control plan. You can configure the setting via the Control Plan > Sync Options page of the Interface Style window.

If you later make any changes to the FMEAs or PFD worksheet, you can update the control plan with the changes via manual transfer, if desired.

Manual Transfer
You can transfer data from an existing FMEA or PFD worksheet to a control plan any time via manual sync. The following options are available:

Sync with Process FMEA
To sync with an existing process FMEA, choose Control Plan > Sync > Sync with FMEA.

The following settings are available:

- In the Header area, select whether to leave the data in the Header tab of the control plan as-is or replace it with data from the associated FMEA.
- In the Worksheet area, select whether to replace all of the information in the Worksheet tab of the control plan with data from the associated FMEA or append the FMEA data to the end of the existing data in the worksheet.
- In the Map Records for Transfer area, select which data to transfer as process names and cause descriptions in the control plan:
 - In the Part/Process list: If you stored descriptions of the process in the system hierarchy, select the Transfer from Items option; if the descriptions are stored as functions in the FMEA, select the Transfer from Functions option.
 - In the Characteristic list, specify whether the cause records are more likely to be product characteristics or process characteristics. Your selection determines which column the data will be transferred to. If your cause records do not have data that would be a good starting point for defining the characteristics in the control plan, then you could leave the characteristic records blank.
- In the Transfer Controls Options area, Select the All controls option to transfer all the controls from the FMEA to the control plan. To transfer only the controls that meet the
desired requirements, select the **Controls where type**= option and then select the required control type from the drop-down list.

- The **Limiting Criteria** area allows you to specify which data to transfer to the control plan by using any of the following criteria:

 - **Classification** transfers only the cause data with the selected classification. Select **All** if you want all cause data, no matter the classification, to be transferred. This includes cause data with no classification. Select **Any** if you want to transfer the record if any classification has been assigned to it. If there is no classification assigned to it, the cause data will not be transferred.

 - **Cause RPN (Initial) >=** transfers only the data with an initial cause RPN that is greater than or equal to the value that you specify in the input box.

 - **Cause RPN (Revised) >=** transfers only the data with a revised cause RPN that is greater than or equal to the value that you specify in the input box.

 - **Cause SxO (Initial) >=** transfers only the data with an initial cause severity x occurrence rating that is greater than or equal to the value that you specify in the input box.

 - **Cause SxO (Revised) >=** transfers only the data with a revised cause severity x occurrence rating that is greater than or equal to the value that you specify in the input box.

Sync with PFD Worksheet

To sync with an existing PFD worksheet, choose **Control Plan > Sync > Sync with PFD Worksheet**.

You will be asked to choose whether to overwrite the existing data in the control plan with the data from the PFD worksheet or append the new data. Click **OK** to complete the process.
Chapter 17: Design Reviews Based on Failure Mode (DRBFM)

Design Review Based on Failure Mode (DRBFM) is a methodology used to evaluate proposed changes to an existing item. It was developed by Tatsuhiko Yoshimura, working with Toyota Motor Corporation. DRBFM uses a worksheet modeled after the FMEA worksheet, but some of the relevant differences include:

- DRBFM usually focuses on changes to an existing design.
- DRBFM focuses on "points of concern" to the engineers.
- DRBFM follows the GD3 philosophy:
 - Good Design
 - Good Discussion
 - Good Design Review
- The structure of the DRBFM analysis worksheet is somewhat different than the typical worksheets for FMEA.

Although some organizations may choose to perform DRBFM instead of FMEA, most practitioners start with a baseline FMEA and then use the DRBFM worksheet for evaluating the risks that might be introduced by changes to the original design.

If you wish to be able to add a DRBFM analysis to an item in your project, select the Enable Legacy DRBFM check box Configurable Settings page of the Project Properties window. When this option is selected, the Add DRBFM command will be visible on the Analyses tab of the ribbon.

The DRBFM analysis tab will open in the Analysis panel. In addition, the DRBFM icon will appear in the corresponding column in the System Hierarchy tab of the System panel (if that column has been selected for display on your computer).

The DRBFM analysis contains two tabs: a Header tab and a Worksheet tab. The Header tab contains general information about the entire analysis that will be displayed in the header of the report output while the Worksheet tab contains the analysis data.
DRBFM Header

The following fields may be found on the DRBFM Header tab.

Note: The fields that are enabled in the interface and the options available in configurable drop-down lists will depend on the interface style settings that have been defined for the current project. You can choose Project > Management > Configurable Settings > Interface Style to open the Edit Interface Style (This Project) window and change the settings for the current project.

- **DRBFM Type:** The type of DRBFM (choose from menu).
- **Document Number:** A unique document identifier.
- **Key Date:** The date when the DRBFM should be completed.
- **DRBFM Date (Orig.):** The original DRBFM completion date.
- **DRBFM Date (Rev.):** The latest DRBFM revision date.
- **Prepared By:** The person who prepared the document.
- **Primary Approval:** The person who approved the document.
- **Approval Date:** The date when the document was approved.
- **Product:** The product that the DRBFM applies to.
- **Model Year(s)/Program(s):** The model year and/or program identifier that the DRBFM applies to.
- **Mission:** The mission that the item is intended to perform.
- **Release Date:** The date when the design will be released.
- **Responsibility:** The person who is responsible for the design that is being analyzed.
- **Core Team:** The primary team of people who worked on the analysis.
- **Support Team:** The support team for the analysis.
- **Others Affected:** Other people who were involved with or affected by the analysis.
- **User-Defined Fields:** Up to five text fields, one date field, one number field and one drop-down list.
- **Last Updated By:** The date when the DRBFM header was last updated. This is populated by the software.
Chapter 17: Design Reviews Based on Failure Mode (DRBFM)

- **Last Updated**: The user who last updated the DRBFM header. This is populated by the software.

For text fields, you can click the Select Existing icon inside the field. This will open a window that allows you to reuse text that has already been entered in this type of field.

For date fields, you can click the field once to open a calendar or twice to type the date. You must use the mm/dd/yy or mm/dd/yyyy format.

DRBFM Worksheet

The Worksheet tab displays the records that will be tracked with the DRBFM. If you have the permissions necessary to edit the project properties, you can choose which fields will be enabled and what they will be called. For example, you can include user-defined fields and define the options in the user-defined drop-down menus, when applicable.

The software provides two different "views" for the worksheet; one is intended to be used by the Design Engineer who performs the first draft of the analysis and the other is intended to be used by the entire Review Team to modify and expand upon the initial draft. Use the options at the top of the worksheet to toggle between the two views.

- Select **Design Engineer** to hide the Other Concerns, Other Causes and Actions columns in the worksheet.
- Select **Review Team** to display all enabled columns in the worksheet.

Note: If the Severity, Occurrence and Detection columns are enabled in the FMEA, then those columns are also displayed in the DRBFM Worksheet along with the initial and revised RPNs. (See FMEA > RPNs.)

When using the DRBFM worksheet, you have the following options:

- To enter or edit data, double-click the cell.
 - For text columns, you can use the HOME, END and arrow keys to move through the text in the cell. For date columns, you can click the column once to open a calendar or twice to type the date. You must use the mm/dd/yy or mm/dd/yyyy format.
 - To save the changes, either press ENTER or TAB or click somewhere outside of the cell.
• The following options apply to parts, functions, concerns, effects, causes, controls and actions. While the examples given are for parts, the commands are similar for each record type:
 • To add a part, choose DRBFM > DRBFM Records > Parts/Functions > Add Part/Function.
 • To insert a part above the currently selected one, choose DRBFM > DRBFM Records > Parts/Functions > Insert Part/Function.
 • To copy, select the part in the worksheet area and choose Home > Clipboard > Copy. To paste a copied part, choose Home > Clipboard > Paste.
 • To move a record up or down one place in the list of parts, select the part in the worksheet area, then right-click the worksheet and choose Up or Down from the shortcut menu or choose Home > Move Record > Up or Home > Move Record > Down.
 • To delete, select the part in the worksheet area and either choose Home > Edit > Delete or press DELETE. You can undo the last deletion only.
 • To import functions from the FMEA, choose DRBFM > Sync > Get Functions from FMEA. To export the functions to the FMEA, choose DRBFM > Sync > Send Functions to FMEA.
 • To import header properties from the FMEA, choose DRBFM > Sync > Get Header from FMEA. To export the header properties to the FMEA, choose DRBFM > Sync > Send Header to FMEA. Performing either action makes the headers identical.
 • To import data from an Excel spreadsheet, choose System Hierarchy > Add Items > Import > Import from Excel. To export data from the DRBFM worksheet to an Excel spreadsheet, choose System Hierarchy > Tools > Reporting > Export to Excel.
 • To generate a report of the DRBFM data, choose Home > Reporting > Reports. In the Reports window, the DRBFM reports are located in the DRBFM Spreadsheet and DRBFM Records sections of the Available Reports area.
 • To split the worksheet view so that you can view text at one side of the worksheet without moving the text at the other side, right-click a column heading and choose Split. A split bar will be placed to the left of the column. To remove the bar, right-click any column heading and choose Remove Split. (For example, you use this to see the function number while working on the actions.)
 • To rearrange the order in which the columns are displayed, select a column heading and drag it to the place in the worksheet area you want it to appear. This updates the interface style for the project. You also can change the column order through the Project Interface Style window.
• To change the descriptive information about each column that displays in tooltip form when you move the pointer over the column headings, open the Project Interface Style window and change the text in the appropriate DRBFM pages.

• To populate the gray areas in the worksheet with the relevant text from a prior row, choose File > Application Setup. On the Settings page select the Repeat data in worksheet views check box.

Parts/Functions Columns
The following fields may be found in the parts/functions columns of the Worksheet tab of the DRBFM.

Note: The fields that are enabled in the interface and the options available in configurable drop-down lists will depend on the interface style settings that have been defined for the current project. You can choose Project > Management > Configurable Settings > Interface Style to open the Edit Interface Style (This Project) window and change the settings for the current project.

• Part/Change to Design or Environment: List the part and the change that is being made to the design or the operating conditions. This is a required column.

• Function: List the functions that might be affected by the change. This is a required column.

• User-Defined Fields: Up to one text field, one date field, one number field and one drop-down list.

Concerns Columns
The Concerns Related to Change and Other Concerns columns are similar to the "Failure" description in an FMEA. The Concerns Related to Change column is intended for the Design Engineer, but may be used by the Review Team. The Other Concerns column can be used only by the Review Team. Therefore, while information cannot be entered in both columns on the same row, each row must contain a description, which could be in either column.

The following fields may be found in the concerns columns area of the Worksheet tab of the DRBFM.

Note: The fields that are enabled in the interface and the options available in configurable drop-down lists will depend on the interface style settings that have been defined for the current project. You can
choose Project > Management > Configurable Settings > Interface Style to open the Edit Interface Style (This Project) window and change the settings for the current project.

- **Concerns Related to Change**: List concerns related to the change, as identified by the Design Engineer. This is a required column for the Design Engineer.
- **Other Concerns**: List other concerns related to the change, as identified by the Review Team. This is a required column.
- **User-Defined Fields**: Up to one text field, one date field, one number field and one drop-down list.

DRBFM Effects Columns
The following fields may be found in the effects columns area of the Worksheet tab of the DRBFM.

Note: The fields that are enabled in the interface and the options available in configurable drop-down lists will depend on the interface style settings that have been defined for the current project. You can choose Project > Management > Configurable Settings > Interface Style to open the Edit Interface Style (This Project) window and change the settings for the current project.

- **Potential Effects of Concern**: List the potential effects if the concern (failure) occurs. This is a required column.
- **User-Defined Fields**: Up to one text field, one date field, one number field and one drop-down list.

DRBFM Causes Columns
The Potential Cause of Concern column is intended for the Design Engineer, but may be used by the Review Team. The Other Causes column can only be used by the Review Team. Therefore, while information cannot be entered in both columns on the same row, you must enter information in one of the columns.

The following fields may be found in the Causes columns area of the Worksheet tab of the DRBFM.

Note: The fields that are enabled in the interface and the options available in configurable drop-down lists will depend on the interface style settings that have been defined for the current project. You can
choose **Project > Management > Configurable Settings > Interface Style** to open the **Edit Interface Style (This Project) window** and change the settings for the current project.

- **Class**: Special characteristic classification, if applicable.
- **Potential Cause of Concern**: List the potential causes for the concern, as identified by the Design Engineer. This is a required column for the Design Engineer.
- **Other Causes**: List other potential causes for the concern, as identified by the Review Team. This column is required if the Potential Cause of Concern field is empty.
- **User-Defined Fields**: Up to one text field, one date field, one number field and one drop-down list.

DRBFM Controls Columns

The following fields may be found in the controls columns area of the Worksheet tab of the **DRBFM**.

Note: The fields that are enabled in the interface and the options available in configurable drop-down lists will depend on the interface style settings that have been defined for the current project. You can choose **Project > Management > Configurable Settings > Interface Style** to open the **Edit Interface Style (This Project) window** and change the settings for the current project.

- **Current Design Controls Detection**: List the controls that are currently in place to improve the likelihood that the cause will be detected before it reaches the end user. This is a required column.
- **Current Design Controls Prevention**: List the controls that are currently in place to reduce the likelihood that the cause will occur.
- **User-Defined Fields**: Up to one text field, one date field, one number field and one drop-down list.

DRBFM Actions Columns

The following fields may be found in the actions columns area of the Worksheet tab of the **DRBFM**.

Note: The fields that are enabled in the interface and the options available in configurable drop-down lists will depend on the interface style settings that have been defined for the current project. You can
choose Project > Management > Configurable Settings > Interface Style to open the Edit Interface Style (This Project) window and change the settings for the current project.

Note: You can view and change the data in the Action columns only if the Review Team view is selected.

- **Recommended Action Design**: List the design-related actions that could be taken to reduce the risk associated with the issue. This is a required column.

- **Recommended Action Design - Responsibility**: The person (or department) responsible for completing each design-related action.

- **Recommended Action Design - Due Date**: The date when each design-related action must be completed.

- **Recommended Action Validation / Test**: List the testing-related actions that could be taken to reduce the risk associated with the issue.

- **Recommended Action Validation / Test - Responsibility**: The person (or department) responsible for completing each testing-related action.

- **Recommended Action Validation / Test - Due Date**: The date when each testing-related action must be completed.

- **Recommended Action Manufacturing / Supplier**: List the manufacturing-related actions that could be taken to reduce the risk associated with the issue.

- **Recommended Action Manufacturing / Supplier Responsibility**: The person (or department) responsible for completing each manufacturing-related action.

- **Recommended Action Manufacturing / Supplier Due Date**: The date when each manufacturing-related action must be completed.

- **Actions Taken**: The actions taken (or result) for each action. This is a required column.

- **User-Defined Fields**: Up to one text field, one date field, one number field and one drop-down list.
Transferring Data Between a DRBFM and a FMEA

Data in the DRBFM can be transferred to and from the associated FMEA.

Please note that changes made in the FMEA do not appear automatically in the DRBFM and vice versa.

Sending FMEA Data to the DRBFM

You can synchronize the document headers and/or transfer selected functions from the FMEA to the DRBFM. For example, if you want to use the DRBFM to evaluate the risks that might be introduced by changes to an existing design, you can transfer the specific FMEA functions that might be affected by the change as a starting point for the new DRBFM.

- **Synchronize the Document Headers**

 To send the FMEA header data to the DRBFM header, choose DRBFM > Sync > Get Header from FMEA.

- **Sending FMEA Functions to the DRBFM**

 To transfer selected FMEA functions, choose DRBFM > Sync > Get Functions from FMEA. You can choose functions from the current item only, or from the current item and all of its sub-items.

Sending DRBFM Data to the FMEA

You can synchronize the document headers and/or append selected DRBFM functions (and related records) to the end of the FMEA. For example, if the DRBFM identifies additional risks that may be introduced by changes to an existing design, you can transfer the specific information back to the main FMEA if desired.

- **Synchronize the Document Headers**

 To send the DRBFM header data to the FMEA header, choose DRBFM > Sync > Send Header to FMEA.

- **Sending DRBFM Record Data to the FMEA**
To transfer DRBFM records to the FMEA, choose DRBFM > Sync > Send Functions to FMEA, then select the specific functions to transfer.

When sending DRBFM data to the FMEA, the following rules apply:

- The **Part/Change to Design or Environment** column will not be transferred because data in this column is exclusive to the DRBFM.
- The **Function** column will transfer as function descriptions.
- The **Concerns Related to Change** and **Other Concerns** columns will transfer as failure descriptions.
- The **Potential Effects of Concern** column will transfer as effect descriptions.
- The **Potential Cause of Concern** and **Other Causes** columns will transfer as cause descriptions.
- The **Current Design Controls** columns will transfer as control descriptions with the appropriate Control Type (i.e., detection or prevention).
 - The **Detection** column will transfer to the first Control Type defined for the project and the **Prevention** column will transfer to the second Control Type. If the Control Type settings in your project differ, you can adjust them in the project’s interface style so that Detection is first and Prevention second.
 - If there are two controls per row in the DRBFM worksheet, any associated **User Defined** field information will transfer to both controls in the FMEA.
- The **Recommended Action** columns (i.e., Recommended Action - Design, Recommended Action - Validation/Test and Recommended Action - Manufacturing/Supplier) will transfer as separate action descriptions.
 - If there are multiple actions per row, the associated **Actions Taken** and **User Defined** field information will transfer to each of those actions in the FMEA.
Chapter 18: FMEA Diagrams

There are four types of diagrams that can be used in conjunction with your FMEAs:

- **FMEA Block Diagrams**
- **Process Flow Diagrams**
- **Cause and Effect Diagrams**
- **Failure Relationship Diagrams**

You can choose to work with these diagrams on-the-fly, or save them with the analysis. When a diagram has been saved for a particular system hierarchy item, an icon will be displayed in the hierarchy if the relevant column is enabled for your computer/username.

Depending on the diagram type, you can choose to build the diagram automatically from selected analysis data and/or customize the presentation by adding/modifying blocks, connectors, annotations, etc. These diagrams support many of the same features for building diagrams and customizing appearance settings that are available in BlockSim and other ReliaSoft applications. For more information, see:

- **Connecting Blocks**
- **Arranging and Resizing Blocks**
- **Keyboard and Mouse Combinations**
- **Diagram Find window**
- **Diagram ribbon tabs: Home, Diagram and Format**
- **Diagram Skins and Appearance Settings**

FMEA Block Diagrams

You can create an FMEA Block Diagram for any item in the system hierarchy that visually depicts the system assembly that will be analyzed in a Design FMEA. These diagrams help to
define the scope of a particular analysis project and also may provide additional information that will be useful to the analysis team when they attempt to identify potential failure modes.

The FMEA Block Diagram is interactive with both the system hierarchy and the FMEA (if desired). This means that the software will automatically populate the diagram with the components in the selected branch of the system hierarchy. You can then add additional blocks for other factors (e.g., human interactions) and add the appropriate connections (physical, material exchange, data exchange or energy transfer) to complete the diagram. Finally, you can choose to automatically create functions for the selected interactions as a starting point in the FMEA (e.g., "Energy Transfer from Component A to Component B").

Create the FMEA Block Diagram
To create a new FMEA Block Diagram (or open or delete a saved one), select an item in the System panel then choose System Hierarchy > Current Item > Diagrams > FMEA Block Diagram. You can also right-click the item and choose Diagrams > FMEA Block Diagram.

If a diagram has already been saved for the current item, you will be prompted to open, delete or replace it. (If you are opening a diagram that was created in an earlier version of the software, see Converting Existing Diagrams below.)

The FMEA Block Diagram shows all of the items from the selected branch of the system hierarchy. If an item has sub-items (i.e., an assembly), it will be represented as a container block. If not, it will be represented as a standard block.

You can add blocks to the diagram so that you can add connections that need to be considered in the FMEA. For example, in the image shown below, the "Ground" and "Rider" blocks are not included in the system hierarchy, but were added to the diagram so that their interfaces could be included. The indicator in the top left corner of the block indicates that this is an "Additional Item."

To add a standard block (i.e., an item), choose Diagram > Blocks > Add Block.
To add a container block (i.e., a next higher level item), choose **Diagram > Blocks > Add Container**.

Add the Connections (Interfaces) Between Items

To add connectors (also known as *interfaces*), choose **Diagram > Settings > Connect Blocks** and select a specific connection type. That connection type will be used until you change it.

You can include up to four separate connectors between blocks, and the same two blocks can be connected in multiple ways.
The default appearance for each connection type is shown here. If you wish to modify the appearance (e.g., add arrowheads to indicate the direction, change the color, etc.), use the Defaults pages in the Diagram Style (which updates all connectors in the diagram that are configured to use default settings) or the Connector Style (which updates only the connector(s) that are currently selected). For more information, see Diagram Skins and Appearance Settings.

- **Physical Connection (PH):** The items are attached to each other (e.g., brackets, bolts, clamps and various types of connectors).

![Physical Connection Diagram](image)

- **Material Exchange (ME):** The items can transfer materials between each other (e.g., pneumatic fluids, hydraulic fluids or any other fluid or material exchange).

![Material Exchange Diagram](image)

- **Energy Transfer (ET):** The items can transfer energy between each other (e.g., heat transfer, friction or motion transfer such as chain links or gears).

![Energy Transfer Diagram](image)

- **Data Exchange (DE):** The items can transfer data between themselves (e.g., computer inputs or outputs, wiring harnesses, electrical signals or any other types of information exchange).

![Data Exchange Diagram](image)

Create FMEA Functions

The Connections area on the right side of the window lists the connections between the blocks. Use the check boxes to select which connections you want to add as functions to the FMEA for the item, and then choose **Diagram > Blocks > Create Functions** or click the **Create Functions** icon.
The created functions use the following naming convention: [Connection type]: [First item] – [Second item]. Once in the FMEA, you can change the wording as needed.

Converting Existing Diagrams

When opening an FMEA Block Diagram created in Version 9 or earlier version of the software, you will be given the option to update the diagram to the new format:

- If you click Yes, the original diagram displays at the top of the window, similar to how it looked previously. In addition, new diagram blocks that are linked to the system hierarchy are included at the bottom of the window.
- If you click No, the diagram displays the same as it did in the earlier version.

Process Flow Diagrams

You can create a process flow diagram for any item in the system hierarchy. These diagrams are high level charts that help you to visualize the steps that a product goes through in a manufacturing or assembly process.

Tip: If you want to use the process flow diagram as a starting point for preparing process FMEAs (PFMEAs) or control plans, then the PFD worksheet may be a more appropriate tool. The PFD worksheet integrates the chart into a worksheet that records more detailed information about each step in the process and it allows you to synchronize the relevant information with the PFMEA or control plan analysis. (See PFD Worksheets.)

To create a new process flow diagram (or open or delete a saved one), select an item in the System panel then choose **System Hierarchy > Current Item > Diagrams > Process Flow Diagram**. You can also right-click the item and choose **Diagrams > Process Flow Diagram**.

If a diagram has already been saved for the current item, you will be prompted to open, delete or replace it.

When you are creating a new process flow diagram, the Create Process Flow Diagram window gives you the option to start with a blank diagram or generate blocks based on the item’s FMEA or control plan. Specifically:

- **Based on system hierarchy** creates blocks for the selected item and any sub-items.
- **Based on system hierarchy and FMEA functions** creates block for each function in the FMEA for the selected item, as well as any sub-items.
- **Based on control plan** creates a block for each Process Name/Operation Description in the control plan associated with the selected item.

![Process Flow Diagram for Driveshaft Induction Hardening Process](image)

Cause and Effect Diagrams

A cause and effect diagram (also known as a *fishbone* or *Ishikawa* diagram) helps you to visualize the relationship among the events described in your analysis. This diagram presents all of the events that lead up to the selected effect or item failure.
To create a new cause and effect diagram for an item (or open or delete an existing one), select the item and choose **System Hierarchy > Current Item > Diagrams > Cause and Effect Diagram**.

For an effect, choose **FMEA > FMEA Records > Effects > Cause and Effect Diagram**.

If the diagram has already been saved for the current item/effect, you will be prompted to open, delete or replace it.

Reading the Cause and Effect Diagram

Although the cause and effect diagram does not have the traditional look of the Ishikawa or fishbone diagram, it can be read the same way. For example, the following diagrams show the events that lead to the failure of System A.
Cause and Effect Diagram for an Item Record

If you create a cause and effect diagram for an effect record, the diagram will consist simply of the failures that lead to that effect and the causes that lead to those failures.
Failure Relationship Diagrams
You can create failure relationship diagram for any failure in an FMEA. These diagrams present all of the causes and effects that have been defined for the selected failure.

To create a new failure relationship diagram (or open or delete an existing one), select the failure record in the Analysis panel and choose FMEA > FMEA Records > Failures > Relationship Diagram.
If a diagram has already been saved for the current effect, you will be prompted to open, delete or replace it.

Building Diagrams

Connecting Blocks
Connectors represent the flow of the process or system being diagrammed, and the lines contain information about the relationship between the specific source and destination blocks that they connect. In BlockSim process flow simulation (PFS) diagrams, connectors are considered to represent pipes. Each pipe carries a specific type of throughput flow, and there may be multiple flow types in a diagram.

Adding Connectors
To add a connector between blocks, you can:
• Right-click the diagram (not blocks) and choose **Connect Blocks** or choose the command in the ribbon.

• Hold down the **ALT** key.

In PFS diagrams, use the down arrow on the **Connect Blocks** ribbon command to specify which flow type you are currently adding before using either of these methods.

In both methods, the pointer will change to display small crosshairs. Click the source block, hold down the left mouse button and drag a line from the source block to the destination block. When the crosshairs are located over the connection point box, release the mouse button to create a connector.

![Diagram showing connection between blocks](image)

Note that existing connectors can be dragged to different destination blocks, if needed. Also note that the curved, custom curve and custom angled connector types give you the option to connect to the top or bottom of a block, if desired. When this option is available, the blocks will show additional connection point boxes when you create or move a connector.

![Diagram showing curved connection](image)

Stop Adding Connectors

To stop adding connectors and return the pointer to its normal mode, release the **ALT** key or click inside the diagram.

Tip: If you do not click the diagram or clear the **Connect Blocks** option to return the pointer to its normal mode, you will not be able to perform certain other activities, such as moving or deleting blocks. If you are experiencing difficulties with the application, make sure that the pointer is in its normal mode.
Inserting Blocks/Splitting Connectors
RBDs, PFS diagrams, Markov diagrams and RENO flowcharts allow you to insert a block into the flow of the diagram without having to delete and add connectors. Simply drag an unconnected block onto an existing connector. When the pointer changes to a double-headed arrow, drop the block to split the existing connector and insert the block.

Connector Types
There are several types of connector that can be used in a diagram. The simplest is a straight line but there are options for adding line bends to create curved or angled lines. For details about available connector styles and defining preferences, see Connector Style Settings.

Using Curved, Custom Curve or Angle Connectors
When using curved, custom curve or custom angle connectors, you can choose the location where they connect to the blocks (top, middle or bottom) and add one or more bends to the line. These options can be used separately or in combination.

To add or modify line bends:

- **Curved connectors** have a single bend point in the center of the connector. To change the angle, click and drag the point to the desired location.

- For **custom curve and custom angle connectors**, add line bend(s) by clicking anywhere on the connector and dragging the selected point to the desired location.
These custom bends can be removed by right-clicking the connector and choosing **Remove all Bend Points** or, to remove a single bend point, by right-clicking the bend point and choosing **Remove Bend Point**.

Arranging and Resizing Blocks

There are a number of commands that can be used to arrange and resize the blocks in a diagram. They can be used separately or in combination.

- To select multiple blocks, select the first block and then hold down the CTRL key while clicking each of the other blocks.

- If you apply a command and don’t like the result, you can use CTRL+Z to return to the original layout.

Align Blocks

To align the blocks (align by center, top, bottom, left, etc.), select the block you want to use as the reference alignment position then select the other blocks. Right-click inside one of the blocks and choose **Align Blocks** then the desired alignment style.

The selected blocks will be aligned with the first block selected. For example, if you choose **Align Middles**, the blocks will be aligned to the vertical center of the first selected block, as shown next.
Chapter 18: FMEA Diagrams

Resize
Select the block then click one of the sizing handles and drag it to the desired size.

![Resize Diagram](image)

Make Same Size
To make the blocks the same size, select the block that has the desired dimension(s) then select the other blocks that you want to resize. Right-click inside one of the blocks and choose **Make Same Size** then choose to match the width and/or height of the first selected block.

For example, if you choose **Height**, the blocks will be resized to the same height as the first selected block.

![Make Same Size Diagram](image)

Make Spacing Equal
To adjust the spacing between blocks, select the blocks that will be affected (the selection order does not matter). Right-click inside one of the blocks and choose **Make Spacing Equal** then the desired direction.

The selected blocks will be moved so that they are equally spaced over the original size of horizontal and/or vertical area.

![Make Spacing Equal Diagram](image)
Auto Arrange
To automatically arrange the blocks in the diagram so that all blocks are placed in logical order depending on their connections, right-click the diagram (not blocks) and choose Auto Arrange.

Note that for Markov diagrams in BlockSim/RENO, you also need to select the starting block that is going to be the top left block in the diagram.

The space between blocks depends on the settings specified in the Background and Grid page of the Diagram Style window.

Auto Fit Width
In some BlockSim/RENO diagrams, you can also choose Auto Fit Width to automatically arrange the blocks in the diagram to fit evenly spaced within the width of the diagram window.

Keyboard and Mouse Combinations
This topic describes the various keyboard and mouse key combinations that you can use while working with diagrams.

Note the following:

- A unit is equal to either 1 millimeter or 0.1 inches, depending on the system setting.
- When selecting multiple objects, you can select either blocks or connectors. A selection cannot include both blocks and connectors. Note that while you can include Standby Containers and Load Sharing Containers in a selection, any changes you make, such as resizing the containers, do not apply to the blocks or connectors in the containers. If you
start a selection inside a container, that selection can include only those blocks and connectors within that container.

<table>
<thead>
<tr>
<th>Selecting Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select a block or connector</td>
</tr>
<tr>
<td>Click the block or connector.</td>
</tr>
<tr>
<td>Select multiple blocks or connectors</td>
</tr>
<tr>
<td>Press CTRL and click the blocks or connectors.</td>
</tr>
<tr>
<td>Select a group of blocks</td>
</tr>
<tr>
<td>Click within the diagram and drag the selection to include the desired blocks.</td>
</tr>
<tr>
<td>Add additional blocks or connectors to the currently selected group</td>
</tr>
<tr>
<td>With a group of blocks or connectors selected, press CTRL and then make another selection. The new selection will be merged with the existing selection.</td>
</tr>
<tr>
<td>Select all blocks in the diagram</td>
</tr>
<tr>
<td>Press CTRL+A.</td>
</tr>
<tr>
<td>Clear all selections in the diagram</td>
</tr>
<tr>
<td>Press ESC.</td>
</tr>
<tr>
<td>Switch the status of a block or connector from selected to not selected or from not selected to selected.</td>
</tr>
<tr>
<td>Press SHIFT and click the block or connector.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moving Objects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move a block</td>
</tr>
<tr>
<td>Click the block and drag to the desired location.</td>
</tr>
<tr>
<td>Move multiple blocks</td>
</tr>
<tr>
<td>Select the blocks then click any block within the selection and drag the selection to the desired location.</td>
</tr>
<tr>
<td>Move block(s) by 1-unit increments</td>
</tr>
<tr>
<td>Select the block(s) then press the desired arrow key.</td>
</tr>
<tr>
<td>Move block(s) the distance of 1 grid line</td>
</tr>
<tr>
<td>Select the block(s) then press CTRL + the desired arrow key. If only one block is selected, this shortcut will first align the block to the grid and then each subsequent use of the shortcut will move the block by one grid line.</td>
</tr>
</tbody>
</table>
Resizing Objects

<table>
<thead>
<tr>
<th>Description</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resize a block</td>
<td>Select the block then click one of the sizing handles and drag it to the desired size.</td>
</tr>
<tr>
<td>Resize block(s) by 1-unit increments</td>
<td>Select the block(s) then press SHIFT and the desired arrow key. The up and down arrow keys move the bottom edge of each selected block by a single unit; the right and left arrow keys move the right edge of each selected block by a single unit.</td>
</tr>
<tr>
<td>Resize block(s) by 5-unit increments</td>
<td>Select the block(s) then press CTRL + SHIFT + the desired arrow key. The up and down arrow keys move the bottom edge of each selected block by 5 units; the right and left arrow keys move the right edge of each selected block by 5 units.</td>
</tr>
</tbody>
</table>

Connectors

<table>
<thead>
<tr>
<th>Description</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add a new connector</td>
<td>Press ALT and drag the connector from the source block to the destination block.</td>
</tr>
<tr>
<td>Change a connector's source or destination</td>
<td>Select the connector then drag the appropriate connection handle to the new source or destination block.</td>
</tr>
<tr>
<td>Add a bending point to a connector.</td>
<td>Click the connector and drag the bending point to the desired location.</td>
</tr>
<tr>
<td>Note that the connector must use the Custom style. To set the style, refer to the Connector Style Settings topic.</td>
<td></td>
</tr>
</tbody>
</table>

Scrolling

<table>
<thead>
<tr>
<th>Description</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scroll vertically</td>
<td>Rotate the mouse wheel.</td>
</tr>
<tr>
<td>Scroll horizontally</td>
<td>Press SHIFT and rotate the mouse wheel.</td>
</tr>
</tbody>
</table>
Chapter 18: FMEA Diagrams

<table>
<thead>
<tr>
<th>Action</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scroll in any direction</td>
<td>With nothing selected, press the desired arrow key.</td>
</tr>
<tr>
<td>Scroll horizontally to the far left</td>
<td>Press HOME.</td>
</tr>
<tr>
<td>Scroll horizontally to the far right</td>
<td>Press END.</td>
</tr>
<tr>
<td>Scroll to the upper left corner of the diagram</td>
<td>Press CTRL+HOME or CTRL+PAGE UP.</td>
</tr>
<tr>
<td>Scroll to the lower right corner of the diagram</td>
<td>Press CTRL+END or CTRL+PAGE DOWN.</td>
</tr>
<tr>
<td>Scroll by the size of the visible area of the diagram</td>
<td>With nothing selected, press CTRL + the desired arrow key. For vertical scrolling, you can also press PAGE UP and PAGE DOWN.</td>
</tr>
<tr>
<td>Move the diagram in any direction (pan)</td>
<td>Press SHIFT, click the diagram and drag. This is like dragging the diagram sheet itself (e.g., to see objects lower in the diagram, you would drag the diagram upward).</td>
</tr>
</tbody>
</table>

Other

<table>
<thead>
<tr>
<th>Action</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoom in or out</td>
<td>Press CTRL and rotate the mouse wheel.</td>
</tr>
<tr>
<td>Exit the Format Painter or Connect Blocks modes</td>
<td>Press ESC.</td>
</tr>
<tr>
<td>Create a copy of a block and move the copy to the desired location</td>
<td>Press CTRL+SHIFT and click the block then drag to the desired location.</td>
</tr>
<tr>
<td>Add blocks to the mirror group currently shown in the Mirror Group Manager window</td>
<td>Press CTRL+SHIFT and drag the block from the diagram into the Mirrored Blocks area of the Mirror Group Manager.</td>
</tr>
</tbody>
</table>
Diagram Find Window

The Find window in FMEA diagrams allows you to search for text and/or numbers. To open the Find window, choose Home > Edit > Find.

- Use the **Find what** field to type the text and/or number you want to find in the current diagram.
- Use the **Search** field to find the text and/or number by block caption.
 - **By Block Caption** searches for the block(s) with the text and/or number in the block caption.
- Select **Match case** to find only the text in the current sheet with the same case. For example, the search term "teXt" will not find "Text" because the case does not match.
- Select **Find whole field** if you want to find only the text where the entire word matches the text and/or number you specified in the Find What field. If your search term makes up only part of a word, that word will not be found.

Click **Find Next** to find the next matching text and/or number. When the text and/or numbers are found, the cursor will go to that particular block.

Diagram Ribbon

Diagram Ribbon Home Tab

The Home tab in the Diagram window contains the following commands:

File
- **Save** saves the diagram.
- **Close** closes the Diagram window.

Clipboard
- **Paste** pastes the contents of the Clipboard onto the diagram.
- **Cut** cuts the selected block to the Clipboard. Data stored in the Clipboard can be pasted into this and other applications.
Chapter 18: FMEA Diagrams

- **Copy** copies the selected graphic element to the Clipboard. You can then paste this element into another location within the diagram.

 - **Copy Diagram as Graphic** copies the current diagram to the Clipboard. The diagram can then be pasted as an enhanced metafile (*.emf) graphic into other documents as an enhanced metafile (*.emf) graphic.

 - **Copy Block(s) as Graphic** copies the selected blocks to the Clipboard. The blocks can then be pasted into other documents as an *.emf graphic.

- **Format Painter** allows you to copy the format properties of text in a sheet and apply it to other text. To use the Format Painter, select the text with the format properties that are to be copied and then choose Format Painter. Next, click the text to which the format properties are to be applied.

Print

- **Print** sends the current diagram to the printer.

- **Print Preview** opens the Print Preview window, which allows you to view how the current diagram will appear on the printed page.

- **Page Setup** opens the **Page Setup window**, which allows you to specify printing options.

- **Print Layout** displays the page boundary lines on the diagram. Everything within the boundary lines will appear on the printed page and this view allows you to make any necessary adjustments to the final look of the diagram before sending it to the printer.

Edit

- **Redo** reapplies the previously canceled action. You can redo multiple actions by choosing Redo again.

- **Undo** cancels the last editing change you made.

- **Delete** deletes the selected blocks.

- **Select All** selects all of the blocks in the diagram.

- **Find** opens the **Find window**, which allows you to search through the diagram for text and/or numbers.
View

- **Normal Zoom** sets the degree of magnification back to 100%.
- **Zoom In** increases the degree of magnification.
- **Zoom Out** decreases the degree of magnification.
- **Zoom%** allows you to specify the degree of magnification.

Diagram Ribbon Diagram Tab
The Diagram tab in the Diagram window contains the following commands:

Blocks

- **Add Block** adds a new block to the diagram.
- **Add Container** is available only for an FMEA block diagram and adds a new container block to the diagram.
- **Add Annotation** adds a new annotation to the diagram. You can edit the text that appears in the annotation by double-clicking it to open the Edit User-Defined Label window.
- **Auto Arrange** automatically arranges the blocks in the diagram so that all blocks are evenly spaced and aligned. (See Arranging and Resizing Blocks.)
- **Create Functions** is available only for an FMEA Block Diagram and creates new FMEA functions for the current item based on the selected connections in the Connections area.

Settings

- **Connect Blocks** allows you to create connectors between blocks in the current diagram. When this command is selected, click the source block, hold down the left mouse button and drag a line from the source block to the destination block. When the crosshairs are located above the destination block, release the mouse button to create a connector. To stop adding connectors and return to the normal mode, right-click the diagram or clear the Connect Blocks command (i.e., by choosing the command again).
Chapter 18: FMEA Diagrams

The following options are only available if you are working with an FMEA Block Diagram. Before creating a connection, select the appropriate type. The command indicates which type of connector will be created:

- Physical Connection
- Material Exchange
- Energy Transfer
- Data Exchange

Lock Diagram locks the current diagram. When the diagram is locked, you cannot make changes to it. Select Lock Diagram again to unlock the diagram.

Properties

- Rename Block opens the Rename Block window, which allows you to customize the block's name.

- Line Bend alters the bend style of the selected connectors. The commands are: Angle, Right Angle, Straight Line, Curved, Custom Curves, Custom Angles and Default.

The following commands are available only if the style is Custom Curves or Custom Angles: Remove Bend Point and Remove All Bend Points.

- Connector Type is available only for an FMEA Block Diagram and allows you to change the type of connector used. The options are Physical Connection, Material Exchange, Energy Transfer and Data Exchange.

Selection

- Cascade Select selects all the blocks that are connected from the selected block. This allows you to easily select all blocks that are connected to a block.

- Trace Path traces the path of the selected block. Click another block or the diagram to remove the traced path. The color of the traced path is the same as the color for a selected connector and can be set in the Diagram Style window. The thickness of the path can also be set in the Diagram Style window, independent of the properties of a selected connector,

- Diagram Actions allows you to perform various actions on the diagram.

- Refresh Diagram updates the diagram to show any changes.
Diagram Style opens the Diagram Style window, which allows you to customize the appearance of the current diagram and set the default properties for connectors and new blocks that are added to the diagram.

Export Graphic saves the diagram as a graphic in one of the following formats: *.wmf, *.png, *.gif or *.jpg. You will be able to use the exported graphic in any application, provided that the application supports the file format.

Diagram Ribbon Format Tab
The Format tab in the Diagram window contains the following commands:

Format

Select Font opens the font window which allows you to set the font properties for the selected blocks.

Font Color opens the Color Palette, which allows you to set the font color for the selected text.

Fill Color opens the Color Palette, which allows you to set the fill color for the selected text.

Styles

Diagram Style opens the Diagram Style window, which allows you to customize the appearance of the current diagram and set the default properties for connectors and new blocks that are added to the diagram.

Block Style opens the Block Style window, which allows you to customize the appearance of the selected block or annotation.

Connector Style opens the Connector Style window where you can customize the appearance of the selected connectors.

Alignment and Spacing

Align Blocks allows you to easily adjust the position of multiple blocks. The selected blocks will be aligned with the first block selected, except for Align to Grid, which moves each selected block to its nearest point on the grid. (See Arranging and Resizing Blocks.)
Make Spacing Equal allows you to easily adjust the spacing between multiple blocks. The selected blocks will be moved so that they are equally spaced over the original size of horizontal and/or vertical area. (See Arranging and Resizing Blocks.)

Make Same Size allows you to resize multiple blocks of different sizes. The selected blocks will be resized to match the height and/or width of the first selected block. (See Arranging and Resizing Blocks.)

Bring to Front moves the currently selected blocks in front of other objects on the diagram.

Send to Back moves the currently selected blocks behind other objects on the diagram.

Diagram Skins and Appearance Settings

Most of the appearance settings in a diagram can be customized to meet your particular preferences.

Diagram Skin – sets (or resets) all of the settings in the Diagram Style for a particular diagram.

Diagram Style – contains all of the style settings for the current diagram (e.g., background color and grid style) as well as default settings for the blocks and connectors within this diagram.

Block Style and Connector Style – allow you to override the default settings for specific blocks or connectors, if desired.

For consistency and ease of use, the simplest option is to choose a preferred skin and set it as the default for your computer. Each new diagram you create will have the preferred settings applied automatically. If desired, you also have the option to change settings for a particular diagram, and/or for particular blocks or connectors.

Tip: If you use the Block Style or Connector Style windows to modify the settings for specific blocks or connectors, those settings will no longer be linked to the default settings in the Diagram Style and they won’t be updated if you change the skin. If you want the block/connector settings to be determined by the diagram style/skin, make sure they are set to "Diagram Default."
Using Diagram Skins

A diagram skin provides a quick and easy way to set (or reset) all of the settings in the Diagram Style window for a particular diagram.

Diagram skins are universal across all ReliaSoft applications. This means that a single skin can contain the appearance settings for all types of diagrams in BlockSim/RENO, Weibull++/ALTA and XFMEA/RCM++/RBI. However, you will only be able to see/modify the settings for the type of diagram that you are currently working with.

The universal skins are stored with a *.dskin extension at C:\Users\Public\Public Documents\ReliaSoft\Skins. If you have already customized skins from a prior version, see Converting Version 9 Skins.

In order to create, modify or manage the skins on your computer, you must first open a diagram then right-click and choose Diagram Style.

The commands that you will use are located in the lower-left corner of the window.

What’s Changed? Starting in Version 18.0.4, you cannot modify the skins that are installed with the software. Any changes that you make must be saved as new skins with their own names.

Select Skin

To apply an existing skin to the current diagram:

1. Click the Select Skin (√) icon.
2. Choose a skin from the list and click OK. The name of the selected skin will be displayed in Skin field.
3. Click OK to close the Diagram Style window and apply the relevant settings to the diagram.

If you don’t like the result, you can undo the action by pressing CTRL+Z, or simply return to the Diagram Style window and select a different skin.

Modifying or Creating a Skin

1. Open a diagram that has the settings you want to reuse or create the diagram. Open the Diagram Style window.
2. Make your changes. For details on the settings that can be changed, see the Diagram Style Settings.

3. Click the Save as Skin (+) icon. Enter a name for the skin and click OK. If you specify a name that already exists, you’ll be asked to confirm that you want to replace the settings for this particular diagram type.

Note: Skin names cannot contain the following characters: < > | / \ ? : * or quotes. The names are not case sensitive.

Skins are stored with a *.dskin extension in the Skins folder (C:\Users\Public\Public Documents\ReliaSoft\Skins).

Save as Skin
To use the settings in the current diagram to create a new skin, or to update an existing skin:

1. Click the Save as Skin (+) icon.

2. Enter a name for the skin and click OK. If you specify a name that already exists, you’ll be asked to confirm that you want to replace the settings in the existing skin for this particular diagram type. (The settings that are specific to other diagram types will remain unchanged.)

Note: Skin names cannot contain the following characters: < > | / \ ? : * or quotes.

Manage Skins
To view or manage the skins that are available to use on your computer, click the Manage Skins (...) icon. From here you can:

- Click Import to browse for *.dskin files in another location (e.g., skins that were created by another user or on a different computer) and copy them into the designated folder for your computer.

Tip: You can also copy/paste *.dskin files directly into the C:\Users\Public\Public Documents\ReliaSoft\Skins folder. However, they won’t appear in the skins list until you restart the application.

- Select a skin and click Rename, then specify a new name. This will change the name of the *.dskin file in the designated folder for your computer.

- Select a skin and click Delete. This will remove the *.dskin file from the designated folder on your computer and cannot be undone.
• Click **Set Defaults** and then specify which skin will be used by default for each new diagram you create.

Converting Version 9 Skins

Starting in Version 10, diagram skins are universal to all ReliaSoft applications that use diagrams. This means that a single skin can contain the appearance settings for all types of diagrams in BlockSim/RENO, Weibull++/ALTA and XFMEA/RCM++/RBI.

Many of the predefined skins installed with Version 9 applications have already been merged and converted into universal skins that are ready to use in any diagram type in later versions. For example, the new White.dskin replaces the old RBDWhite.dskinrbd, FTDWhite.dskinftd, etc.

If you created your own customized skins in Version 9, this topic explains how to convert them for use in later versions.

Preparing the Version 9 Skins Folders

The conversion utility considers the old Version 9 skins that are stored in the following locations:

- C:\Users\Public\Public Documents\ReliaSoft\Skins\BlockSim9
- C:\Users\Public\Public Documents\ReliaSoft\Skins\Xfmea9
- C:\Users\Public\Public Documents\ReliaSoft\Skins\RCM9
- C:\Users\Public\Public Documents\ReliaSoft\Skins\Weibull9

Before running the utility, you can:

1. Delete any Version 9 skins that you don’t wish to use or convert. (This is not required but it may help to avoid confusion when you run the conversion utility.)
2. For any Version 9 skins that you wish to combine into the same universal skin, rename them to the same filename (while still retaining the different file extensions).

 For example, if you want to combine RBDCustom.dskinrbd and FTDCustom.dskinftd into the same universal skin, you could rename the files to Custom.dskinrbd and Custom.dskinftd.

Running the Conversion Utility

After you have prepared the Version 9 skins folders as described above:

1. Choose **File > Application Setup**.
2. On the Synthesis Settings > Other page, click **Convert**.
3. The Convert Skins window will display all of the unique filenames that remain in the Version 9 skins folders. (If you want to combine multiple skins into the same new universal skin, make sure you have already renamed the files as described above.) Select the skins you want to use in later versions and click Convert.

4. Close the application so the skin(s) will be added to the Skins folder.

The new file(s) are stored at C:\Users\Public\Public Documents\ReliaSoft\Skins with a *.dskin extension and “_V9” appended to the name.

A Note about Diagram Backgrounds
Universal skins contain appearance settings for diagram background and grid, and connector and block handles that are applied to all diagram types. When you create a universal skin from individual skins with different background/grid/handle settings, only one set of these appearance settings will be stored in the skin. The settings that are saved into the universal skin are from the last skin that was merged. If these are not the settings you desire, you can use the Diagram Style window to change them.

Diagram Style Settings

In the Diagram Style window, you can define diagram-level appearance settings, and default settings for the blocks and connectors within the diagram. These settings can be saved in a diagram skin and reused with other diagrams.

To open the Diagram Style window, right-click the diagram (not blocks) and choose Diagram Style.

This window consists of multiple pages. The number and type of pages depend on the type of diagram that you are working with. Settings that can be defined are divided into two groups: Diagram and Defaults.

- At the diagram level, you can define the appearance of the diagram sheet and those aspects of the appearance of diagram components (i.e., blocks and connectors) that cannot be configured at the individual component level.

- You can define the default appearance settings for diagram components (i.e., connectors, blocks and annotations). See Defaults for Blocks and Connectors.
Background and Grid
You can customize the background and grid appearance of the diagram.

- **Grid Style**: Whether to display grid lines and, if so, the style of the lines (e.g., solid, dash, etc.).
- **Grid Spacing**: The size (width and height) of the grid squares, in inches.
- **Shadow**: The size and color of the shadow "cast" by blocks in the diagram. Note that this applies to all block types, but the shadow will be shown only if the **Show Shadow** check box is selected on the Defaults > General page for that block type.
- **Colors**: The colors used for the background, grid lines and page separator lines.
- **Auto Arrange**: The horizontal and vertical spacing between blocks, in inches, that will be used if you choose the **Auto Arrange** ribbon command.

For fault trees in BlockSim, you can also select the **Always Auto Arrange** check box to turn on Auto Arrange by default.

- **Block Caption ID**: Whether to display the block ID, which is an internal ID number assigned to each block when it is created. You can choose not to display the ID or to display it in decimal or hexadecimal format. If it is displayed, it will appear directly below the block name (i.e., its location, alignment and font will be dictated by the properties that are specified for the block caption).

Connector Handles and Indicators
You can customize the following diagram-level connector properties. These settings apply to all connectors of all types within the diagram and cannot be overridden at the connector level.

- If you select **Show Connectors Over Blocks**, any connectors that cross blocks will be shown over (i.e., in front of) those blocks. Otherwise, the blocks will be displayed on top.

- Where connectors attach to blocks if the blocks are not in direct horizontal or vertical alignment. If the **Automatic Connection Preference** field is set to **Left-Right**, the connector will attach to the sides of the blocks; if it is set to **Top-Bottom**, the connector will attach to the top and bottom of the blocks. If **No Preference** is chosen, the connector will attach to the closest edges.

- The **colors** used for:
 - All connector handles and selected connectors.
Chapter 18: FMEA Diagrams

- Connectors to/from highlighted blocks (i.e., blocks that are part of a multiple selection).

- Connectors leading to or from a selected block. This can be helpful in visualizing how a block is connected within a complex diagram.

- The **size of the arrow head**, in inches.

- The **thickness** of connectors in a traced path.

Block Handles and General Indicators

You can customize the following diagram-level block properties. These settings apply to all blocks of all types within the diagram and cannot be overridden at the block level.

- The properties for a **highlighted block**, including:
 - The **colors** used for the handles that appear when you are resizing a block or connecting blocks.
 - The colors used for the caption, border and fill (i.e., the area background).
 - The fill style (i.e., how the color is applied to the area).

- **Flag settings:**

 In BlockSim/RENO, can be used to indicate anything you want. For example, each flag could represent a level of analysis that has been completed. These flags are not used by BlockSim for analyses or simulations.

 In Weibull++/ALTA, the block flags are used to mark blocks that represent a data sheet that has been changed and has not been calculated or a data sheet that has since been deleted.

 - Block flag size: Block flags, which are added by selecting one or more blocks, right-clicking one of the blocks and choosing **Set Block Flag**.
 - Block flag borders: The style (e.g., solid, dash, etc.), color and thickness of the border for block flags.

- **Cross out lines for blocks:** In BlockSim diagrams, the style, color and thickness of the line that is used to cross out blocks that are set as failed. Blocks can be set as failed by selecting the **Set block as failed** option in the **Block Properties window**. You can also set this option by right-clicking the block and choosing **Set Block as Failed**.
Block Corner Indicators (BlockSim/RENO Only)
The Block Corner Indicators pages allow you to customize the appearance of status indicators that are displayed at the corners of blocks. Such indicators include the colored shapes that are used to indicate certain block and text labels that may appear independently or in conjunction with a shape. The available Block Corner Indicators pages will vary depending on the type of diagram that you are working with.

Defaults for Blocks and Connectors
Default appearance settings can be defined for diagram components (i.e., connectors, blocks and annotations. A diagram skin can hold the appearance settings for all diagram types (e.g., RBD, fault tree, process flow, etc.); however, you can only modify the settings for the diagram type you are working with. To define these settings, see:

- Block style settings
- Connector style settings

Block Style Settings
The block style settings can be defined at the diagram level in the Diagram Style window or at the block level in the Block Style window. The block-specific settings defined in the Block Style window have priority over the default settings defined in the Diagram Style window for the diagram you are working with. For details on how the diagram-level and connector-level settings relate to each other, see Appearance Settings.

Diagram Level
To open the Diagram Style window, right-click the diagram (not blocks) and choose Diagram Style.

Block Level
To open the Block Style window, select one or more blocks, right-click one of the blocks then choose Block Style.

Note that if you are using this window, you must clear the various Use Default check boxes in order to modify some settings.
Chapter 18: FMEA Diagrams

General Properties

Block Properties
- **Shape and shadow**: The options available in the **Shape** drop-down list depend on the block type. You can change the shape of standard blocks in RBDs, events in fault trees and all blocks in process flow and cause/effect diagrams; all other block types have permanently assigned shapes. You can add a shadow to any available shape.

- **Size**: Unlike the other options on this page, changes to this setting made at the diagram level will apply only to blocks subsequently added to the diagram.

- **Color and style**: The background color is the underlying color applied to the block; the fill color is applied over the background color in the pattern specified by the fill style.

Caption Properties
The caption text comes from a block name in BlockSim/RENO, folio name in Weibull++/ALTA or property name in XFMEA/RCM++/RBI.

- **Location and Horizontal Alignment**: Specify where the caption will be displayed (e.g., under the block, inside the block, etc.) and whether it will be left aligned, center aligned or right aligned.
 - If you choose to place the caption to the left, right or inside the block, you can also specify the **Vertical Alignment** (i.e., at the top, center or bottom of the block).
 - If you choose to hide the caption, the Alignment fields will not be available.

- The **width** and **height** of the area used for the text. You can enter a fixed value for either or both of these. If **Block Width** is selected in the **Width** field, the caption text will wrap, if necessary, up to the vertical limit set in the **Height** field. If **Auto Height** is selected in the Height field, no limit is placed on the height of the text area.

- The **color** and **font** used for the text.

Description Box Properties
These properties are available for BlockSim/RENO blocks only.

The description box displays the text entered in the Description field of the Block Properties window.
Description Box Properties
- **Box width and height:** You can enter a fixed value for either or both of these or you can set them to be the same as the settings used for the caption area.
 - If **Block Width** is selected in the Width field, the description text will wrap, if necessary, up to the vertical limit set in the Height field.
 - If **Auto Height** is selected in the Height field, no limit is placed on the height of the text area.
- **Box color and style:** The background color is the underlying color applied to the description box; the fill color is applied over the background color in the pattern specified by the fill style.

Description Text Properties
- **Text Location** and **Horizontal Alignment** allow you to specify where the description area will be displayed (i.e., above the block, inside the block or hidden) and whether it will be left aligned, center aligned or right aligned.
 - If you choose to place the caption inside the block, you can also specify the **Vertical Alignment** (i.e., at the top, center or bottom of the block).
 - If you choose to hide the description area, the Alignment fields will not be available.

Note that if you place the description inside the block, only the description text will be shown. The settings for the surrounding area (i.e., background color, fill color and border properties) will not be used. The properties for the background color fill color and fill style of the block will be used instead.

- **The color and font used for the text.**

Using the Same Location Settings for Captions and Descriptions
Block captions and descriptions both have the option to place the text above or inside the block. If you choose the same location for both, the description text will display under the caption text.

```
Block 1

My Description

My Description
```

Block 1
Chapter 18: FMEA Diagrams

Images
To load an image:

1. Clear **Use default image**, if applicable.
2. Click **Load**, and browse for and select the desired image file.
3. Use the **Position** drop-down list to specify how the image will be placed on the block (e.g., stretched to fit inside the block's current dimensions, centered, etc.). If you select stretched, you can also define the margins you want.
4. Select the **Transparency Mask Color** check box to choose a color that will be shown as transparent when the image is displayed on the block.

 Note: If you choose to use an image that is larger than 800x600 pixels, you will be given the option to down sample the image in order to reduce its size and alleviate possible delays related to database size.

5. Click the **Clear** button to remove the loaded image and use no image at all.

Returning Block-Level Settings to Diagram Defaults
To use the **diagram style** settings again, in the Block Style window, choose **Diagram Default** from the drop-down lists and select the **Use Default** check boxes.

Connector Style Settings
The connector style settings can be defined at the diagram level in the Diagram Style window or the connector level in the Connector Style window. The connector-specific settings defined in the Connector Style window have priority over the default settings defined in the Diagram Style window for the diagram you are working with. For details on how the diagram-level and connector-level settings relate to each other, see **Diagram Skins and Appearance Settings**.

 Note: In BlockSim process flow simulation (PFS) diagrams, connectors are considered to represent pipes. Each pipe carries a specific type of throughput flow, and there may be multiple flow types in a diagram. For these diagrams, flow types (connector styles) can also be defined at the diagram level via the Flow Types window (right-click the diagram and choose **Flow Types**). This window works similarly to the Diagram Style window, and connector-specific settings also have priority over settings defined in the Flow Types window.

Diagram Level
To open the Diagram Style window, right-click the diagram (not blocks) and choose **Diagram Style**.
Connector Level

To open the Connector Style window, select one or more connectors, right-click one of the connectors then choose **Connector Style**.

Note that if you are using the this window, you must clear the **Use Default** check boxes in order to modify some settings.

Line Settings

- **Line Settings**: Specify the connector's line style (e.g., solid, dash, etc.), thickness and color.

- **Line Bend and Arrows**: Use the **Line Bend** drop-down list to specify the kind of bend that you want in the lines. Note that if you select **Angle** or **Right Angle**, the **Line Bend %** field will be enabled. This field allows you to specify the point, in percent, at which the line will bend. For example, if you enter **0.5** (50%), an angle (bend) will appear in the line at the horizontal halfway point.

![Line Bend](image-url)
Chapter 18: FMEA Diagrams

The available bend styles are shown next.

Caption Settings
Specify the location, text color and font used for the caption. The caption text for a connector is entered in the Connector Style window.

Flow Type
When you are working with a BlockSim PFS diagram, the Diagram Style window and the Flow Types window also require you to specify a name (for future reference) and an abbreviation (used in the diagram, plots and results) for each flow type.

Note that in BlockSim/RENO, you cannot enter caption text for connectors used in phase diagrams, RENO flowcharts and Markov diagrams.
Returning Connector-Level Settings to Diagram Defaults
To use the diagram style settings again, in the Connector Style window, choose **Diagram Default** from the drop-down lists and select the **Use Default** check boxes.
Chapter 19: Failure Modes and Reliability Analysis (FMRA)

The Failure Modes and Reliability Analysis (FMRA) feature is available in both XFMEA/RCM++/RBI and BlockSim.

In **XFMEA/RCM++/RBI**, the FMRA displays all of the system hierarchy and FMEA records from the current project that could have an impact on system reliability/maintainability/criticality calculations (which may include items, functions, failures and causes). If you define the necessary properties for these records (reliability policy, operating time, etc.), you can use the FMRA to calculate or simulate a variety of results based on the assumption of a reliability-wise series configuration.

For more advanced analyses — including the ability to change the reliability-wise configuration — you can synchronize the FMRA you built in XFMEA/RCM++/RBI with reliability block diagrams in **BlockSim**.

Enabling and Viewing the FMRA

In both XFMEA/RCM++/RBI and BlockSim, you can use the **Show FMRA** command in the **View** tab of the ribbon to enable or disable the feature for your computer. (You can set this separately for each application.)

To view the FMRA once it is enabled:

- In XFMEA/RCM++/RBI, go to the **FMRA** tab in the System panel.
• In BlockSim, go to the **FMRA** tab of the current project explorer.

Notes:

- **Name** displays the record description/name. This column cannot be hidden.
- **User Access** displays a status indicator when the record is in use (균), when you don’t have permission to edit (힌) or when the record is locked by an FMEA change log (힌).
- **Record Type** indicates whether the record is an item from the system hierarchy, or a function, failure or cause from an FMEA.

FMRA Columns

To hide or display columns in the FMRA, or change the column order, right-click the column headings and choose **Customize Columns**. (You can also change the column order by dragging and dropping column headings into the desired positions.) These preferences are set separately for each application, and they are stored per computer/username.

Note: In BlockSim, you can view the FMRA only when you have a single project open.
• **Synchronized with BlockSim** displays 🔄 if the record is being synchronized with an FMRA diagram in BlockSim. (See [FMRA Diagrams and Reliability-Wise Configurations](#).)

• **Reliability Policy** displays one of the following. (See [Setting the Reliability Policies](#).)
 - **Inherit** indicates that the record's reliability/maintainability will be determined by its dependent records.
 - **Default (Not Set)** indicates that the record is set to "Define at this level" but does not yet have an assigned URD. The software will assume that the reliability is 100%.
 - The name of the **universal reliability definition (URD)** that is assigned to the record.

• **Mirror Group** displays the name of the mirror group that a cause belongs to, if any. All the causes in a mirror group are treated as the exact same event. (See [Using Mirror Groups in an FMRA](#).)

The remaining columns pertain to FMRA results, which are discussed in [Analytical Results in an FMRA](#) and [Simulation Results in an FMRA](#).

Building the FMRA Hierarchy

The FMRA hierarchy will automatically display any records from the XFMEA/RCM++/RBI system hierarchy and FMEA that are relevant to the reliability/maintainability/criticality calculations. This may include items, functions, failures and causes.

You also have the option to add records directly within the FMRA hierarchy in either XFMEA/RCM++/RBI or BlockSim. Any records that you add in this manner will also appear in the system hierarchy or FMEA.

Adding New Records

The options for adding new records will depend on the record that is currently selected and the reliability policies. If a record's **reliability policy** is set to "Define at this level," you will not be able to add new dependents via the FMRA because those records would be irrelevant to the reliability/maintainability/criticality calculations.

The following commands may be available on the FMRA tab of the ribbon, and when you right-click inside the FMRA hierarchy.

- **Add System** adds a new top-level system hierarchy item.
Add Next Level Item adds a new system hierarchy item below the one that is currently selected.

Add Same Level Item adds a new system hierarchy item in the same level as the one that is currently selected.

Add Function adds a new function to the FMEA. If an FMEA does not already exist for this item, it will be created automatically.

Add Failure adds a new failure to the FMEA.

Add Cause adds a new cause to the FMEA. If the FMEA does not already include an effect to add the cause to, one will be created automatically.

Note: The FMRA always adds causes under the last effect in the FMEA hierarchy. If you want to add causes under different effects, you must add them directly in the FMEA.

Deleting Records
To delete a record, select it in the hierarchy and press DELETE (or choose Home > Edit > Delete). The record will be deleted, along with any dependents. There is no undo for deleting a record. If you do this in Xfmea/RCM++/RBI and the FMRA is being synchronized with FMRA diagrams in BlockSim, any records deleted in this way will be represented by 1/n nodes when the diagrams are resynchronized. Such nodes are placeholders that have no mathematical effect within the diagram; they simply allow the diagram to maintain any customized configurations that may have been created. The name of the deleted record is shown in each node block’s description.

Using Cut/Copy to Move or Duplicate Records
To move or duplicate records in the FMRA, you can use the same cut/copy and paste commands that are available in the XFMEA/RCM++/RBI system hierarchy and FMEA.

The FMRA does not allow drag/drop, move up/move down or promote/demote.

Tip: Remember that after an item has been cut or copied, any edits that are made to the original will also be applied to its copy in the Clipboard. Likewise, if you delete the original, its copy will also be deleted from the Clipboard (and cannot be pasted later).

Setting FMRA Record Properties
Setting the Reliability Policies

The *reliability policy* determines the reliability/maintainability characteristics for the records in an FMRA.

To view or set the reliability policy in XFMEA/RCM++/RBI, select the record in the system hierarchy or FMRA and go to the **Reliability Policy** heading in the Properties tab. (Note that the following picture includes the maintainability characteristics that can be defined in RCM++ or RBI. In XFMEA, only the reliability model will be displayed.)

In BlockSim, right-click the record in the FMRA and choose **Inherit** or **Define at This Level**. If a record is set to define at this level, you can use the Block Properties window to view or edit the universal reliability definition (URD).

When creating or assigning URDs to records in an FMRA, note that:

- An item's model represents the item's reliability (i.e., the probability that the item will not fail for the specified period of time).
- A function's model represents the probability that the item will fail to perform its intended function within the specified period of time.
- A failure's model represents the probability that the failure will occur within the specified period of time.
- A cause's model represents the probability that the cause will occur within the specified period of time.

Tip: In XFMEA/RCM++/RBI only, you can use the **Batch Update Reliability Policy window** to change the policy types of multiple records all at once.

Basic Reliability Policy Types

Two basic reliability policy types are available for all FMRA records in both XFMEA/RCM++/RBI and BlockSim:

- **Inherit** indicates that the record will inherit its reliability/maintainability characteristics from the URDs assigned to its dependents. In the following example, System 1 inherits...
from its two components; while SubSystem 1 inherits from its two causes (URD_1 and URD_2) and SubSystem 2 inherits from its failure (URD_3).

<table>
<thead>
<tr>
<th>Name</th>
<th>Reliability Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>System 1</td>
<td>Inherit</td>
</tr>
<tr>
<td>SubSystem 1</td>
<td>Inherit</td>
</tr>
<tr>
<td>Function 1</td>
<td>Inherit</td>
</tr>
<tr>
<td>Failure 1.1</td>
<td>Inherit</td>
</tr>
<tr>
<td>Cause 1.1.1</td>
<td>URD_1</td>
</tr>
<tr>
<td>Cause 1.1.2</td>
<td>URD_2</td>
</tr>
<tr>
<td>SubSystem 2</td>
<td>Inherit</td>
</tr>
<tr>
<td>Function 2</td>
<td>Inherit</td>
</tr>
<tr>
<td>Failure 2.1</td>
<td>URD_3</td>
</tr>
</tbody>
</table>

- Define at this level allows you to assign a URD directly to the record. The reliability policy will either display the name of the URD or “Default (Not Set).” If the URD is not set, the software assumes the reliability is 100% (i.e., the item never fails, the cause never occurs, etc.).

Tip: If you use this option with a record that has dependents, the software will hide those dependents in the FMRA because they will be irrelevant to the FMRA’s calculations.

Only in XFMEA, RCM++ or RBI

In XFMEA, RCM++ and RBI only, you also have the option to set the reliability policies based on the occurrence ratings from risk priority number (RPN) calculations or the failure probability ratings from criticality analysis. (See Using Rating Scales to Set the Reliability Policy.)

When selected, a read-only probability of failure model (i.e., the probability that the cause or failure mode will occur) will be automatically assigned to the record based on the rating assigned in the FMEA.

- Based on Initial Occurrence or Based on Revised Occurrence: These options are only available for causes, and only when the initial and/or revised occurrence properties are enabled for the project (on the FMEA > RPNs page in the interface style).

- Based on Failure Probability: This option is only available for failure records, and only when the failure probability field is enabled for the project (on the FMEA > Criticality page in the interface style).

In RBI only, you can use the model generated in the risk based inspection analysis results:

- Based on RBI analysis: This option is only available for RBI components, and only when the option to do so is selected when generating the RBI results. When selected, the
model generated by the RBI analysis will be assigned to the component. If you later recalculate the results, this model will change.

Using Rating Scales to Set the Reliability Policy
In XFMEA, RCM++ and RBI, you have the option to set reliability policies for the FMRA based on the occurrence ratings used in RPN calculations or the failure probability ratings used for qualitative criticality analysis. For example, you might use this feature to:

- Generate a preliminary baseline reliability estimate based on occurrence ratings that have been assigned to cause records in an FMEA, and then update the estimate later when actual data is available. (See http://www.reliawiki.org/index.php/Using_FMRA_to_Estimate_Baseline_Reliability.)

IMPORTANT: Results based on occurrence ratings are appropriate only for preliminary estimates; it is highly recommended to carefully consider the assumptions behind these results, and to update the reliability policies when better information becomes available.

- Perform a quantitative criticality analysis based on failure probability ratings that have been assigned to failure records in an FMEA.

Viewing or Editing the Rating Scale
To use occurrence or failure probability ratings to set the reliability policy in an FMRA, there must be an appropriate quantitative model associated with each qualitative rating in the scale. In a secure database, only users with the “Edit project properties” permission can modify the rating scales in the current project.

To open the Occurrence scale (used in RPN calculations), choose **Project > Management > Configurable Settings > Occurrence.**

To open the Failure Probability scale (used in criticality analysis), choose **Project > Management > Configurable Settings > Failure Probability.**
To configure either type of scale, you must enter the **Occurrence Probability** (Q) for each rating in the scale (this was called "Quantitative Value" in Version 8 and 9). As an example, here’s an excerpt from the “RS DFR Focus” occurrence scale that is installed with the software, where “1 in 1 Million” is 0.000001, and so on.

![Occurrence Probability Table]

Then specify whether each value will be treated as a fixed probability that does not vary with time, or converted to an exponential distribution.

![Treat Occurrence Probability As]

If you choose to use distributions, the software will treat the value as an unreliability point at the specified time and use this point to solve for the exponential distribution’s parameter (using the same method available in the [Quick Parameter Estimator](http://xfmea.reliasoft.com)).

For example, if the value is 0.01 and the time is 1,000 hours, the model will be an exponential distribution with \(\lambda = 1.01 \times 10^{-5} \) (or Mean Time = 99,499.16 hours if you’ve selected that option in the Application Setup).

Note: If you edit these ratings for a standard library via the Profiles/Libraries Manager, the time specified for this option will always be entered in base units. This is because the same standard library might be used by different databases with different time units.

Using the Rating to Set the Reliability Policy

When users are performing an analysis, they first set the ratings for the cause or failure records. Then, they select the record in the FMRA and choose to set the **Reliability Policy**:

- **Based on Initial Occurrence** or **Based on Revised Occurrence**: These options are only available for causes, and only when the initial and/or revised occurrence properties are enabled for the project (on the FMEA > RPNs page in the interface style).

- **Based on Failure Probability**: This option is only available for failure records, and only when the failure probability field is enabled for the project (on the FMEA > Criticality page in the interface style).
The software assigns a read-only probability of failure model (i.e., the probability that the cause or failure mode will occur) based on the current rating. If you later change the rating for the cause or failure record, the reliability policy model will be updated automatically.

Reliability Policy

<table>
<thead>
<tr>
<th>Type</th>
<th>Based on Initial Occurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>URD</td>
<td>Potential cause of failure</td>
</tr>
<tr>
<td>Model</td>
<td>Occurrence: (4 - 1 in 1,000) [EX1 (1E-06)]</td>
</tr>
</tbody>
</table>

Batch Update Reliability Policies

In XFMEA/RCM++/RBI only, the Batch Update Reliability Policy window makes it easy to change the reliability policy type for multiple FMRA records at the same time.

To open the window, choose **FMRA > Calculations > Policy Update.**

Inherit vs. Define

- **If you select Inherit,** you will need to make sure that dependent records have reliability policies defined.
- **If you select Define at this level,** any records that previously had a different policy will be changed to "Default (Not Set)" status. The software will assume that their reliability is 100% unless/until you assign a URD.

Sub-items or FMEA

Starting in Version 11, you can consider whether the item has sub-items and/or an FMEA. For example:
Based on Rating Scale
If you select Based on Failure Probability, Based on Initial Occurrence or Based on Revised Occurrence, the following logic applies. (See Using Rating Scales to Set the Reliability Policy.)

- If there is no URD, the software sets the reliability policy to “based on” even if a rating is not yet defined.
- If there is a URD and a rating has been defined, the software sets the reliability policy to “based on.” This will change the reliability model associated with the URD.
- If there is a URD and the rating has not been defined, the software will not change the reliability policy. The reliability model associated with the URD will remain unchanged.

Using Mirror Groups in an FMRA
In both XFMEA/RCM++/RBI and BlockSim, you can use the Mirrors commands on the FMRA tab of the ribbon to place the exact same cause record in more than one location in the FMRA.

This is useful when you need to consider common cause failures (i.e., single faults that result in the failure of multiple components). Typical examples of common cause failures include impact, vibration, temperature, contaminants, miscalibration, improper maintenance, and so forth.

All cause records in a mirror group (i.e., "mirrored causes") represent the very same cause for the purpose of FMRA calculations/simulations. To accommodate this, the use of mirror groups will change the properties of cause records in the following ways. Note that there is no undo for changed cause properties.

- When a cause is added to a new mirror group or an existing empty group (i.e., one that includes no other causes), that cause’s properties will determine the group’s properties.
When a cause is added to a mirror group that already includes other causes, that cause’s properties (e.g., the short description, reliability policy, etc.) will be changed to match the group’s properties.

If you change the properties of a mirrored cause, that change will also be applied to all other causes in the same mirror group.

Also note that, because mirror groups are resources, clearing or removing the causes will not delete the mirror group resource from the project. To delete a resource, use the Resource Manager.

Setting the Operation Properties for an FMRA

Before you perform analytical calculations or simulations in the FMRA, make sure you at least specify the operating time for the top-level item. If applicable, you can also specify other operation properties at the individual item level.

These properties are located under the **Operation** heading when you select an item in the FMRA in XFMEA/RCM++/RBI.

- **Operating Time**: The amount of time for which the system is expected to operate (and the time for which the results are estimated). This can be modified at the system level only. When you perform a simulation-based calculation, you can also edit this value in the simulation settings window.

- **Current Age**: The age of the item at the start of the analysis. This allows you to define items that have already accumulated age prior to the start of the current mission (i.e., used components). When you add a new item to the system hierarchy, it will inherit this value from its immediate parent. If you change this value for an item, you will be given the option to make the change for just the selected item, or for the item and its dependents (provided that you have write permission for all items that would be affected, and that none of the items are currently in use by another user). This option will be given even in cases where the reliability is defined at the current item’s level; if you choose to make the change to dependents, the value will be applied underlyingly even though it will not be used for calculations.

- **Qty**: The number of identical sub-items represented. This property allows you to represent multiple copies of the same item with the same properties without having to create individual items (e.g., the 4 tires on a car). A value greater than 1 in this field will cause the item to be represented in the **FMRA Diagram** as a multi block. By default, the multi block will be configured so that the items are connected in series, but you can manually change this to a parallel configuration. (For more information on multi blocks, see **Standard Blocks and Basic Configuration** in the BlockSim/RENO documentation.) This value is taken into account at all levels for FMRA calculations performed in
Chapter 19: Failure Modes and Reliability Analysis (FMRA)

XFMEA/RCM++/RBI; it does not apply at the system level in FMRA calculations in BlockSim.

• **Duty Cycle:** Allows you to model situations where the actual usage during system operation is not identical to the usage for which you have data (either from testing or from the field). This can include situations where the item:
 - Does not operate continuously (e.g., a DVD drive that was tested in continuous operation, but in actual use within a computer accumulates only 18 minutes of usage for every hour the computer operates).
 - Is subjected to loads that are greater than or less than the rated loads (e.g., a motor that is rated to operate at 1,000 rpm but is being used at 800 rpm).
 - Is affected by changes in environmental stress (e.g., a laptop computer that is typically used indoors at room temperature, but is being used outdoors in tropical conditions).

In these cases, continuous operation at the rated load is considered to be a duty cycle of 1. Any other level of usage is expressed as a percentage of the rated load value or operating time. For example, consider the DVD drive mentioned above; its duty cycle value would be 18 min / 60 min = 0.3. A duty cycle value higher than 1 indicates a load in excess of the rated value.

If a duty cycle is specified for a subsystem or item, it specifies the percentage of operation as relates to the parent item. That is, the effects of the duty cycle for a parent item and the duty cycle for a sub-item are compounded. For instance, if a system has a duty cycle of 2 and its subsystem has a duty cycle of 0.3, the effective duty cycle for the subsystem would be 2 x 0.3 = 0.6, or about 2/3 the rated load value or operating time.

• **Maintenance Group:** Allows you to model situations in which some event within the group can trigger maintenance for other items(s). This field is applicable only for FMRA simulations in RCM++/RBI, and it considers system hierarchy items only.

Note: Maintenance groups defined for top-level systems in RCM++/RBI will not transfer to FMRA diagrams in BlockSim if you use FMRA synchronization. Similarly, maintenance groups defined for FMEA records in BlockSim's diagrams will not transfer to RCM++/RBI. This is because the applications use different structures to represent the FMRA hierarchy.
Allocate Target Reliability and Availability

In XFMEA/RCM++/RBI, the Reliability/Availability fields in the Properties tab of the Analysis Panel allow you to enter the target reliability and availability that you hope to achieve, and compare them to the current estimates from the Failure Modes and Reliability Analysis (FMRA).

Starting in Version 10, you can set the targets for a system or assembly and then use the FMRA to automatically allocate the targets for sub-items (and also failures/effects/causes if the item's reliability policy is set to "inherit" from the FMEA).

This feature uses an "equal allocation" approach that distributes the reliability/availability uniformly so the target defined for system/assembly will be met. It assumes a reliability-wise series configuration.

<table>
<thead>
<tr>
<th>Name</th>
<th>Reliability Policy</th>
<th>Target Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>System 1</td>
<td>Inherit</td>
<td>0.900000</td>
</tr>
<tr>
<td>SubSystem 1</td>
<td>SubSystem 1 URD</td>
<td>0.965489</td>
</tr>
<tr>
<td>SubSystem 2</td>
<td>SubSystem 2 URD</td>
<td>0.965489</td>
</tr>
<tr>
<td>SubSystem 3</td>
<td>SubSystem 3 URD</td>
<td>0.965489</td>
</tr>
</tbody>
</table>

To perform the allocation:

1. Go to the FMRA tab in the system panel. (See Enabling and Viewing the FMRA.)

2. Select a system or assembly in the hierarchy and enter the target reliability/availability in the Properties tab.

3. Choose FMRA > Allocation > [Allocate Target Reliability] or [Allocate Target Availability].
Highlights Based on Target Reliability/Availability
The FMRA in XFMEA/RCM++/RBI applies automatic color-coding in the Properties tab of the Analysis Panel to highlight situations when the expected reliability/availability does not meet the specified targets. The highlights can be applied to the calculated/simulated values, and also to the cause occurrence ratings if applicable.

Highlighting the Calculated/Simulated Values
For all records in the FMRA, if the calculated/simulated current value is less than the target value, the field will be highlighted in red.

For example, in the following picture, the Current Reliability calculated via the FMRA (.816780) is highlighted because it is less than the target (.95).

The Current Availability simulated via the FMRA (.971283) is not highlighted because it exceeds the target (.95).

Highlighting the Occurrence Ratings
Highlight colors will also be applied when you have selected a cause record in the FMRA. If the quantitative value associated with the occurrence rating meets the target, the field will be highlighted in green. If not, it will be highlighted in red.

For example, in the following picture, the quantitative probability of failure associated with an Initial Occurrence rating of 8 (Q = .1) is highlighted in red because it does not meet the target reliability of .95.

The probability of failure associated with a Revised Occurrence rating of 6 (Q = .01) is highlighted in green because it exceeds the target.

<table>
<thead>
<tr>
<th>Initial Occurrence</th>
<th>8 - 1 in 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revised Occurrence</td>
<td>6 - 1 in 100</td>
</tr>
<tr>
<td>Initial Detection</td>
<td></td>
</tr>
<tr>
<td>Revised Detection</td>
<td></td>
</tr>
<tr>
<td>Reliability / Availability</td>
<td></td>
</tr>
<tr>
<td>Target Reliability</td>
<td>0.95</td>
</tr>
<tr>
<td>Current Reliability</td>
<td>Not Calculated</td>
</tr>
<tr>
<td>Target Availability</td>
<td>0.95</td>
</tr>
<tr>
<td>Current Availability</td>
<td>Not Calculated</td>
</tr>
</tbody>
</table>

Target reliability R = .95 is equivalent to Q = .05
FMRA Diagrams and Reliability-Wise Configurations

By default, the records in an FMRA are assumed to have a reliability-wise series configuration. In other words, if any failure mode occurs or any component fails, then the entire system fails. However, you can use BlockSim's FMRA diagrams to represent more complex configurations.

To do this, choose **FMRA > Refresh > Synchronize FMRA** to refresh the FMRA and create the associated diagrams and blocks.

Note the following about FMRA synchronization:

- Changes that are made in BlockSim are synchronized and propagated to XFMEA/RCM++/RBI automatically, although you may need to refresh the view to see them (**View > Refresh**).

- When records are added to or deleted from the current FMRA in XFMEA/RCM++/RBI, the changes will not be displayed in BlockSim's FMRA hierarchy until you synchronize the FMRA (**FMRA > Refresh > Synchronize FMRA**). This will refresh the FMRA hierarchy and create the associated diagrams and blocks. Depending on the changes that were made in XFMEA/RCM++/RBI, this may affect your FMRA diagrams.

 - Any records deleted from the FMRA in XFMEA/RCM++/RBI will be represented in the FMRA diagrams by $1/n$ nodes when the diagrams are resynchronized. Such nodes are placeholders that have no mathematical effect within the diagram; they simply allow the diagram to maintain any customized configurations that may have been created. The name of the deleted record is shown in each node block's description.

- If you no longer wish to synchronize the FMRA with BlockSim diagrams, you can choose **View > FMRA > Disassociate FMRA** to delete all of the FMRA diagrams and close the FMRA view. You can resynchronize at any time.

Working with FMRA Diagrams

It is important to note that the diagrams that you work with from within the FMRA are distinct from the other diagrams in BlockSim's current project explorer. FMRA diagrams relate to the analysis being performed in the project using XFMEA/RCM++/RBI. They are accessible only via the FMRA view, while all other diagrams are accessible only from the Standard tab of BlockSim's current project explorer.

Each record in the FMRA hierarchy represents a reliability block diagram, with the exception of the lowest-level record in each branch, which represents a block in the parent diagram. The
levels of the hierarchy are expressed using subdiagrams. For example, consider the FMRA hierarchy shown next.

Now, let's look at the branch of the FMRA that begins with SubSystem 1. The associated FMRA diagrams are:
As you can see, the causes are assumed to be in a series configuration, as is the case with all reliability-wise configurations built in XFMEA/RCM++/RBI. Working with the FMRA in BlockSim allows you to change the reliability-wise configuration. For instance, let's imagine that the causes are actually in a parallel configuration—in other words, the item will not fail if only Cause 1.1.1 happens OR only Cause 1.1.2 occurs, but the item will fail if both occur. To represent this, you would change the Failure 1.1 diagram as follows (with the first node acting as a starter block):

![Failure 1.1 Diagram]

Analytical and Simulation FMRA Diagrams

By default, the FMRA diagrams are created as *analytical diagrams* (which use the exact algebraic equation for the model but impose limitations on what can be modeled and what results can be obtained). You can choose **FMRA > Inheritance > Toggle Diagram Type** to change them to *simulation diagrams* (which provide more modeling options and results but must be analyzed with discrete event simulation; repairable systems must be represented using simulation diagrams), or to change simulation diagrams to analytical ones. This command changes all of the FMRA diagrams in the project; you cannot have both analytical and simulation FMRA diagrams in the same project.

Like any other RBD, the diagram type affects the available functionality, both in terms of configuration and results. For instance, maintenance groups can be assigned only in simulation RBDs. You can analyze or simulate an FMRA diagram just as you would any other RBD, and can generate plots and QCP results for each diagram. You also can perform analytical calculations or simulation at the FMRA level.

FMRA Calculations
Chapter 19: Failure Modes and Reliability Analysis (FMRA)

Analytical Results in an FMRA
The analytical results in the FMRA may include reliability or probability of failure (which are available in both XFMEA/RCM++/RBI and BlockSim), and criticality (which is available only in XFMEA/RCM++/RBI).

To perform analytical calculations, choose FMRA > Calculations > Calculate (Reliability).

In XFMEA/RCM++/RBI, if there are multiple systems (top-level items) or if the FMRA is synchronized with BlockSim, you will be prompted to specify a) which systems to calculate and/or b) whether to consider a more complex reliability-wise configuration that may have been modeled in the BlockSim diagrams. (See Calculation Options Window.)

In BlockSim, these calculations are available when you are using analytical FMRA diagrams. If there is only one system in the FMRA, this will calculate results for the entire FMRA. If there are multiple systems, you will be asked to choose whether you want to calculate the entire system hierarchy or just the currently selected system and its dependents.

Reliability and Probability of Failure
You can display the following FMRA columns in both XFMEA/RCM++/RBI and BlockSim:

- **Analytical Results Status** displays a green indicator light if the analytical results are based on the current inputs. It displays a red light if they are not.

- **Reliability (Analytical)** displays the record's calculated reliability at the system's specified operating time. In XFMEA/RCM++/RBI, the reliability for each item will also be displayed in the Current Reliability field of the Properties tab when the item is selected. This value will be highlighted in red if it is below the specified target reliability.

- **Probability of Failure (Analytical)** displays the record's probability of failure at the system's specified operating time. This is the complement of reliability (1-R).

Criticality Analysis
In XFMEA/RCM++/RBI only, you can also display the following FMRA columns for quantitative criticality analysis:

- **Mode Ratio** displays the probability that the item failure will be due to the failure mode under consideration.

- **Prob of Loss** displays a factor from 0 to 1 that describes the probability that this failure mode would result in a system failure. By default, this is set to 1 (Actual Loss).

- **Criticality** displays the calculated criticality value. This column must be displayed when the mode ratio or probability of loss is displayed.
Calculation Options Window (XFMEA/RCM++/RBI)

In XFMEA/RCM++/RBI only, the Calculation Options window lets you choose which system(s) in the failure modes and reliability analysis (FMRA) will be calculated and which application will be used to perform the calculations.

If the FMRA has multiple systems, or if it has records synchronized with BlockSim, this window will appear when you calculate the FMRA.

In the **What items do you want to calculate?** area, you can choose to perform calculations only for the system that is currently selected, or for all the systems in the hierarchy.

In the **Calculation Method** area:

- The **Calculate using BlockSim** option is available only when there are records in the FMRA that are currently synchronized with BlockSim. If you calculate using this option, the software synchronizes all records and then returns results based on the reliability-wise configuration of the synchronized RBDs in BlockSim.

- The **Calculate using current application** option is always available. If you calculate using this option, the software will assume a reliability-wise series configuration among all the records in the FMRA.

Simulation Results in an FMRA

The simulation results in an FMRA consider both reliability and maintainability characteristics in order to estimate availability, operating costs, and other useful metrics about the operation of a repairable system over time. They are available in RCM++/RBI and BlockSim.

Tip: When you perform FMRA simulations in RCM++/RBI, the software always assumes a reliability-wise series configuration. If you modified the configuration using BlockSim, then you must perform the simulation within BlockSim in order to take the new configuration into account.

To perform an FMRA simulation in RCM++/RBI, choose **FMRA > Calculations > Simulate (Availability)**.

A window will open where you can change the simulation settings. Click **OK** to perform the simulation.
In BlockSim, you can use the simulation batch mode to get simulation results. To do this, change the diagrams to simulation diagrams and choose FMRA > Calculations > Simulate (Availability). Then click Run to perform the simulation.

A Note about Simulation with Constant Models

Note that it is not possible to simulate failure times if the reliability policy is defined with a constant value (rather than a distribution that varies with time). Thus, the costs estimated from the simulation will always be zero for any record with a constant reliability model. In such cases, you may wish to change the affected reliability policies to time-dependent distributions before simulating again.

Simulation Results

- **Simulation Results Status** displays a green light if the simulation results are based on the current inputs. It displays a red light if they are not.

- **Operating Cost** displays the total costs that accrued during the simulation. Note that this will always be zero if the reliability is defined by a constant value (rather than a time-dependent distribution).

- **Cost per Operating Time** displays the operating cost divided by the total operating time.

- **Availability** displays the average availability (i.e., uptime divided by total operating time). This is a metric that reflects the probability that the item is operational (not failed or undergoing repair) when it is requested for use during the simulation.

- **RS FCI** (ReliaSoft Failure Criticality Index) is a relative index showing the percentage of times a failure of the component caused a system failure (i.e., the number of system failures caused by the component divided by the total number of system failures). Note that this relates only to failures; it does not include every event that could bring the system down (such as routine maintenance).

- **RS DECI** (ReliaSoft Downing Event Criticality Index) is a relative index showing the percentage of times that a downing event of the component caused the system to go down (i.e., the number of system downing events caused by the component divided by the total number of system downing events). Note that this only relates to downing events with a non-zero duration.

- **RS DTCI** (ReliaSoft Downtime Criticality Index) is a relative index showing the contribution of each component’s downtime to the system’s downtime (i.e., the system downtime caused by the component divided by the total system downtime).
Chapter 20: Generated Reports

XFMEA/RCM++/RBI Reports Window
In XFMEA/RCM++/RBI, the Reports window makes it easy to build report documents that include the predefined report forms, custom report forms and/or custom queries that will be most effective to present your analyses.

You can save generated reports with the project, which enables all users to view/print the same report documents. In addition, if your organization chooses to implement a web-based Synthesis Enterprise Portal (SEP) for an enterprise database, you can also publish these reports to the portal (in Word, Excel, or PDF format), where they can be accessed from any web-enabled device.

To open the Reports window, choose Home > Reporting > Reports or System Hierarchy > Tools > Reporting > Reports.

Select Items
In the Select Items area, specify the items from the system hierarchy that will be included in the report. You can generate a report that contains data from a single analysis or from multiple analyses together.

Tip: If the Part Number, Reference Number and/or FMEA Document Number columns are displayed in the system hierarchy, these columns will also be displayed in the Select Items area in this window.

Selected Report Forms
The Available Reports area displays all of the available report forms that are not yet selected. This list includes the standard report forms that are shipped with the software, as well as any custom report templates and custom queries that you have created.

The Selected Reports area displays the forms that have been selected for inclusion in the generated report, in the order in which they will appear.

You can double-click a form or use the Include (>, >>) or Exclude (<, <<) icons to move the form between the areas.

Drag and drop the selected forms into the desired position or use the Up/Down icons.
When applicable, you can use the **Sort By** and **Ascending** columns to specify how tabular report forms will be sorted. For example, you can generate a Causes report that sorts by **Initial RPN** in ascending order.

<table>
<thead>
<tr>
<th>Report Name</th>
<th>Sort By</th>
<th>Ascending</th>
</tr>
</thead>
<tbody>
<tr>
<td>Causes</td>
<td>Initial RPN</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Templates Manager

If you want to create or edit any of the custom report templates, click **Manage > Templates Manager** in the ribbon.

In a secure database, this option is only available for users with the "Manage profiles and templates in XFMEA/RCM++/RBI" permission.

Report Customization/Settings

If you want to customize any of the report settings (e.g., font, paper size, add a logo, etc.), click **Manage > Settings** to open the Report Customization/Settings window.

Save/Publish

If you want to save the generated report with the project (and also publish to the Synthesis Enterprise Portal (SEP) if applicable), select the desired output types on the ribbon.

To see the reports that have already been saved/published, click **Save/Publish > Published Reports Manager**.

Generate Report

Before generating the report, make sure the desired output type is selected in the ribbon (**Excel Spreadsheet** or **Word Document**) and then click **Generate Report**.
Tips

- If you have set your computer to use large fonts, you will need to set your screen display to at least 1152x864 to display correctly. If you have set your computer to use small fonts, you will need to set your screen display to 600x800.

- If you have enabled the "Check spelling as you type" and "Check grammar as you type" options in Microsoft Word and you have a very large number of spelling/grammar issues in your data set, then Microsoft Word may stop responding during report generation, resulting in a blank document and possibly error messages such as "RPC Server Unavailable." If this occurs, you can temporarily disable these options in Word and regenerate the report.

- The regional settings for Windows and Microsoft Office (Word and/or Excel) must be compatible when generating reports in the software.

- The number of forms in your report cannot exceed the maximum supported by Microsoft Excel. Generated reports will include as many forms as possible up to the limit, which will vary depending on the version of Excel that you are using, and will omit the rest.

Standard Report Forms

The following predefined forms can be included in the reports you generate from the XFMEA/RCM++/RBI Reports window.

- **General**
 - **Report Summary** presents a list of the report forms that are included in the main report.
 - **Rating Criteria and Classifications** presents the calculation method, rating criteria and classification options used in the analysis.
 - **Analysis Plans Summary** presents full information for each analysis plan.
 - **Analysis Plan Details (One per Item)** presents the details for each analysis plan associated with each of the selected items.

- **Items**
 - **Items Summary (All Items)** presents the system hierarchy plus a full summary of the properties for each item. If the system hierarchy contains more than one system, then the items under the first system will be displayed followed by the items for the second system, and so forth.
Chapter 20: Generated Reports

- **Items Integrated Documents** is available only for reports generated in Microsoft Word. It includes any integrated documents attached to each item (via the Attachments window).

- **Safety Requirements Specifications (SIL)** provides a Safety Requirements Specification (SRS) report for use in Safety Integrity Level (SIL) analysis.

- **Risk Based Inspection** (available only for RBI)
 - **Equipment/Component Types (All Project Items)** displays the RBI equipment types or RBI component types in the system and how many there are of each type.

 - **Risk Matrix Reports** are a group of eight reports that display either the area risk scoring matrix or the financial risk scoring matrix as of the plan date. The following types of reports are available:
 - To see the total number of items in the project that fall into each cell of the matrix, generate the "All Project Items" report. If you want to see the names of only the selected items, generate the "Selected Items" report.
 - The basic report shows the results as of the plan date, assuming that you do nothing until then. To generate a matrix with the results as of the plan date assuming that the recommended inspections on the target date are carried out, generate the "Results Assuming Inspections Performed" report.

- **Consequence Summary** displays information about the possible damage consequences for each non-HEXTUBE and non-PRD component.

- **Damage Summary at RBI Date/Plan Date** displays the calculated damage summary values at the applicable date for each non-HEXTUBE and non-PRD component.

- **Recommended Inspections at Due Date** lists the number of suggested inspections and the needed effectiveness ratings for each damage factor for each non-HEXTUBE and non-PRD component.

- **Probability at RBI Date** lists the probability of failure and financial consequences at the RBI date for each non-HEXTUBE and non-PRD component.

- **Risk Summary at RBI Date/Plan Date** lists the financial risk details at the applicable date for each non-HEXTUBE and non-PRD component.

- **HexTubes Summary** displays information about each HEXTUBE component.

- **PRDs Summary** displays information about each pressure relief device (PRD).
- **Thinning Damage Factor** displays information about the thinning damage factor properties for each selected component.

- **Risk Discovery**
 - **Risk Discovery Logic** presents the risk discovery questions and ratings used in the analysis.
 - **Risk Discovery Summary (with Questions)** presents the answers given to questions in the risk discovery analysis, if any.
 - **Risk Discovery Summary (with Ratings)** presents the risk discovery ratings specified in the risk discovery analysis, if any.
 - **Risk Discovery Details (One per Item)** presents a separate report for each selected item showing the answers given to the risk discovery questions and the risk discovery ratings specified in the risk discovery analysis.

- **P-Diagram**
 - **P-Diagram (One per Item)** presents a separate report for each Parameter Diagram (P-Diagram) that has been defined for the selected items.

- **PFD Spreadsheet**
 - **PFD Standard** presents the process flow diagrams (PFD) data, if any, in the traditional tabular format. Reports will be generated only for selected items that have an associated PFD analysis.

- **PFD Records**. There are no standard report forms for PFD records. This category may contain any relevant custom report templates and/or any custom queries that you have created.

- **FMEA Spreadsheet** presents the FMEA data in the traditional tabular format. The number of separate forms generated will depend on the items selected in the **Select Items** area. (See [Sub-Item Data Combined or Separated](#).
 - **FMEA Standard** creates an FMEA spreadsheet that includes information from the most basic elements of most FMEAs. This is a very basic style and should only be used when you are not required to meet published guidelines for the current profile.
 - **AIAG Form A** through **AIAG Form E** create FMEA spreadsheets that are consistent with the examples published in the Automotive Industry Action Group (AIAG) guidelines.
Chapter 20: Generated Reports

- **J1739 (2002)** and **J1739 (2009)** create FMEA spreadsheets that are consistent with the examples published in the 2002 and 2009 revisions of the Society of Automotive Engineers (SAE) guidelines.

- **MIL-STD-1629A** creates an FMEA spreadsheet that is consistent with the example published in the military standard.

- **VDA-86** and **VDA-96** create FMEA spreadsheets that are consistent with the examples published in the VDA Volume 4 guidelines used by the German automotive industry.

- **Alpha/Beta Worksheet** presents a report based on the **Alpha/Beta Ratios worksheet** for each selected item, provided it has alpha values specified.

- **SIL Allocation Analysis** presents a report showing the data associated with determining the required Safety Integrity Level (SIL) for each safety function.

 Tip: In addition to the predefined spreadsheets, you can also export the FMEA data by choosing **System Hierarchy > Tools > Reporting > Send Active View to Excel** or **Export to Excel**.

- **FMEA Records**
 - **VDA Action Tracking** presents an actions summary report configured to match the "Action Tracking" template in the VDA Volume 4 guidelines used by the German automotive industry.

 - **Action Details (One per Action)** presents a separate report for each action that has been defined for the selected items. If this report form is selected for inclusion in the generated report, the Select Actions for Detail Report window will appear when you click **Generate Report**.

 - **Functions, Failures, Effects, Causes, Controls** and **Actions** are available only if the default Standard templates file is selected in the **Templates Manager**. They are **report templates** that were created by ReliaSoft and saved in the default Standard templates file, XRUT.xrt19, which is located by default in your My Documents folder (e.g., C:\Users\<your USERNAME>\My Documents\ReliaSoft\Common).

- **Criticality** presents the results from quantitative or qualitative criticality analysis performed in the FMRA.

 - **Criticality Analysis (Standard)** presents the quantitative criticality analysis in a tabular format that is based on MIL-STD-1629A but includes some modifications to the header information and uses customized column headings.
• **Criticality Analysis (MIL-STD Quantitative)** and **Criticality Matrix (MIL-STD Quantitative)** present the quantitative criticality analysis in a format that is based on MIL-STD-1629A. For the matrix, Severity Classification is on the horizontal axis and Mode Criticality is on the vertical axis.

• **Criticality Analysis (MIL-STD Qualitative)** and **Criticality Matrix (MIL-STD Qualitative)** present the qualitative criticality analysis in a format that is based on MIL-STD-1629A. For the matrix, Severity Classification is on the horizontal axis and Failure Probability is on the vertical axis.

• **Criticality Ranks** presents the items and failure modes, ranked by item criticality and then by mode criticality.

• **RCM** (available only for RCM++ and RBI)
 - **Functional Failure Analysis** presents the functions, functional failures, effects and causes (failure modes) that have been identified for all selected items.
 - **Failure Effect Categorization (One per Effect)** presents a separate report for each failure effect showing the FEC logic diagram decisions, along with any notes/remarks.
 - **Maintenance Task Selection (One per Cause)** presents a separate report for each maintenance task that has been defined for the selected items.
 - **Tasks** is available only if the default Standard templates file is selected in the Templates Manager. It is a report template that was created by ReliaSoft and saved in the default Standard templates file, XRUT.xrt19, which is located by default in your My Documents folder (e.g., C:\Users\<your USERNAME>\My Documents\ReliaSoft\Common). It lists the tasks and related details that have been defined for the selected items.

Note: This report includes properties from the higher-level records (i.e., the cause and item) that the task is associated with. This means that the same task may be repeated in the report if it is used multiple times. To generate a report that lists unique tasks only, you can create a **query** using the “FMEA Cause Tasks” group that only includes properties that belong to the task records. You can then use that query as a report.

• **Control Plan Spreadsheet**
 - **Control Plan Standard** presents control plan data, if any, in the traditional tabular format. Reports will be generated only for selected items that have an associated control plan analysis.
Chapter 20: Generated Reports

- **Control Plan Records.** There are no standard report forms for control plan records. This category may contain any relevant custom report templates and/or any custom queries that you have created.

- **Test Plan.** There are no standard report forms for test plans. This category may contain any relevant custom report templates and/or any custom queries that you have created.

- **DVP&R Spreadsheet**
 - **DVP&R Standard** presents design verification plan data, if any, in the traditional tabular format. Reports will be generated only for selected items that have an associated DVP&R analysis.

- **DVP&R Records.** There are no standard report forms for DVP&R records. This category may contain any relevant custom report templates and/or any custom queries that you have created.

- **DRBFM Spreadsheet**
 - **DRBFM Standard** presents design review based on failure mode analysis data, if any, in the traditional tabular format. Reports will be generated only for selected items that have an associated DRBFM analysis.

- **DRBFM Records.** There are no standard report forms for DRBFM records. This category may contain any relevant custom report templates and/or any custom queries that you have created.

Sub-Item Data Combined or Separated

When you select any FMEA Spreadsheet, PFD Standard, Control Plan Standard, DVP&R Standard or DRBFM Standard report form in the Reports window, the number of separate forms generated will depend on the system hierarchy items selected. Specifically, the utility will generate a separate spreadsheet for each item that is the top selected item in a branch of the hierarchy. The analysis for the selected sub-items will be included in the same spreadsheet as the top item in the branch. The header in each form will display the information that has been defined for the top level item for that spreadsheet.

For example, consider the item selections in the following picture:
Based on these selections, the utility will generate four separate report forms:

- The first form will have a header based on the properties defined for System A and will contain the analysis data for System A, followed by the analysis data for Subsystem A1, Subsystem A2, and then Subsystem A3. A grey row with the item’s name will separate each item’s analysis within the same spreadsheet.

- The second form will have a header based on the properties defined for System B and will contain the analysis data for System B, followed by the analysis data for Subsystem B1, and then Subsystem B3. The data for Subsystem B2 will not be included in the report because it was not selected in the Reports window.

- The third and fourth forms will have headers based on the properties defined for Subsystems C1 and C2, respectively, and will contain analysis data for each single item by itself. A report will not be generated for System C because it was not selected in the Reports window.

When the report is generated in Excel, each separate form will be placed in a separate worksheet and named based on the type of form (i.e., FMEA, control plan, DVP&R or DRBFM) and the top level item for that sheet. If the selected items have the same name, then the name of the second worksheet will have a 2 added to it to make it unique, the name of the third worksheet will have a 3 added to it, and so on.
Chapter 20: Generated Reports

Report Customization/Settings Window

The Report Customization/Settings window allows you to establish your preferences for configurable reporting options, such as the logo to be displayed in report documents, the font style and size, etc.

To open the utility, click **Manage > Settings** in the Reports window.

- **Report Font, Header Font** and **Footer Font** set the font and size for the text in the body, header and footer of the reports that you generate from your computer. Please note that there are specific limitations for some fonts and sizes, as discussed in **Font Size and Style Considerations** below.

- **Logo for Printed Reports** will display in the document header, if specified.
 - **No Report Logo** displays no logo on the printed report.
 - **Default Logo** displays the default software graphic that was shipped with the application.

- **Paper Size for Reports** specifies whether the Word and Excel documents will be configured for U.S. Letter or A4-sized paper.

- **Action Details Report Options**
 - **Set orientation to portrait**. Select the check box to print the report in portrait orientation (top edge along the short side of the page). If not selected, the report will be printed in landscape orientation (top edge along the long side of the page).
 - **Include full FMEA record properties**. Clear the check box to include only the description for Function, Failure, Effect and Cause records in the report. Select the check box to include all other enabled properties for the associated Function, Failure, Effect and Cause records in the report. For example, if the analysis uses three levels of effects (according to the interface style), then all three fields will be included in the report.

- **Other**
 - **Display FMEA spreadsheet column headers on every page for Excel reports**

http://xfmea.reliasoft.com
• **Repeat data in spreadsheet reports** ensures that each row in the FMEA Spreadsheet report will contain all FMEA information related to that row, even if some of the information is repeated from the row above and would otherwise have been "merged" within the table. For example, if there are two causes for the same failure, then the report will display the same function, failure and effect data in both rows. This option is useful if, for instance, you need to be able to sort the rows in the generated report or if you need to copy a single line of the report for external use.

• **Merge cells in spreadsheet reports** merges the blank cells below a record in a column with that cell.

• **Set generated report files as read-only** sets the generated Word and Excel documents to "Read-only" on the General page of the document Properties window.

• **Show Priority Colors** highlights the FMEA records based on the priority categories specified in the interface style defined for the project.

• **Use name (not abbreviation) for time units** specifies how the units will be displayed in the report (e.g., 12650 Hour or 12650 Hr).

• **Use letters to identify failures and causes in RCM reports**: In RCM++ or RBI, RCM reports will use letters to identify failures and causes for the first 26 failures or causes, and then revert to numbers.

• **Footer for Printed Reports** sets the text displayed in the footer of all reports.

Font Size and Style Considerations

Please note that the software allows you to select a font size as small as 6 pt even though Excel may be unable to properly render certain fonts at sizes that small. This limitation tends to apply to more ornate fonts (e.g., Lucida Calligraphy). If you encounter a situation where the report generated by the software does not display in the font that you have selected, it is recommended to increase the font size to 8 pt or higher and generate the report again.

XFMEA/RCM++/RBI Templates Manager

In XFMEA/RCM++/RBI, the Templates Manager allows you to manage the configurable templates for customized reports, saved queries or importing/exporting data via Excel. To open the utility, choose **File > Manage Repository > Templates Manager** (or use the command in the Reports window ribbon).
Chapter 20: Generated Reports

If a standard database (*.rsr19) is currently open, you will be managing the templates in the standard templates file (*.xrt19) that is currently active for your computer. You can click the Browse button to select a different templates file to use. You can select a file from the current version of the software, or you can upgrade a file from a previous version by choosing the appropriate file type in the Browse window. If you open an older version templates file, an upgraded copy will be created, with "_V19" appended to the filename. For example, if you open "MyTemplates.xrt10," the Version 2019 file that is created will be called "MyTemplates_V19.xrt19."

If an enterprise database (SQL Server or Oracle) is currently open, you will be managing the templates stored within the enterprise database itself.

The utility has three tabs, one for report templates, one for query templates and another for import/export templates.

Active File and Reset Templates

When a standard database (*.rsr19) is currently open, the Reset Templates button will be displayed at the bottom of the window.

This button restores the default file that is shipped with the software (XRUT.xrt19) and makes it active for your computer/username. This will not replace whatever file currently exists. Rather, it will create a new standard templates file in the ReliaSoft folder under My Documents on your computer (e.g., C:\Users\<your USERNAME>\My Documents\ReliaSoft\Common). If a file with the name XRUT.xrt19 already exists in this location, then the new filename will have an increment at the end (e.g., XRUT1.xrt19).

Import Templates

To import existing templates, select the tab for the type of template you want to import (Report, Query or Import/Export) and then click the Import button.

In the Import Templates window, select the Standard template (*.xrt19) or enterprise database (*.rserp) file that the templates will be imported from.

The table displays a list of the templates that have been defined in the selected file or database. Select the templates that you want to import, and then click OK to start the import.

XFMEA/RCM++/RBI Report Templates

If you have reporting needs that are not met by the standard report forms included with XFMEA/RCM++/RBI, you can create custom report templates. They will be shown in the list of available report forms in the Reports window and can be included in your generated reports.
Tip: For information on using templates from previous versions of the software, see Templates Manager.

To open the Report Template window, click the Add button or the Edit button on the Report Templates tab of the Templates Manager.

- The Fields tab allows you to choose and configure the fields to be shown in the body of the report.
- The Column Header Customization tab allows you to configure the column headers shown in the report.
- The Preview tab displays an approximate preview of the template incorporating the settings you have specified on the other two tabs.

Note: Report templates can be used to generate reports for projects that use any interface style. For this reason, all fields are available for use in the template, regardless of whether they are enabled in the current project’s interface style. When the report is generated, only those fields that are enabled in the current project’s interface style will appear in the report.

Fields
On the Fields tab of the Report Template window, the Available Fields area displays all of the properties available to use that are not yet selected.

The Selected Fields area displays the properties that have been selected for inclusion in the template, in the order in which they will appear. You can drag and drop the selected properties into the desired position or use the Up/Down icons.

You can double-click a property or use the Include/Exclude icons to move the property between the areas.

Note: Each query to the database can include a maximum of 225 fields. If your query exceeds this number, you will see a message that notifies you of the issue and asks you to reduce the number of fields and try again.

For the FMEA Spreadsheet, FMEA Spreadsheet with Items, Functional Failure (FFEC) and Functional Failure (FFEC) with Items report template types, the Show Two Control Columns option will appear above the Selected Fields area. Select the check box if you want prevention and detection controls displayed in separate columns. (See Controls in FMEAs.)
Column Header Customization
Each field that you have selected for inclusion in the report template on the Fields tab will appear in the table on the Column Header Customization tab.

There are four options for the column width:

- **Fit Header** will size to fit the text in the column header (i.e., the column name).
- **Fit Data** will size to fit the widest data text in the column (i.e., all of the rows below the column name).
- **Fit Header/Data** will size to fit the widest text in the column, regardless of whether it is the column name or the data.
- **User Defined** allows you to specify the exact column width (number of characters).

By default, the column headings will use the names shown in the Property Name column. You can overwrite that by entering text in the Overwrite Default Header Text column.

Once you have configured all options to suit your needs, you can go to the Preview tab to see what the report template looks like. You can also click OK to save the report template.

Repeat Column Headers in Word
If you generate a report in Microsoft Word, you may have cases where a report table splits across multiple pages. By default, Word does not repeat the header rows at the top of every page. However, you can force Word to do so by using the following instructions.

The following instructions are for Word 2010; if you are using another version of Word, the options may vary.

- Generate the report in Word.
- On the first page of the table, select the column headings and then choose Layout > Data > Repeat Header Rows.

If you experience problems with the bottom border not displaying properly for a row that spans across two pages, then you can do the following:

- Generate the report in Word.
- Select the first data row in the table then choose Layout > Rows & Columns > Insert Above. This row is going to be used to assure that there is always a bottom border for the heading rows, even if the data rows span across pages.
• Select this row and the rows above (i.e., the column headings) and choose Layout > Data > Repeat Header Rows.

• Select the row that you inserted and choose Layout > Table > Properties.

• On the Row tab, specify 0.001 and Exactly for the Row Height, then click OK.

Save/Publish Reports

You can save generated XFMEA/RCM++/RBI reports with the project in Word, Excel or PDF format. This enables all users to view/print the same report documents that are saved in the shared database.

If your organization chooses to implement a web-based Synthesis Enterprise Portal (SEP) for an enterprise database, these same report documents will also be published on the SEP web portal.

To create or view saved/published reports choose Home > Reporting > Reports or System Hierarchy > Tools > Reporting > Reports.

Saving and Publishing

To create a new saved/published report, first use the options in the Reports window to build the report.

Before you generate the report, select at least one of the output types in the Save/Publish group on ribbon. (PDF is available only if you have Microsoft Office 2007 or higher.)

When you click Generate Report, a document will be created in Word or Excel and the report will also be saved with the project in each of the specified formats.

Published Reports Manager

Click Published Reports Manager to see all of the report documents that have been saved with the project.
Chapter 20: Generated Reports

Any user can open a report document, or save a copy. In a secure database, only the project owner or a user with the applicable "manage all projects" permissions will be able to delete saved reports or edit the name and description.

Viewing the Reports in SEP

To view the saved report in the SEP web portal, click the FMEAs link in the project summary and then go to the Published Reports tab.

What's Changed? Starting in Version 11, you cannot create files in MHTML format. You can view the reports created in MHTML in Version 10 using Internet Explorer or Firefox (with an add-on).
Chapter 21: Query Utility

The Query utility can be a powerful analysis tool that makes it easy to find and open specific sections of the analysis. It is also a flexible custom reporting tool that allows you to create and manage saved queries that meet your particular presentation requirements.

To access the Query utility, choose Home > Reporting > Queries.

Use the left panel to specify the data source (either selected items from the active project or selected projects from the entire database). Use the right panel to choose the type of query (items, FMEA causes, etc.) and specify the criteria/output preferences. Then click Run Query to view and use the results.

Specify the Data Source

Use the panel on the left side of the Query window to specify the data source for the query. This can be either selected item(s) from the active project, or selected project(s) from the entire database.

- **Active Project**: With this option, you can query any or all of the items in the project that is currently active.
Tip: If the Part Number, Reference Number and/or FMEA Document Number columns are displayed in the system hierarchy, these columns will also be displayed in the Select Items area here.

- **Database**: With this option, you must specify a Profile and FMEA Structure. You can also use the same project filters that are available in many other locations throughout the ReliaSoft desktop applications. You can then select to query any or all of the projects in the current database that use the specified FMEA structure (i.e., grouped effects and causes, causes before effects, etc.) and that match the specified project filter, if one is used. The criteria and results will use the property names from the selected profile.

Using the project filter might be particularly useful for an enterprise database that may be used to store analysis projects for the entire organization in a single centralized location. In such cases, the number of projects displayed in the project list could become overwhelming and these filters provide the ability to display only those projects that are of interest to you at any given time.

To remove the filter, select **Show All** from the drop-down list.
Specify the Query Criteria

After you have selected the data source in the left panel of the Query window, you can use the right panel to specify the query criteria and output preferences.

First use the drop-down list at the top of the panel to choose which type of record you wish to query (items, FMEA causes, etc.). This will update the Criteria tab to display the relevant properties for the selected record type. You can use the Expand Tree and Collapse Tree icons to expand and collapse the criteria tree shown in the Criteria tab.

Next, specify whether the query results will match the conditions from All rows in which criteria are specified (i.e., AND) or from Any row in which a criterion is specified (i.e., OR).

Then use the table to enter the criteria and choose which columns will be displayed in the results.

As an example, the following picture shows a query for system hierarchy items where the item name contains "bulb" AND the supplier name contains either "Acme" OR "Sterling." The Name, Part Number and Supplier columns will be included in the results.

Two Types of Actions Queries

Starting in Version 11, there are two types of queries for actions:

- FMEA Cause Actions considers recommended actions that have been defined for a failure cause and that are visible in the FMEA.

- FMEA Control Actions considers actions that have been associated with control records (if any). These actions can be used to incorporate controls in the Test Plans feature, or
to track specific responsibilities associated with implementing a control. (See
Associating Actions with Controls.)

Causes With or Without Actions and Controls

Starting in Version 11, the FMEA Causes query provides two additional query properties: Has Actions and Has Controls. This allows the query to consider whether the cause has actions and controls defined.

For example, the following criteria will only return causes that don't have actions or controls.

<table>
<thead>
<tr>
<th>Has Actions</th>
<th></th>
<th></th>
<th>is</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has Controls</td>
<td></td>
<td></td>
<td>is</td>
<td>No</td>
</tr>
</tbody>
</table>

Customize the Column Headers

After you have specified the query criteria in the Query window, you can use the Headers Customization tab to determine how the selected properties will be displayed in the query results.

Use the up and down arrows to set the desired column order.

![Up and Down Arrows]

There are four options for the column width:

- fit the label in the column heading
- fit the widest label in the column data
- fit the widest label in either the heading or data
- use a fixed width (as specified in the User-Defined Column Width (Characters) column)

By default, the column headings will use the names shown in the Property Name column. You can overwrite that by entering text in the Overwrite Default Heading Text column.

For example, the following picture shows a query where the Part Number column will be exactly 15 characters wide while the Item and Supplier columns will be as wide as the heading text. In addition, the heading of the supplier column will display as "Manufacturer."
View and Use the Query Results

Once you have configured the query criteria and the column headings to suit your needs, click Run Query to display the results on the Results tab.

If you select the Show Project check box, the results will include a column that indicates the project in which each record is found. When you are querying FMEA causes or FMEA effects, you can select the Show Priority Colors check box to highlight the FMEA records based on the priority categories specified in the interface style defined for the project.

To go to a specific record, either double-click the record in the table or select the record and click the Go To icon.

The Query utility will remain open, but the focus will change to the Project window and the record will be selected in the System panel or in the Analysis panel.

You also can click the Send to Excel icon to save the results table to an Excel spreadsheet.

Special Consideration for Action, Control and Task Query Results

Actions, controls and tasks are resources that can be used multiple times within the same FMEA or across FMEAs. When you search for actions, controls or tasks, note that matching records may be repeated in the query results if applicable. Specifically:

- If you have considered only the action/control/task record properties, each matching record will be displayed only once in the results (even if it is used in multiple different locations).
- However, if you have considered properties from any of the parent records (e.g., causes, items, etc.), the results will include a separate row for each relevant instance.
For example, the following picture shows query results from a situation in which the exact same action is recommended in two locations within the same FMEA. The record is shown twice in the results because the query has been configured to include details about where the action is used (in this case, Failure Cause and Item Name).

<table>
<thead>
<tr>
<th>Action ID</th>
<th>Action</th>
<th>Due Date</th>
<th>Failure Cause</th>
<th>Item Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>11/23/2014</td>
<td>One possible failure cause.</td>
<td>Bulb</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>11/23/2014</td>
<td>Another possible failure cause.</td>
<td>Bulb</td>
</tr>
</tbody>
</table>

Query Templates

Query templates allow you to save a great deal of time if you have particular queries that you run repeatedly. Saved query templates are also listed in the Available Reports area of the Reports window and can be included in generated reports.

If a standard database (*.rsr19) is open when you save a query, it will be stored in the standard templates file (*.xrt19) that is active for your computer. If an enterprise database (SQL Server or Oracle) is open, then the query will be stored within the enterprise database itself.

Using a Saved Template in the Query Utility

To use a saved template in the Query window, click the Open Saved Query icon.

The Select Existing Query window will display all saved templates for the type of query that was selected in the Query window (items, FMEA causes, etc.). If you want to search for a different record type, use the drop-down list to update the table.

To select a template, double-click the row or select it and click OK.

The settings on the Criteria and Headers Customization tabs of the Query utility will change to reflect the settings used in the saved query.

- If you change the criteria in the Query utility after applying a template, your changes will not affect the saved template. (If you want to update an existing query, use the Edit command in the Templates Manager, or simply delete the old template and replace it with a new one.)

- If the saved template contains criteria for a property that is not enabled for the current data source, that part of the query will be ignored. For example, if the saved template...
searches for items where the **Name** contains “bulb” **AND** the **Supplier** contains "ACME,” but the current data source has the Supplier field disabled, then the query will return items where the name contains "bulb."

Tip: For information on using templates from previous versions of the software, see [Templates Manager](#).

Saving New Templates from the Query Utility

To create a template from within the Query utility, configure all of the desired options on the Criteria and Headers Customization tabs and then click the **Save Query** icon.

The saved template includes all of the settings specified on the Criteria and Headers Customization tabs. It can then be applied to any data source.

Adding and Editing Templates via the Query Template Window

You can also create or edit query templates from the [Templates Manager](#). To open the manager, choose **File > Manage Repository > Templates Manager**.

Then click either the **Add** button or the **Edit** button on the Query Templates tab. The Query Template window works in the same way as the [Query utility](#), with the following exceptions:

- You cannot specify the data source, as the query template can be used with any data source and any interface style. For this reason, all properties are available for use in the Query Template window.

- On the panel on the left side of the window, you must specify a name and, if desired, a description for the query template.

- Instead of a Results tab, the Query Template window has a Preview tab that shows the columns you have selected to include in the results.
Chapter 22: Excel Templates for Import/Export

In XFMEA/RCM++/RBI, it is easy to import and export system hierarchy and analysis data via an Excel spreadsheet. This includes:

- System Hierarchy Items
- FMEA Spreadsheet
- FMEA Spreadsheet with Items

There are some considerations for validating system hierarchy items. See Validating Data.

- Control Plan Spreadsheet
- DVP&R Spreadsheet
- DRBFM Spreadsheet
- PFD Spreadsheet
- P-Diagram

Import from Excel

1. Right-click the tab in the Analysis panel or choose **System Hierarchy > Add Items > Import > Import from Excel**.

2. Select the **Import Type** and **Import/Export Template**. (See Creating and Managing Import/Export Templates.)

3. Browse for the **Excel Spreadsheet** file (*.xls or *.xlsx) that contains the data. If applicable, use the **Worksheet** drop-down list to select which sheet to import from.

4. Enter the **Starting Row** drop-down list to select which row to import from.

5. Select additional options at the bottom of the window, if applicable.

- System hierarchy items (except when using the "Based on Reference Number" template)
• **Update items based on 'Item ID'** updates existing records of the system hierarchy items if the "Item ID" matches. If the ID does not match an existing record, then it is added as a new item.

• **Import below current item** imports under the branch that is currently selected in the system hierarchy (instead of starting at the system level).

• Worksheet (FMEA, control plan, etc.)

 • **Replace** clears all the current data and replaces it with new records.

 • **Append** adds new records to the end of the current analysis.

 • **Update based on 'Record ID'** is available only for FMEA Spreadsheets and the template must include the function, failure, effect and cause ID fields. If the IDs match, the software updates the existing record. If the IDs do not match, then it appends a new record at the end of the branch.

6. Click **Next** to preview the data that will be imported. If the last column does not contain the expected values, the template may not fit your data. Click **Back** to change the selections or **Finish** to import the data.

Export to Excel

1. Right-click the tab in the Analysis panel or choose **System Hierarchy > Tools > Reporting > Export to Excel**.

2. Select the **Export Type** and **Export Template**. (See [Creating and Managing Import/Export Templates](http://xfmea.reliasoft.com).)

3. Select additional options at the bottom of the window, if applicable.

 • System hierarchy items

 • **Item and dependents** exports the selected item and all dependent items.

 • **Entire system hierarchy** exports the entire system hierarchy.

 • FMEA data

 • **Include linked analyses** includes linked FMEA records, if any, along with the local FMEA records.

Records that come from linked FMEAs cannot be re-imported as a linked analysis; they will become local records when imported.

http://xfmea.reliasoft.com
Chapter 22: Excel Templates for Import/Export

4. Click OK. In the Save As window, provide a name for the export file, then click Save.

Creating and Managing Import/Export Templates

Saved import/export templates can be managed from within the Templates Manager. To open the Templates Manager, choose File > Manage Repository > XFMEA/RCM++/RBI Libraries > Templates Manager.

If a standard database (*.rsr19) is currently open, you will be managing the templates stored in a local template library (*.xrt19) that is active for your computer, and you will be able to browse for another template library, if desired. If an enterprise database (SQL Server or Oracle) is currently open, you will be managing the templates stored within the enterprise database itself.

Tip: For information on using templates from previous versions of the software, see Templates Manager.

The Import/Export Templates page of the Templates Manager shows a list of the Excel templates that have already been created. You can also view or create these templates when you choose System Hierarchy > Import > Import from Excel or System Hierarchy > Reporting > Export to Excel. Select the import type and then use the select, add and edit icons in the template field.

Import/Export Template Window

When you create or edit an Excel template, the Import/Export Template window will be configured for a specific type of data (items, FMEA spreadsheets, control plans, etc.).

The Available Fields area displays all of the available properties (for the selected import type) that are not yet included in the template.
Chapter 22: Excel Templates for Import/Export

The **Selected Fields** area displays the properties that have been selected for inclusion in the template, in the order in which they will appear. You can drag and drop the selected properties into the desired position or use the **Up/Down** icons.

You can also double-click a property or use the **Include/Exclude** icons to move the property between the areas.

Note the following:

- For the "FMEA Spreadsheet" and the "FMEA Spreadsheet with Items" import types, select the **Show Two Control Columns** option if you want to include separate columns for Prevention and Detection controls. Clear the check box to place all control descriptions in one column and place the control type in another column. (See Controls in FMEAs.)

- For the "FMEA Spreadsheet with Items" import type, if the selected item includes both a local FMEA and one or more linked FMEAs, only the header data for the local FMEA will be exported. If you later re-import the data, all of the functions will be imported to the local FMEA.

Import Based on Reference Number

When importing system hierarchy items, you can select the "Based on Reference Number" template to import items in a hierarchical configuration that is based on reference number. For each item, you must specify its reference number and, if it is not a top-level item, the reference number of its parent item. This template is fixed and cannot be edited, nor can it be managed via the Templates Manager. To use the template:

1. Select the "Items" import type.
2. Select the "Based on Reference Number" template from the **Import/Export Template** drop-down list.
3. Click the **View** icon to open the template.

![Based on Reference Number](image)

4. Save a copy of the template to the desired location.
5. Enter your data in the saved copy.
6. In the **Worksheet** field of the Import from Excel window, browse for the saved copy and proceed with the import.
Validating Data for Import

When importing data from Excel, for most of the columns in the spreadsheet, the only validation is to make sure that the data meet the software database requirements for the fields. For example, if the text is too long to fit the field, it will be truncated. If it is the wrong format (e.g., there is text where a number is required), it will be ignored.

When importing items into the system hierarchy, the following additional validation requirements apply:

- The Level column identifies the position of the item in the system hierarchy. 1 indicates a top level (system) item. 2 indicates a sub-item below the nearest Level 1 item above, 3 indicates a sub-item below the nearest Level 2 item above, and so on.

An example of how the rows in the import spreadsheet translate to the system configurations in the software is shown next.

<table>
<thead>
<tr>
<th>Level</th>
<th>Item #</th>
<th>Item Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>System A</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Sub-system A.1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Component A.1.1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Component A.1.2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Sub-system A.2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Component A.2.1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Component A.2.2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>System B</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Component B.1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Component B.2</td>
</tr>
</tbody>
</table>
• If the Level column is not present, then all items are imported as systems.

• The position of the row in the import spreadsheet determines the position of the item in the software system hierarchy. In order to identify the appropriate "parent" item in the hierarchy, you must enter all items for a given branch of the hierarchy before moving on to the next branch. For example, if the system consists of two subsystems and each subsystem has three components, list the system first (Level 1), then the first subsystem (Level 2), then the three components of the first subsystem (Level 3), then the second subsystem (Level 2), then the three components of the second subsystem (Level 3).

• The row will be considered invalid if the "Level" column does not contain a whole number or contains a number that is greater than one more than the previous level number (e.g., Level 5 can be entered below Level 4 but cannot be entered below Level 3). For example, the level numbers 1, 2, 2, 1, 2, 3, 4, 1, 1, 2, 3, 3, 4 are valid. The numbers 1, 2, 4, 6 are not. The reason is that a lower number indicates another item on a previous level (which can always be added) but a higher number indicates an item on the next level and you cannot skip a level. Some examples of valid and invalid "Level" entries are presented below.
If a validation issue is detected in the middle of the import, then the remaining records in that branch will be imported as systems. You can then use the Promote/Demote, Drag and Drop and/or Cut/Paste functionality in the System panel to correct the configuration.
Chapter 23: Change Logs

The change log utility is available for FMEAs, DVP&Rs, control plans, P-Diagrams and test plans. It controls when users will be able to edit the analysis, and also records a history of the revisions since the change log was activated.

The Change Log window shows the changes for the entire analysis while the Record Change Log window shows the changes for a particular record. Depending on the settings, the log can record:

- The date and time of the change.
- The user who made the change.
- The type of change (e.g., Add, Edit, Delete).
- The record that was changed and the specific property.
- The value before the change and the value after.
- The reason (or justification) that the user provided at the time of the change.

If desired, the change log utility can also be used to facilitate electronic approval tracking by storing an electronic record of the users who have reviewed and approved each version of an analysis.

Change Log Icons and Statuses

When a change log has been activated for an analysis, the icon on the tab in the Analysis panel (and in the FMEA, Test Plan, DVP&R, Control Plan or P-Diagram column in the System panel, if displayed) will indicate that the change log is in one of two states:

- No Revision Started: The analysis is locked and no revision has started. The analysis is read-only for all users.
- Revision Started: The analysis is open for modifications because an authorized user has started a revision.
In addition, the following status labels are displayed at the top of the Version History area in the change log window. These labels are also displayed in the system hierarchy panel if the **Include change log version in analysis columns** option is selected on the System Hierarchy page of the Application Setup.

- **In Progress** - a revision to the analysis is currently in progress.
- **Locked** - the analysis is locked for editing and there are no assigned reviewers.
- **Awaiting Review** - the analysis is locked for editing and one or more assigned reviewers still need to review. If you are assigned to review the version, this label will be shown in red.
- **Approved** - the analysis is locked for editing and all of the assigned reviewers have electronically recorded their approval.
- **Rejected** - the analysis is locked for editing and has been rejected by at least one assigned reviewer.

Storing Data from Prior Analysis Versions

Even when a change log is active, the software does not automatically maintain a complete copy of the analysis as it was at a given time prior to subsequent modification. However, there are several ways to manually store a complete copy of the analysis if you need it. For example, you can:

- Use the [Restore Points](#) feature to store a complete backup of the project at a given time.
- Create a duplicate of the project each time a version has been completed.
- Generate a report for each completed version and either attach it to the item or save it with the project.
- Copy and paste the item within the project or to another project.

Change Log Window (for Entire Analysis)

To create and activate a change log for an [FMEA](#), [test plan](#), [DVP&R](#), [control plan](#) or [P-Diagram](#), choose [FMEA/Test Plan/DVP&R/Control Plan/P-Diagram] > Change Log > Activate Change Log. (In a secure database, this is available only to the project owner and users with the applicable "manage all projects" permissions.)

http://xfmea.reliasoft.com
Once a change log is active, any project user can open the window by choosing [FMEA/Test Plan/DVP&R/Control Plan/P-Diagram] > Change Log > View Change Log.

Change Log Activation
The Change Log Activation area shows the date and time that the change log was activated, along with the name of the user who activated it.

- Select the **Require reason for change** check box if you want to require all users to justify each change made in a revision.
- Click **Deactivate Change Log** to deactivate the change log. This will clear both the change log and version history of the analysis, and it cannot be undone.

Version History
The Version History area allows you to start and end revisions, and also manage electronic approval tracking, if applicable. The current version status is displayed in this area, above the table. The table displays the following:

- **#** is the automatically generated number that uniquely identifies the version.
- **Version** and **Comments** are defined in the Version Details window.
- **Initiated By** is the user who activated the change log (for the original version listed in the first row) or started a revision (for each subsequent row).
- **Start Date/Time** and **End Date/Time** display the automatically recorded dates/times when the version started and ended.

If the electronic approval tracking option is being used, the table will also display information about the reviewer(s) who electronically "signed off" on each version.

Change Log
The Change Log table displays all modifications that were made to the analysis after the change log was activated.

- **Revision** displays the number of the revision in which the modification was made.
- **Date/Time** and **User** display the date and time when the modification was made, and the user who made the change.

Change Type:
- **Add** indicates that the record was added, inserted, pasted or imported.
Chapter 23: Change Logs

- If you pasted records, all items are listed.
- If you imported existing records from the current project, the current database or another database, all items are listed.
- If you imported data from an Excel spreadsheet, the change log lists the addition of the functions only.

- **Edit** indicates that the record’s details were changed.
- **Delete** indicates that the record was deleted from the analysis. Related records, if any, will also have been deleted. However, the change log lists only the deletion of the top record.

- **Record Type** displays the type of record (e.g., functions, failures, etc.).
- **Record Description** and **ID** display the description and unique ID of the record.
- **Property** displays the data field that was changed, if applicable.

 Note: Because you can change multiple properties at the same time, each change to a property is listed separately. However, if the **Require reason for change** check box was selected when the changes were made, the same "Reason for Change" text displays for each property.

- **Value Before** and **Value After** display the values of the property before and after the change, if applicable.

- **Reason for Change** displays the justification that the user supplied when making the change. This is recorded only if the **Require reason for change** check box was selected at the time the change was made. It is displayed only if the **Require reason for change** check box is currently selected.

You can use filters at the bottom of the window to limit the list of changes displayed in the table. Click **Remove Filters** to show all records.

Click the **Export Version History** or **Export Change Log** buttons to send the data to an Excel spreadsheet.

Starting and Ending Revisions

When a **change log** is first activated, the **FMEA**, **test plan**, **DVP&R**, **control plan** or **P-Diagram** is automatically locked so that no changes can be made until a revision has been started. The analysis is also locked between revisions. While the analysis is locked, it is read-only for all users.
In a secure database, the ability to start and end revisions is available only to the project owner and users with the applicable "manage all projects" permissions.

To start a revision:
1. Open the Change Log window for the analysis.
2. Click the Start Revision button and specify the Version Label and comments in the Version Details window.

After the revision is started, all the changes made to the analysis are logged until an authorized user chooses to end the revision.

To start multiple revisions:
Starting in Version 2019, you have the ability to start or end revisions for multiple change logs in the project at the same time. To use this feature:

The Batch Start Revisions window displays a list of all the analyses in the project that are eligible to start change log revisions (i.e., that do not already have an open revision or a revision awaiting approval). This includes analyses that do not yet have change logs activated. By default, the order of this list corresponds to the system hierarchy order; you can sort by item name by clicking the column heading.

2. Select the analyses for which you want to start revisions, then click OK.
3. Specify the Version Label and comments in the Version Details window, then click OK. A new revision will be started for each selected analysis. For any selected analyses that did not already have active change logs, change logs will be activated, the original version created and a revision started; in these cases, the new revision will always be a major revision, regardless of the selection in the Version Details window.

To end a revision:
1. Open the Change Log window for the analysis.
2. Click the End Revision button.

To end multiple revisions:
Chapter 23: Change Logs

The Batch End Revisions window displays a list of all the analyses in the project that currently have open revisions. By default, the order of this list corresponds to the system hierarchy order; you can sort by other criteria by clicking the column headings.

2. Select the analyses for which you want to end revisions, then click **OK**.

To reopen the most recent revision:

1. Open the Change Log window for the analysis.

2. Select the most recent revision in the Version History table and click the **Re-Open Revision** button.

Version Details Window

- **Major/Minor** allows you to specify whether the revision will be numbered as a major revision (e.g., from 1.0 to 2.0) or as a minor revision (e.g., from 1.0 to 1.1).

- **Version Label** and **Comments** are displayed in the Version History table and can be edited at a later time if necessary.

- **Assign Reviewers** allows you to assign users who are required to review and approve the analysis before the next revision can be started. You can assign reviewers to only the most recent revision.

What's Changed? In versions prior to 2019, the **Re-Open Revision** button was located in the Version Details window.

Record Change Log Window (for Specific Records)

To view the portion of the change log that pertains to a particular record, click the **Change Log** icon at the top of the record's properties window.

The Record Change Log window displays the same information that is recorded in the **Change Log window**, but shows only the modifications made to the specific record.
You can use filters at the bottom of the window to limit the list of changes displayed in the table. Click the **Send to Excel** button to export all of the data currently displayed in the tab to an Excel spreadsheet.

Reason for Change Window

If a [change log](#) is active for an [FMEA](#), [test plan](#), [DVP&R](#), [control plan](#) or [P-Diagram](#) and the **Require reason for change** check box has been selected, then every time a user adds, modifies or deletes a record in the analysis the Reason for Change window will open automatically before saving the change to the record.

Note the following.

- If you are changing more than one action or control at the same time in the Resource Manager window, then the reason for change will automatically be recorded as either "Editing Multiple Controls" or "Editing Multiple Actions." This will display only once, regardless of how many times the action or control is used in the analysis.

- If you are making changes to a mirrored cause, then the reason for change will display only once, regardless of how many times the cause is used in the analysis.

- If you are changing the analysis in the FMRA view in BlockSim, then the system will automatically record the change as being "Changed in BlockSim."

Electronic Approval Tracking

If a [change log](#) is active for an [FMEA](#), [test plan](#), [DVP&R](#), [control plan](#) or [P-Diagram](#), you have the option to store an electronic record of the user(s) who have reviewed each version of the analysis.

- Use the **Assign Reviewers window** while the version is in progress to assign the user(s) who must review and approve the analysis after it is completed.

- Use the **Approve Version window** to record your approval for a single analysis. Starting in Version 2019, if necessary, you can also use the Reject Version window to reject the analysis.

- Use the **Approve Multiple Change Logs window** to approve multiple analyses at the same time.
Assign Reviewers Window

In a secure database, the ability to assign reviewers is available only to the project owner and users with the appropriate "manage all projects" permissions.

1. While the version is in progress, open the change log for the analysis.
2. Select the version in the table and click Edit Details.
3. In the Version Details window, click Assign Reviewers.
4. In the Assign Reviewers window, select the check box for each user who must review and approve this version of the analysis. In a secure database, this list shows all users with access to the project that have the "Approve change logs in XFMEA/RCM++/RBI" permission. If you want to shorten the list by hiding the users who are not assigned to review this version, select the Show only assigned users check box.
5. If desired, you can also specify the Reviewer Role to each user (e.g., Management, Engineering, etc.).
6. Click OK to save the changes.

Approve/Reject Version Windows

To record your approval for a single analysis, or to reject it:

1. Open the change log, then select the version in the table.
2. Click either the Approve Version button or the Reject Version button, then enter any comments about your review, and click OK.
3. When prompted, reenter your username and password before the application saves the approval/rejection and records the comments in the change log.
If you reject the analysis, an e-mail containing your comments will automatically be sent to the user who started the revision and to any other assigned reviewers.

Approve Multiple Change Logs
You can also approve the change logs for multiple analyses in the same project at the same time. To use this feature:

2. Select the change logs to approve, then click **OK**.

3. Enter any comments about your review, then click **OK**.

4. When prompted, reenter your username and password before the application saves the approval and records the approval comments in the change log for each analysis.
Workflow Overview for Using a Change Log

There are two general approaches to activating a change log and managing revisions, depending on whether or not you are using the electronic approval tracking feature. The flowcharts shown here demonstrate likely workflows for both scenarios.

Without Electronic Approval Tracking

Activate change log

Analysis at this point is:
- Locked until revision started.
- Recorded in version history as original version.

Start revision

Software records any changes made to the analysis while the revision is open. (If Require reason for change is selected, software also records user input for justification of change.)

End revision

Analysis at this point is:
- Locked until next revision started.
- Recorded in version history as a revised version, identified by name and number.

Repeat process to add revisions as necessary.
With Electronic Approval Tracking

- Activate change log
- Assign reviewers for original version
 - Software sends e-mail notification to reviewers.
 - First revision cannot begin until all reviewers approve original version.
 - Change log can be deactivated if changes to original version are necessary.
 - Analysis at this point:
 - Locked until revision started.
 - Recorded in version history as original version.
- Reviewers log in and approve original version
- Start revision
- Assign reviewers for revision
 - Software records any changes made to the analysis while the revision is open.
 - If Require reason for change is selected, software also records user input for justification of change.
- End revision
- Software sends e-mail notification to reviewers.
 - Analysis is locked and next revision cannot start until all reviewers approve this version.
 - Revision can be re-opened if changes are necessary.
- If any reviewer rejects, software sends e-mail notification to reviewers.
 - Revision must be re-opened.
- Reviewers log in and approve or reject revision
 - Approve
 - Reject
 - When all reviewers have approved, the analysis at this point:
 - Locked until next revision started.
 - Recorded in version history as a revised version, identified by name and number.
 - Repeat process to add revisions as necessary.
Chapter 24: Xfmea, RCM++ and RBI Settings

The Application Setup contains personal preferences that are stored per computer/username. These include default settings for new analyses/plots that you create from this computer, as well as personal preferences that don’t affect shared analysis data stored in the database.

In addition, note that the region and language settings will determine how dates, times, decimals, currency, etc. are displayed on your computer.

To open the Application Setup window, choose File > Application Setup.

The settings on the pages listed under Synthesis Settings are the same for all ReliaSoft desktop applications; the pages listed under the application name contain settings that apply only to the current applications.

Synthesis Settings

The Synthesis Settings page of the Application Setup can be changed from within any ReliaSoft desktop application.

- **Interface** sets the language and the skin (color scheme) for the software interface. Selecting a skin shows you a preview of the changes in the Application Setup window. The change takes effect in the rest of the interface the next time you launch each application.

 Note that a language change will not affect applications that are currently available only in English.

- **Open With** sets the ReliaSoft application to launch by default when you double-click an *.rsr19 or *.rserp file from this computer. If you want to be prompted to choose an application each time, select Show the ReliaSoft Launcher.

- **Recent Repositories List** sets the maximum number of recently saved database files to be displayed in the "Recent Repositories" list in the Backstage view.
• **Auto Save** specifies when folios and diagrams will be saved automatically. The application always saves folios/diagrams upon calculate or close. If you want to also save periodically while you're editing, specify an interval. This can be useful if you're working across a network in an enterprise database.

• **Other**

 • **Allow multiple projects (project explorer)** applies to ReliaSoft desktop applications that use the current project explorer (i.e., Weibull++, ALTA, BlockSim, RENO, RGA, and Lambda Predict). Select the check box if you want to have multiple projects open at the same time. There is a separate setting for project windows in XFMEA/RCM++/RBI. (See [Working with Multiple Projects](#).)

 • **Show project name in opened folios** applies to ReliaSoft desktop applications that use the current project explorer (i.e., Weibull++, ALTA, BlockSim, RENO, RGA, and Lambda Predict). It shows the project name in [brackets] on the tab or window caption. This may be useful when you have multiple projects open at the same time.

 • **Use web-based help.** Select the check box to always make F1 and other help commands open the most up-to-date help file from the Internet when possible. If you clear this check box, they open the local help file that was installed with the software.

 • **Highlight 'Active' category in ribbon** applies a highlight color to the label that shows which tabs are currently active.

 • **Use non-modal Resource Manager** locks the Resource Manager in a top window position so it can remain open while you have access to the project. If not selected, you must close the Resource Manager to return to the project.

 • **Warn when changing metric associations** shows a warning when you select an existing metric in a situation that will change the metric's associated model. (See [Showing Metrics in Folios/Diagrams](#).)

 • **Hide unused project folders** applies to ReliaSoft desktop applications that use the current project explorer (i.e., Weibull++, ALTA, BlockSim, RENO, RGA, and Lambda Predict). It hides from view all folders that do not contain any project items.

• **Highlight colors** sets the colors used to color-code values in the following analyses:

 • Results in the FMRA in **BlockSim** and **XFMEA/RCM++/RBI**

 • Certain BlockSim plots

 • BlockSim **FRED reports**
- BlockSim allocation analysis
- Spread of failure rate contributions in a prediction folio in Lambda Predict.

Backup/Check Out Options
The Backup/Check Out Options page of the Application Setup can be changed from within any ReliaSoft desktop application.

- **Standard Repository Maintenance** applies to standard database files (*.rsr19) only. It allows you to automatically save a backup of a database in the location you specify when you close the application. The backup file will be named after the database file with the backup date appended (e.g., RSRepository1_2019-01-15.rsr19).

You can specify how many days of backups can be automatically saved (up to 10), but note that only one backup will be saved per day (e.g., if you open and close the same database three times in one day, only the final closing of the database will be saved in the backup folder).

Note that you can also create backups manually at any time by choosing File > Save As. For more tips on keeping databases running smoothly, see [Backups and Database Maintenance: Protecting Your Data](#).

- **Check In/Out** specifies the default save location for projects that you check out from a database.

Other Synthesis Settings
The Synthesis Settings > Other page of the Application Setup can be changed from within any ReliaSoft desktop application.

- **Model, Variable and Workbook Names** disallows spaces and special characters in the names of models (including those published from any ReliaSoft desktop application) and variables, and in the names of workbooks created in BlockSim/RENO. This will ensure that all models, variables and workbooks can be used in RENO equations.

- **Display Object IDs**. Select the check box to always display the unique object identifier (object ID) of each project and resource in the repository. The project IDs will be displayed in the Manage Projects window and in the Edit Project Properties window, while the resource IDs will be displayed in the Resource Manager. In BlockSim, diagram IDs and block IDs will be shown in the control panel and, starting in Version 19.0.2, in the Block Details simulation results worksheet.
• **Copy Plot Graphic** sets the default file type to use when copying a plot to the Clipboard as an image. If you will be pasting copied plots into Synthesis Workbooks, choose **Metafile for Synthesis use**. If you will be pasting them into external applications, choose **Bitmap** or **Metafile for external use**.

• This default setting is used when you copy a plot using **Home > Copy** or **CTRL+C**. If you want to choose the graphic on the spot, you can do so by right-clicking the plot and choosing the **Copy Plot Graphic** command on the shortcut menu.

• **Hierarchical Trees** sets the maximum number of lines for displaying names and descriptions in any of the hierarchical tree interfaces used in XFMEA, RCM++, RBI, Lambda Predict and MPC.

• **Alternative Credentials** applies to secure databases. It allows you to either save your **alternative credentials** (so your account is automatically logged in whenever you open a secure database from a different domain) or clear the credentials from this computer.

• **Diagram Skins Utility** converts diagram skins created in Version 9 to the latest version. Click the **Convert** link, and in the window that opens, select the name of the skin(s) that you wish to convert. You will need to close and re-launch the application to use the converted skin(s). (See "Converting Version 9 Skins" in the BlockSim, Weibull++/ALTA or XFMEA/RCM++/RBI documentation.)

Application-Specific Settings

General Settings

The Settings page of XFMEA/RCM++/RBI's Application Setup contains the following settings:

• **General**

 • **Maximum number of results returned by queries** sets the maximum number of results to display when you are using the **Query utility**.

 • **Allow multiple open projects (project windows)** allows you to open multiple projects simultaneously in XFMEA/RCM++/RBI. (There is a separate setting for applications that use a current project explorer. See **Synthesis Settings**.)

 • **Hide reliability nodes on item properties** hides the Operation, Reliability Policy, Reliability/Availability and Push to Metrics nodes on the Properties tab when you're working in the system hierarchy. These nodes will still be displayed when you're working in the **FMRA**.
• **Enable MIL-1629A Criticality** displays the following command on the Home tab of the ribbon. This allows you to perform criticality analysis in a separate utility, rather than directly in the FMRA.

• **Use 'display name' from interface style for FMEA commands/windows** uses the display name from the interface style (which is configurable for each project), rather than the property name (which is the same for all projects) for the FMEA commands and properties windows.

• **Exponential Parameter** specifies whether to show lambda (failure rate) or mean time (1/failure rate) for the exponential distribution parameter.

• **Numeric Display** sets the math precision (number of decimal places) and the point at which the software will switch to scientific notation. For example, if the scientific notation tolerance is set to 5, then any number that is larger than 10^5 will be displayed using scientific notation.

• **Create a default function for new items** automatically adds an FMEA and creates the first function for each new item that you add to a system hierarchy.

• **Repeat data in worksheet views** populates the gray areas in analysis worksheet views with the relevant text from a prior row. For example, if there are 3 failures for the same function, the worksheet will show the function description in all 3 rows.

System Hierarchy Settings

The System Hierarchy page of XFMEA/RCM++/RBI's Application Setup contains your personal preferences for the columns displayed in the system hierarchy. Refer to the System Hierarchy topic for descriptions of the available columns.

The table contains the same options that are also available when you right-click inside any column heading in the system hierarchy and choose Customize Columns.

• To choose which columns to display, use the check boxes.

• To change the column order, use the arrow buttons to move the selected field up or down in the list. You can also drag/drop a field into the desired position.

• To restore the default settings for all hierarchies in the current application, you can click the Reset Application Form Settings or Reset All Settings buttons on the Reset Settings page of the Application Setup.
Tip: If you want to restore only the settings for one particular hierarchy without resetting any other application form settings, you can delete the specific file from C:\Users\USERNAME\AppData\Roaming\ReliaSoft\APPLICATION\TreeLists_Settings_V19, where APPLICATION is either XFMEA19, RCM19 or RBI19. For example, to reset only the system hierarchy, delete the file called frmFMEA_treeSystem.

- **Expand hierarchy to this level by default** sets the default level shown in the System panel.

- **Include change log version in analysis columns** displays the current revision version and status in the analysis column for those analyses that have an active change log. If the version is awaiting review, the text will be shown in red for users who are assigned to review it.

FMRA Settings

The FMRA page of XFMEA/RCM++/RBI's Application Setup contains your personal preferences for the columns displayed in the FMRA hierarchy. Refer to the FMRA Hierarchy topic for descriptions of the available columns.

The table contains the same options that are also available when you right-click inside any column heading in the FMRA and choose **Customize Columns**.

- To choose which columns to display, use the check boxes.

- To change the column order, use the arrow buttons to move the selected field up or down in the list. You can also drag/drop a field into the desired position.

- To restore the default settings for all hierarchies in the current application, you can click the **Reset Application Form Settings** or **Reset All Settings** buttons on the Reset Settings page of the Application Setup.

FMEA Hierarchy Settings

The FMEA Hierarchy page of XFMEA/RCM++/RBI's Application Setup contains your personal preferences for the FMEA tab of the Analysis panel.

Show Columns

Use this area to select which columns will display in the FMEA hierarchy. Refer to the FMEA Hierarchy topic for descriptions of the available columns.
The table contains the same options that are also available when you right-click inside any column heading in the FMEA hierarchy and choose **Customize Columns**.

- To choose which columns to display, use the check boxes.
- To change the column order, use the arrow buttons to move the selected field up or down in the list. You can also drag/drop a field into the desired position.
- To restore the default settings for all hierarchies in the current application, you can click the **Reset Application Form Settings** or **Reset All Settings** buttons on the **Reset Settings** page of the Application Setup.

Other Options

- **Obtain XFRACAS failures observed occurrences from** is applicable only if you are working in a database that has associated XFRACAS tables and you are using the Observed Occurrences column in the FMEA hierarchy. (See **Import or Sync from XFRACAS**.)
- **Expand hierarchy to this level by default** sets the default level shown in the FMEA hierarchy.
- **Default View** sets either the hierarchy or the worksheet as the default view for editing an FMEA.
- **Hide reliability policy node** hides the Reliability Policy node in the FMEA hierarchy. The policy can still be viewed/edited from the **FMRA**.

Reset Settings

The Reset Settings page of the Application Setup allows you to restore some or all of the settings to their original configuration. Note that it’s recommended to close all windows before resetting settings. If the change does not take effect immediately, restart the application.

- **Reset Common Synthesis Settings** resets the settings under the **Synthesis Settings** heading in the Application Setup.
- **Reset Application Settings** resets the settings under the current application's heading in the Application Setup. It also clears any saved default column headings in life data (Weibull++), life-stress data (ALTA) and growth data (RGA) folios.
- **Reset Application Form Settings** resets the form settings for the current application (e.g., size and location of windows).
- **Reset Plot Settings** resets the **Plot Setup** settings that are applied by default when you create a new plot in the current application.
• **Reset FIDES Settings** (Lambda Predict only) resets the predefined FIDES settings (e.g., saved pi factors, process audits, etc.) that are applied by default when you create a new repository. (See FIDES Settings Manager in the Lambda Predict documentation.)

• **Reset Component Defaults** (Lambda Predict only) resets the component property values that are applied by default when you add a new component to a prediction. (See Default Component Properties in the Lambda Predict documentation.)

• **Reset All Settings** resets all the saved settings for the current application. This is the same as clicking all of the individual "Reset" buttons above.

Project Item Settings
ReliaSoft desktop applications offer a variety of configurable settings that are stored per computer/username and managed via the Application Setup.

Your personalized application setup determines the default settings for new folios, diagrams and flowcharts that you create in Weibull++, ALTA, BlockSim, RENO and RGA. The relevant settings are also saved with each individual folio/diagram and are accessible from the Item Properties window. This makes it possible to have different settings for different analyses, and also ensures that any given analysis will be the same for all database users.

To view and edit the configurable settings in the Item Properties window, select the folio, diagram or flowchart in the current project explorer and choose **Project > Current Item > Item Properties**.

The settings are displayed on the second tab of the properties window. (In a secure database, the settings can be edited only if the user is the project owner or has the "Create/edit project items" permission.)

If you modify the settings for a particular project item, the new preferences will be saved with the folio/diagram. The default preferences for new folios/diagrams in the application setup will remain unchanged.

Region and Language Settings
The Region and Language settings for your particular computer will have some impact on the way some information is displayed in ReliaSoft applications.
Users with different regional and language settings can work together on the same analysis projects because, in most cases, the basic information is stored in the database and the software simply displays it in the format preferred by each user. For example, if the date September 25, 2019 is stored in the database, User A might see it as "9/25/2019" while User B might see "25-Sep-19."

This topic first explains how to view or change the Region and Language settings on your computer and then discusses some specific considerations for ReliaSoft applications, including:

- Which language is selected by default when you install the software
- How dates and times will be entered and displayed
- How decimal values and currency will be entered and displayed

Viewing or Changing the Region and Language Settings for Your Computer

To view or change the region and language settings:

- In Windows 8 or Windows 10, move the pointer to the lower left corner of the desktop, then right-click and choose Control Panel. Click the Clock, Language, and Region option then click the Region link.
- In Windows 7, choose Start > Control Panel and then click the Region and Language link.

As an example, the Windows 7 interface is shown here. The Windows 8 and Windows 10 versions look different but function similarly.
Other relevant settings are managed via the Customize Format window:

- In Windows 8 or Windows 10, click the **Additional settings** button.
- In Windows 7, click the **Additional settings** button.

As an example, the Windows 7 interface is shown next.
Note: To see the changed settings in the ReliaSoft application, you must close the application, and then restart it.

Which Language is Selected by Default When You Install the Software

The user interface for ReliaSoft desktop applications is available in several languages. You can change this language at any time by choosing an option from the **Language** drop-down list on the **Synthesis Settings page** of the Application Setup.
When you first install the software, it will check your computer's current language as it is set in the **Format** field in the Windows Region and Language window. If that language is supported in the ReliaSoft applications, they will use those settings; however, if that language is not supported, they will use the default setting of English.

Defining Date and Time Formats

Dates and times appear frequently throughout the ReliaSoft interface, including (but not limited to):

- The dates in the plot legend area of a plot in all ReliaSoft applications.
- The history provided throughout ReliaSoft applications (e.g., for resources, FMEA records, diagrams, in history logs, etc.).
- The dates in the worksheet view and in the record properties windows in XFMEA, RCM++, RBI and MPC.
- The dates in the "dates of failure" format and "usage" format of the Weibull++ warranty folios.

The **Short date** field from the Windows Region and Language window determines how dates are displayed. You can select any standard format (e.g., M/d/yyyy, dd/MMM/yy, yy/MM/dd) or you can create your own format using the available date notations.

The **Short time** field determines how times are displayed. You can select any standard format (e.g., h:mm tt, HH:mm, HH'h'mm) or you can create your own format using the available time notations.

The Windows settings do not apply to the following items:

- Dates and times in spreadsheet utilities (e.g., a spreadsheet module in Synthesis Workbooks, General Spreadsheets, etc.).
- Dates and times displayed in the Weibull++ event log folio are created by the folio and are not affected by the computer's settings.

Changing the Decimal Symbol, the List Separator and the Currency Symbol

How decimal values are displayed depends on the value of the **Decimal symbol** field on the Numbers page of the Windows Customized Format window, which determines which character is used to indicate the decimal portion of a number (e.g., 85.25 or 85,25). In addition, the character used to separate the arguments in a list depends on the value of the **List separator** field. These settings affect how you enter functions in a spreadsheet module in Synthesis Workbooks or in General Spreadsheets, either manually or by using the Function Wizard.
For example, if the decimal symbol value is a comma, and the list separator value is a semicolon, you would enter a function like this:
=RELIABILITY("Weibull!Folio1!Data 1";500;100;0,9)). Whereas, if the decimal symbol is a period and the list separator is a comma, it would be
=RELIABILITY("Weibull!Folio1!Data 1",500,100,0.9)).

The currency symbol that is displayed in the software depends on the selection in the Currency symbol field on the Currency page of the Windows Customized Format window.
Chapter 25: ReliaSoft CommonTools

Categories, Identifiers and Filters

Defining Categories
In all ReliaSoft desktop applications, you can use flexible categories and identifiers to filter and group analysis data in a way that fits your specific needs. There are two types:

- **Project Categories** can be applied to projects in all desktop applications.
- **Item Categories** can be applied to project items (e.g., folios, diagrams, system hierarchy items) and resources (e.g., models, URDs) in all desktop applications except MPC.

This topic describes how to define the categories that will be available throughout the current database. To learn how to use them to filter and group data, see [Project and Item Filters](#). (For additional options related to categories for system hierarchy items, see Item Categories in XFMEA/RCM++/RBI in the XFMEA/RCM++/RBI documentation.)

Accessing the Project/Item Categories Window
There are two ways to access the Project/Item Categories window and specify which categories will be available throughout the current database. (In a secure database, these are available only for users with the "Manage project/item categories" permission.)

To open the window from the backstage view, choose File > Manage Repository > Project/Item Categories.

Alternatively, you can click inside any Category drop-down list (e.g., in a properties window, filter, etc.) and click the Edit Categories icon.
Adding, Renaming and Deleting Categories

- To rename an existing category, double-click inside the cell and edit the text.

- To add a new category in the same level as the one that is currently selected, click Add.

- To add a new category in the level below the one that is currently selected, click Add Below.

- To move a selected category up or down within the same level, select the row and click Up or Down.

- To move a selected category to a different level, click Promote or Demote.

- To delete a category, select the row and press the Delete key or click the icon. To delete all categories at the same time, click Clear All. There is no undo for delete.
Identifiers
In all ReliaSoft desktop applications, you can use flexible identifiers and categories to filter and group analysis data in a way that fits your specific needs. The identifiers are available for project explorer items (e.g., folios, diagrams, plots, etc.) and there is one standard set of identifier fields for all relevant locations.

<table>
<thead>
<tr>
<th>Category</th>
<th>Bulb A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
<td>PN12345</td>
</tr>
<tr>
<td>Version</td>
<td>Rev 1</td>
</tr>
<tr>
<td>Supplier</td>
<td>Acme Chandelier</td>
</tr>
<tr>
<td>Application</td>
<td>Chandelier</td>
</tr>
<tr>
<td>Description</td>
<td>Light bulb</td>
</tr>
<tr>
<td>Comments</td>
<td>Based on in-house test data.</td>
</tr>
<tr>
<td>Keywords</td>
<td>Bulb, Life, Test Data</td>
</tr>
</tbody>
</table>

This topic describes how to view and edit identifiers for each type of resource or analysis, and how existing identifiers will be converted from Version 8 or 9. To learn how to use identifiers to filter and group data, see Project and Item Filters.

For Resources
To view and edit the identifiers for most types of resources, you can simply open the properties window and select the Identifiers node. They can also be edited via the Batch Properties Editor. Note that:

- For published models, the identifiers are obtained from the analysis (e.g., Weibull++ folio, BlockSim diagram, etc.). To make a change, you must first edit the identifiers for the analysis and then republish the model.

- Identifiers are not applicable for the following resource types: Variables, Maintenance Groups, Mirror Groups, Actions, Controls and Profiles.

For Project Explorer Items
To view and edit the identifiers for folios, diagrams, plots and other analyses in Weibull++, ALTA, RGA, BlockSim, RENO or Lambda Predict, select the item in the current project explorer and choose Project > Current Item > Item Properties.
The identifiers are always displayed on the first tab of the properties window.

When applicable, the fields are also visible on the Identifiers page of the control panel. If a folio has multiple data sheets, you can use this page to define separate identifiers for each sheet. Note that the Folio Identifiers will be used in item filters and in the Synthesis Explorer; while the Data Sheet Identifiers will be used when publishing a model.

You can use an asterisk (*) in any or all of the data sheet fields to apply the same text from the corresponding folio field. As an example, the following picture shows the identifiers for a Weibull++ life data folio that contains multiple data sheets for each design prototype of a new chandelier bulb in development. Although most of the data sheet identifiers will be the same as the folio (indicated with *), the Version and Comments fields have been modified for each data sheet. The data sheet identifiers will be used when you publish a model.

For System Hierarchy Items
To view and edit the identifiers in Lambda Predict, XFMEA, RCM++ and RBI, select an item in the system hierarchy and go to the Properties tab in the Analysis panel.
The fields are grouped together under the Identifiers heading.

- In Lambda Predict, Name will always be displayed. The remaining identifiers may be hidden or displayed via the Application Setup. (See Properties Settings in the Lambda Predict documentation.)

- In XFMEA, RCM++, and RBI, Name, Category, and Keywords will always be displayed. The remaining identifiers may be hidden or renamed based on the configurable settings for the current project. (See Configurable Settings in the XFMEA/RCM++/RBI documentation.)

In XFMEA, RCM++, and RBI, the same set of identifiers will be used for all analyses associated with a given system hierarchy item (e.g., FMEA, control plan, etc.).

For Diagram Blocks

To view and edit identifiers for diagram blocks in BlockSim, open the block properties and select the Identifiers node. The fields are also visible on the Identifiers page of the control panel when the block is selected.

You can use these identifiers in BlockSim’s Find utility and in the Batch Properties Editor.
Conversion from Version 8/9
The following table shows how the "global identifiers" from previous versions will be mapped when you convert existing data in a Version 8/9 database (where “ - “ indicates no change).

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Old Version</th>
<th>New Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category</td>
<td>Bulb A</td>
<td>Bulb A</td>
</tr>
<tr>
<td>Part Number</td>
<td>PN12345</td>
<td>PN12345</td>
</tr>
<tr>
<td>Version</td>
<td>Prototype</td>
<td>Prototype</td>
</tr>
<tr>
<td>Supplier</td>
<td>Acme Chandelier</td>
<td>Chandelier</td>
</tr>
<tr>
<td>Application</td>
<td>Chandelier</td>
<td>Chandelier</td>
</tr>
<tr>
<td>Description</td>
<td>A specific type of light bulb with specific characteristics</td>
<td>A specific type of light bulb with specific characteristics</td>
</tr>
<tr>
<td>Comments</td>
<td>FMEA performed in August 2017, John Engineer moderated</td>
<td>FMEA performed in August 2017, John Engineer moderated</td>
</tr>
<tr>
<td>Keywords</td>
<td>Bulb,Reliability</td>
<td>Bulb,Reliability</td>
</tr>
</tbody>
</table>

Project and Item Filters
In many locations throughout all ReliaSoft desktop applications, you can use flexible filters to limit a list of projects, project items (e.g., folios, diagrams, system hierarchy items, etc.) or resources (e.g., models, URDs, etc.).

The drop-down list contains the filters you have saved in this database, plus any filters that another user has chosen to share with other database users.
Use the drop-down list to apply an existing filter. To stop filtering the list, select Show All (formerly called "Default filter").

Sharing Filters with Other Users
To share a saved filter, open the filter's properties window and select the Show to all repository users check box.

In a secure database, a shared filter can be edited or deleted only by a) the user who created the filter or b) a user with the "Manage other repository settings" permission.

Project Filters
Project filters can be applied to lists that contain project names such as the Project Manager and Synthesis Explorer. The filter can either be a query based on specified criteria, or a selected list of projects.

- **Based on Criteria.** You can match All Criteria (AND query) or Any Criteria (OR query):
 - Owner ([project owner](#))
 - Category ([project category](#))
 - Analysis/Feature (whether the project contains analyses associated with the specified application or feature)
 - Last Updated By
 - Last Updated Date

- **Based on Selected Projects.** Click the Add button to select the projects you want to include, or the Remove button to remove a selected project from view.

Clear the Show locked projects check box if you want to exclude locked projects from the results, even if they meet the criteria.

Projects are always grouped based on whether they are public, private or reference. For additional grouping, select the Group by category and/or Group by owner check boxes. If you select both, the results will be grouped first by project category and then by project owner. For example:
Item Filters

Item filters can be applied to lists that contain project items and resources such as the Current Project Explorer and Resource Manager.

Select whether the item must match All Criteria (AND query) or Any Criteria (OR query):

- Category (item category)
- Created By
- Last Updated By
- Last Updated Date
- Identifiers (Name, Part Number, Version, Application, Supplier, Description, Comments and Keywords)

Synthesis Explorer

The Synthesis Explorer is available in all ReliaSoft desktop applications except MPC. You can use this flexible tool to explore all of the different analyses that are stored in the current database.

To access the utility, choose Home > Synthesis > Synthesis Explorer.

To reduce the amount of time required to populate the grid, first use the project and item filters (discussed below) to limit your search, then click Load Data.
The analyses shown in the explorer may include:

- Project items in Weibull++, ALTA, BlockSim, RENO, RGA and Lambda Predict (e.g., folios, diagrams, plots, Synthesis Workbooks, etc.).
- Analyses that are associated with system hierarchy items in XFMEA, RCM++ or RBI (e.g., FMEAs, control plans, risk based inspection analyses, etc.).
- Project Plans that can be created for any project.

You can filter/sort/group the analyses based on ReliaSoft application, analysis type, analysis creator and many other properties. You can also present the information in a wide variety of dashboard charts.

This topic summarizes the tools you can use to find and organize data in the Synthesis Explorer’s flexible grid. For information about presenting the data graphically, see Synthesis Explorer Dashboards. For a list of the properties that can be used in either the grid or the dashboard, see Synthesis Explorer Properties.

Save and Apply Views

Once you have customized the Synthesis Explorer’s grid to suit a particular purpose (using the built-in find/filter, column configuration and grouping features described below), you can save the preferences as a view that can be used again whenever you need it. A view is saved in the database and available only to the user who created it.

To create a view, first configure the grid to suit your particular needs and then click **Save View**.

To quickly apply these same preferences again at any time, click **Apply View** and select one of the saved views from the list.

Note: The view does not affect filtering that has been applied from the Project Filter, Item Filter or Category Panel.

Project and Item Filters

The Synthesis Explorer can utilize the same project and item filters that are available in many other locations throughout ReliaSoft desktop applications. For example, with the custom filters shown below, the Synthesis Explorer will show only analyses performed by Department A (project filter) that were modified within the last month (item filter).
To remove either filter, select **Show All** from the drop-down list. To remove both filters at the same time, select **Clear Filters**.

After you clear or change these filters, you must click **Load Data** again to update the grid.

Category Panel
The category panel provides a quick way to filter the data based only on item category. For example, you might use the panel to first view the analyses for Category A and then quickly switch to see the analyses for Category B.

To show or hide the panel, click **Show Category Panel**.

When there are many categories, the tools at the top of the panel can help you find and select the one(s) you need.

Built-in Find/Filter, Configuration and Grouping Tools
The Synthesis Explorer offers the same filter, column configuration and grouping tools that are built in to other utilities that use a similar grid (e.g., the Resource Manager). For details about how to use each feature, see:

- **Finding and Filtering Records**
- **Configuring Columns**
- **Grouping Panel**
Synthesis Explorer Dashboards

You can use the flexible Synthesis Dashboard utility for presenting data from the Synthesis Explorer.

As with any other Synthesis dashboard, you can use the Dashboard Viewer to select any of the layouts that have been predefined for this type of data, and you can use the Dashboard Layout Manager to create or edit layouts.

(In a secure database, the Dashboard Layout Manager is available only for users with the "Manage dashboard layouts" permission.)

Values and Arguments

When you’re creating bar charts or pie charts based on Synthesis Explorer data, note that the argument(s) determine the bars or slices shown in the chart and the value will always be the quantity of analyses that fit the specified criteria.

If you use the default Count option when specifying the value, then any of the Synthesis Explorer properties will return the same quantities. You may prefer to choose the one that gives the most appropriate chart label(s). For example, the following pie chart uses the same property (“Application Source”) for both the Value and Argument in order to display the total quantity/percentage of analyses for each ReliaSoft application.

Tip: Use the Design tab of the ribbon to configure the chart labels and other settings to fit your particular preferences. For example, in this chart, the Data Labels are configured to display the Argument, Value and Percent (e.g., BlockSim: 648 (23.44%).
If there is ever a situation in which you want to show only the number of distinct values for a particular property, you can use the **Count Distinct** option instead. For example, the following pie chart uses **User Created By (Count Distinct)** for the value in order to show the number of users who created analyses with each ReliaSoft application.
As you can see from looking at both charts, the "Count" shows that there are 648 total BlockSim analyses; while "Count Distinct" shows that only 18 distinct users created BlockSim analyses.

Filtering the Data

Any filters that are currently applied in the Synthesis Explorer grid will not be reflected in the dashboard charts. However, you can incorporate filters directly into the dashboard layout. For example, if you want to show all of the Weibull++ analyses that were created by a particular user, you can create a filter like the one shown next. (See Using the Filter Editor.)

In addition (or instead), you can configure the layout with one or more *master filters* that allow individual users to change the filters on-the-fly in the Dashboard Viewer. (See Configuring a Master Filter and Using Master Filters.)

Synthesis Explorer Properties

The following properties will be available when you are using either the grid or dashboard in the Synthesis Explorer.

Application

- **Application Source** is the primary ReliaSoft application (or product family) for viewing or editing the analysis. (Note that Project Planners and Simulation Worksheets are listed under Synthesis because they can be created/edited from more than one product family.)
Chapter 25: ReliaSoft CommonTools

- **Application Activated?** indicates whether the primary application is activated on your computer.

Project
- **Project Name** is the project in which the analysis is stored.
- **Project Type** indicates whether it is a public, private or reference project.

Analysis
- **Analysis Name** is the name of the folio, diagram, plot, system hierarchy item, etc.
- **Analysis Type** and **Variant** indicate the type of analysis. This can include project items (e.g., folios, diagrams, plots, etc.) and specific analyses that are associated with a system hierarchy item in XFMEA, RCM++ or RBI (e.g., FMEAs, risk based inspection analyses, etc.). The variant is used to distinguish:
 - Analytical vs. simulation RBDs and fault trees in BlockSim.
 - Discrete vs. continuous Markov diagrams in BlockSim.
 - The specific prediction standard in Lambda Predict (e.g., MIL-217, Telcordia, etc.). If the prediction folio uses more than one standard, this will show as "Multiple." If a standard has not yet been added to the prediction folio, the variant field will be blank.

Categories and Identifiers
Note that these properties are preceded with "SI" in the Dashboard Layout Designer, so that all identifiers can be grouped together in the data source panel.

- **Category** is the category assigned to the analysis.
- **Name, Part Number, Version, Supplier, Application, Description, Comments** and **Keywords** are the standard identifiers that can be defined for the analysis. Note that XFMEA/RCM++/RBI analyses use the identifiers defined for the system hierarchy item they are associated with.

Creation and Last Update
- **User Created** and **Date Created** indicate the database user who originally created the analysis, and the associated date/time.
- **User Updated** and **Date Updated** indicate the database user who last modified the analysis, and the associated date/time.
ReliaSoft Locator Links

ReliaSoft Locator Links provide quick access to specific analyses in a repository (similar to Windows shortcuts). You can save these link files anywhere on your computer or network, e-mail to a colleague, post on the Internet or an intranet, etc.

When you double-click (open) a ReliaSoft Locator Link file (*.rsllx), it will launch the appropriate ReliaSoft application and go directly to a specific project item (e.g., folio, diagram, plot, system hierarchy item, etc.) or FMEA record (e.g., function, failure, etc.), as long as the following conditions are met:

- The database still resides in the same location and you have access to the server.
- You have an active user account in the database.
- The required ReliaSoft application is activated on your computer.

Tip: In the case of a standard database, the locator link stores the pathname/filename that was open when the *.rsllx file was created. If that was a mapped network drive (e.g., P:\ReliaSoft\Repository1.rsr19), the link will only work if all other users have that drive mapped to the same letter. To make sure the link works for all users, you may need to open the database from the UNC pathname (e.g., \SharedDrive\ReliaSoft\Repository1.rsr19) before creating a locator link file.

Starting in Version 2019, ReliaSoft Locator Links created in Version 2019 or later do not include the software version information as part of the link. When you open a link, the software will attempt to connect to the database, regardless of the database’s version. If you attempt to open a standard database that was created in an earlier version, the software will automatically convert it to the latest version. If you attempt to open an enterprise database that was created in an earlier version, the software will display a message; you must then upgrade the enterprise database to the later version.

Creating a Locator Link

In an enterprise database, you can choose to either send the file by e-mail or save it to a specified location. In a standard database, the only option is to save the file because it is likely that the pathname may only work on your own computer (as discussed above).
Chapter 25: ReliaSoft CommonTools

- For an item selected in a current project explorer (Weibull++/ALTA, BlockSim/RENO, RGA or Lambda Predict), choose **Project > Current Item > Save Locator Link**.
- For an item selected in an XFMEA/RCM++/RBI system hierarchy, choose **System Hierarchy > Current Item > Save Locator Link**.
- For an item, structure or zone selected in an MPC hierarchy, choose **Tools > Save Locator Link** on the relevant ribbon tab.

Note: If you get a "Locator Link is not properly formatted" message, the locator link may be corrupted or is using old encryption. Create a new locator link using the methods described above.

Posting Locator Links on a Web Page

Remember that ReliaSoft Locator Links are files that must be opened from a computer where ReliaSoft desktop applications are installed. If you post the *.rsllx as a standard link on an HTML web page, you will need to instruct users to download the file (instead of opening directly from the web browser).

What's Changed? In prior versions, ReliaSoft Locator Links were version-specific and were not compatible with other versions.

Watches and Alerts

Automated alerts can be an effective tool to facilitate communication and track the status of assigned responsibilities.

Alerts can be sent via e-mail, **SMS text message** and/or **ReliaSoft portal messages**, depending on the **Receive automated alerts** preference specified for your **personal user account**.

- Alerts via portal message are always available in any database.
- Alerts via e-mail or SMS are only available if they are enabled for the database, and a valid SMTP server has been defined. (See **Enable Alerts via E-mail or SMS**.)

Alerts can be sent for:

- Any resource that you have personally subscribed to “watch.” (See **Subscribing to a Watch**.)
- Action resources, under any of the following conditions:
 - You have personally subscribed to watch the action.
• You are the action’s creator, person responsible or assigned reviewer/approver and the database has been configured to auto-subscribe a watch for that role. (See Action Alert Preferences.)

• You are assigned via the Action Monitors window. (See Action and Gate Monitors.)

• Project Planner gates, under either of the following conditions:
 • You have personally subscribed to watch the gate.
 • You are assigned via the Gate Monitors window.

• Change logs you have been assigned to approve in XFMEA/RCM++/RBI. (See Electronic Approval Tracking in the XFMEA/RCM++/RBI documentation.)

Enable Alerts via E-mail or SMS
To configure a database to enable alerts via e-mail and/or SMS text message, choose File > Manage Repository > Repository Settings.

In a secure database, this is available only for users with the "Manage other repository settings" permission.

What’s Changed? In prior versions, similar preferences were defined in the E-mail and Other Settings window.

1. Select the Enable Alerts via E-mail or SMS check box.

2. Specify a valid SMTP port and SMTP server. (You may need to consult with the IT professionals who have configured the e-mail server used within your organization.)

3. Enter your e-mail address (or a valid SMS text messaging address if you prefer) in the Recipient address for test message field and then click Send Test Message.
If the test message cannot be sent, an error will be displayed. If that happens, you can update the settings and try again until the message is delivered successfully.

Subscribing to a Watch

Users can personally subscribe to "watch" specific resources, Project Planner gates and MPC tasks that are of particular interest to them. This generates an alert (via e-mail, SMS text message and/or ReliaSoft portal message) each time the record is changed.

Subscribing and Unsubscribing

To personally subscribe/unsubscribe to a watch, open the resource, Project Planner gate or MPC task and select or clear the **Alert me on changes to this record** check box. The alert types shown for this option will depend on your alert preferences, as described in the section below.

Note that the “watch” feature is not applicable for the following types of resources: Variables, Profiles, Maintenance Groups, Mirror Groups, Controls, Maintenance Templates (in BlockSim) or RENO-specific resources (Functions, Static Functions, Simulation Definitions and Tables).

Receiving Alerts

Alerts can be sent via e-mail, **SMS text message** and/or **ReliaSoft portal message**, depending on the **Receive automated alerts** preference specified in your personal **user account**.

- Alerts via portal message are always available in any database.
- Alerts via e-mail or SMS are only available if they are enabled for the database, and a valid SMTP server has been defined. (See **Enable Alerts via E-mail or SMS**.)

No Cascading Alerts

Alerts are generated only when the record you’re watching is edited directly. For example, if you are watching a universal reliability definition (URD):

- An alert will be sent if someone replaces Model A with Model B in the URD window.
- An alert will not be sent if there is a change to an existing model, crew, etc. that is already assigned to the URD, unless you have also subscribed to watch the dependent resource that was changed.
Special Considerations for Actions and Gates
For action resources only, there are some additional features designed to maintain continuity with prior versions and enhance the actions management functionality. Specifically:

- Action changes that are applied via the FMEA worksheet in XFMEA/RCM++/RBI will not initiate an alert. The change must be saved via the action properties window.

- The database can be configured to auto-subscribe watches for users with the following roles: Action Creator, Person Responsible or Reviewer (aka "approver"). Each user can choose to personally unsubscribe later if desired. (See Action Alert Preferences.)

- The Action Monitors window allows you to specify individual users and/or groups of users who will always receive alerts for the action, regardless of whether they have personally subscribed to a watch. For example, this allows you to set up an alert for a user who doesn’t have access to view or modify the project (and therefore can’t personally subscribe to a watch).

A similar feature, the Gate Monitors window, is available for Project Planner gates. (See Action and Gate Monitors.)

Action Alert Preferences
To configure the action alert preferences for the database, choose File > Manage Repository > Repository Settings.

In a secure database, this is available only for users with the "Manage other repository settings" permission.

What’s Changed? In prior versions, similar preferences were defined in the E-mail and Other Settings window.
• **Introduction to each action alert sent via e-mail.** This field allows you to specify the default text (up to 1,000 characters) that will be used at the beginning of each action alert e-mail sent from this database.

• **Automatically set 'watch' for.** Users can personally subscribe to "watch" specific resources and Project Planner gates that are of particular interest to them. For action resources only, the database can also be configured to auto-subscribe watches for users that have particular roles in a given action, as shown in the picture above. Note that each user can choose to personally unsubscribe later if desired (by opening the action record and clearing the check box under the Watch heading).

Action and Gate Monitors

The Action Monitors window (for action resources) and the Gate Monitors heading (for Project Planner gates) allow you to specify individual users and/or groups of users who will always receive alerts for the record, regardless of whether they have personally subscribed to a "watch."

For example, this allows you to set up an alert for a user who doesn't have access to view or modify the project (and therefore can’t personally subscribe to a watch).

Action Monitors

For actions, click the **Action Monitors** icon in the action’s ribbon.

This replaces the "E-mail Notifications" feature from prior versions, and you can choose any of the user groups or individual user accounts defined in the current database.

The action will also appear under the **I am monitoring** heading in My Portal, Actions Explorer and SEP web portal (along with the actions that the user has personally subscribed to watch).

Gate Monitors

For Project Planner gates, the assigned users are listed under the **Gate Monitors** heading. Click the **Edit** icon to select the users you wish to assign.
This replaces the "Team" feature from XFMEA/RCM++/RBI Version 9, and you can choose to assign any of the individual user accounts in the database.

What is Your SMS Address?

If you choose to receive alerts via SMS text messaging, the address will usually be your cell phone number @ the provider’s e-mail domain. As a courtesy, the table below provides a list of domains for popular providers in the United States (as of March 2015). Of course, you may need to check with your provider to obtain the most up-to-date information.

For example, if you use T-Mobile in the US and your cell number is 555-123-4567, your SMS address will be 5551234567@tmomail.net.

<table>
<thead>
<tr>
<th>Provider</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alltel</td>
<td>@message.alltel.com</td>
</tr>
<tr>
<td>Amp'd</td>
<td>@vtext.com</td>
</tr>
<tr>
<td>Boost</td>
<td>@myboostmobile.com</td>
</tr>
<tr>
<td>AT&T</td>
<td>@txt.att.net</td>
</tr>
<tr>
<td>Metrocall</td>
<td>@page.metrocall.com</td>
</tr>
<tr>
<td>Nextel</td>
<td>@messaging.nextel.com</td>
</tr>
<tr>
<td>Sprint</td>
<td>@messaging.sprintpcs.com</td>
</tr>
<tr>
<td>T-Mobile</td>
<td>@tmomail.net</td>
</tr>
<tr>
<td>US Cellular</td>
<td>@mms.uscc.net</td>
</tr>
<tr>
<td>Verizon</td>
<td>@vtext.com</td>
</tr>
<tr>
<td>Virgin (USA)</td>
<td>@vmobl.com</td>
</tr>
<tr>
<td>Windstream</td>
<td>@windstream.net</td>
</tr>
</tbody>
</table>
History Logs

By default, all projects and project items automatically show information about when an item was created and last updated, and by whom. For example, system hierarchy items in XFMEA/RCM++/RBI show this information under the History heading on the Properties tab, while folios and diagrams in Weibull++ and BlockSim show the information in the Item Properties window (Project > Current Item > Item Properties).

In addition to the basic information provided, you have the option to activate a full history log that shows more detailed information such as the type of change that was made (e.g., add, edit or delete), the record that was changed and the specific property, and the value before and after the change.

History logs will increase the size of a database and will cause a slight degradation in performance; hence, they must be activated on a per project basis. If desired, you can configure the database to automatically activate history logs for each new project by choosing File > Manage Repository > Repository Settings, and then selecting the option under the Other Settings tab in the window. (In secure databases, this is available only if the user has the "Manage other repository settings" permission.)

Once a history log is activated, the project history log shows the changes for all items in the project, and individual record history logs show the changes for selected items only.

Tip: If you want to monitor and control revisions made to FMEAs, DVP&Rs, control plans, P-Diagrams or test plans in XFMEA/RCM++/RBI, the use of change logs may be more appropriate. See Change Logs in the XFMEA/RCM++/RBI documentation.

Activating a Project History Log

To activate the history log for a project, choose Project > Management > History Log, or right click the project in the project list and choose the command on the shortcut menu. (In secure databases, this is available only if the user is the project owner, or has the applicable "manage all projects" permissions.)

In the Project History Log window that appears, click Activate.

Once the log has been activated, the database will start keeping records of all changes that are performed throughout the entire project for any of the ReliaSoft applications. You can filter the records by the last update date, application, user or type of change. For example, you might choose to display a list of all changes that were made by Joe User in the last week, or a list of all changes that were made by any user in Weibull++ today, and so on.
You can deactivate the history log at any time from this window. When you do this, the recorded data is retained unless you select to clear it in the confirmation message that appears.

Creating and Managing Archives
You can limit the amount of information that is visible in the log by archiving older entries that are no longer of interest. Entries that have been archived can still be viewed in the Project History Log window if you specifically select to view them, but they will no longer be visible in the Record History Log windows.

Archives are named based on the date they were created. For example, if you archive entries through One week ago, all entries in the history log that are dated as of one week ago or earlier will be stored in an archive that is named after the current date.

To view the contents of an archive, select the archive of interest from the Archive drop-down list in the Filter Based On area. To delete an archive, click the Delete icon that appears in the field.

Note: When a restore point is created for a project or when a project is checked out, all current entries in the history log are automatically archived.

Viewing Record History Logs
In addition to the project history log, you can view a log that shows only the changes made to a selected item (archived entries will not be shown). The History Log icon 📋 will be displayed whenever the log is available:

- For folios, diagrams, multiplots (such as overlay plots), reports and worksheets, right-click the item in the current project explorer and choose Item Properties, then in the window that appears, click the History Log icon in the Identifiers tab.
- For system hierarchy items in XFMEA/RCM++/RBI and MPC, select the item then click the History Log icon in the Properties panel.
- For FMEAs, DVP&Rs and other analyses in XFMEA/RCM++/RBI, right-click the analysis’s tab in the Analysis panel and choose the History Log command on the shortcut menu.
• For resources (e.g., models, actions, etc.), the **History Log** icon will be available when you edit the item or view its properties.

Import, Export and Data Conversion

ReliaSoft applications provide a variety of different tools for import, export and data conversion from external files and between Synthesis repositories. The options will vary depending on which application you are currently using.

In desktop applications, you can:

- Import data from an existing database when you are creating a new one.
- Convert and import data from prior version files.
- Import/export selected projects.

When applicable, you can also:

- Import/export selected project items or resources.
- Import from an Excel spreadsheet or delimited text file into a data folio.
- Use XML files to import/export system configuration information in BlockSim or Lambda Predict.

These features can be accessed either from the Import/Export Wizard (**Project > Management > Import/Export**) or from the **Backstage View**.

In addition to the common functionality described in this chapter, some ReliaSoft applications provide other data transfer and import/export utilities that fit specific needs (e.g., the Import Bill of Materials feature in Lambda Predict, the Excel templates in XFMEA/RCM++/RBI, the ability to share analysis details between specific ReliaSoft applications.). For more information about these specialized tools, please consult the documentation for the particular application(s) involved.

Importing from an Existing Repository

When you are creating a new Synthesis repository, you have the option to import repository settings (e.g., user accounts, security groups, project categories, etc.) and/or entire analysis projects from another database.

If the **Import from existing repository** check box is selected when you start to create a new database, the Import Data from Existing Repository window will be displayed.
First, use the drop-down list or browse icon 📁 to select the database that you want to import from. This can be a standard database (*.rsr19) or an enterprise database connection file (*.rserp).

Then, use the check boxes to select the settings and/or projects you wish to import.

Finally, click OK to create the new database with the selected data imported.

Note: If you are creating a new enterprise database on SQL Server, the Create SQL Server login check box will be displayed at the bottom of the window. (See SQL Server Logins or Using Windows Impersonation.)

Importing from Prior Version Files

There are two ways to convert and import data from project files and standard database files that were created in previous versions of the software.

- Importing to a new standard database (File > Open Repository)
- Importing to an existing database and project (Import > Other file)

The options depend on which ReliaSoft application you're currently using:

- For Weibull++, ALTA, RGA and BlockSim/RENO, you can use either method.
- For Lambda Predict, XFMEA/RCM++ and MPC, you must use the File > Open Repository method to import the data into a new project in a new standard database.

Finally, for an enterprise database created in XFMEA/RCM++ 5, there is a dedicated utility that you can access from the Backstage View. (See Converting XFMEA/RCM++ 5 Databases.)

Importing to a New Standard Database (File > Open Repository)

For all ReliaSoft desktop applications, you can use the File > Open Repository method to import data from a project file or standard database that was created in a previous version of the software. This imports the data to a new project in a new standard database.

2. Browse for the file and click Open.
3. The conversion process will begin immediately for most applications. In BlockSim and MPC only, you will be prompted to specify some preferences and then click OK to proceed.

- See Converting from BlockSim 6 or 7 Files.
• See Converting MPC 3 Databases.

Note that although the conversion of XFMEA/RCM++ 5 databases does not require any user input, the process does apply some assumptions to address changes in the functionality and data structure between versions. (See Converting XFMEA/RCM++ 5 Databases.)

When the process completes, the original file will remain unchanged and the new standard database will be created in the same folder.

Tip: Once the new database has been created, you can use the Import/Export Projects feature to copy the data into an existing database, if desired.

Importing to an Existing Database and Project (Import > Other file)

For the applications and file types shown in the following table, you can use the Import > Other file method to import data from a project file that was created in a previous version of the software. This imports the data to a selected project in an existing standard database or enterprise database.

<table>
<thead>
<tr>
<th>Weibull++/ALTA</th>
<th>RGA</th>
<th>BlockSim/RENO</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReliaSoft Office 7 projects (*.rso7)</td>
<td>RGA 7 projects (*.rga7)</td>
<td>BlockSim 7 projects (*.rbp)</td>
</tr>
<tr>
<td>Weibull++ 7 projects (*.rwp)</td>
<td>RGA 6 projects (*.rga)</td>
<td>BlockSim 6 projects (*.rb6)</td>
</tr>
<tr>
<td>ALTA 7 projects (*.ralp)</td>
<td></td>
<td>RENO 1 projects (*.rnp)</td>
</tr>
<tr>
<td>Weibull++ 6 projects (*.rw6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALTA 6 projects (*.ra6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE++ 1 projects (*.rdoe)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Do the following:

1. Create a new project or open an existing project that you want to import the data into.
2. Choose **Project > Management > Import/Export > Import**.
3. In the Import wizard, choose **Other file** and click **OK**.
4. The conversion process will begin immediately for most applications. In BlockSim only, you will be prompted to specify some preferences and then click OK to proceed. (See Converting from BlockSim 6 or 7 Files.)

Note that although the conversion of XFMEA/RCM++ 5 databases does not require any user input, the process does apply some assumptions to address changes in the functionality and data structure between versions. (See Converting XFMEA/RCM++ 5 Databases.)

When the process completes, the original file will remain unchanged and the converted data will be copied into the selected project.

Converting from BlockSim 6 or 7 Files

When you import from a BlockSim 6 (*.rb6) or BlockSim 7 (*.rbp) file, the Conversion Settings window allows you to specify:

- Whether you want the diagrams to be converted to analytical diagrams, simulation diagrams, or both.
- Whether the application will attempt to merge identical records when certain block properties are converted to resources. For example, if the old diagram has two blocks with the same failure distribution, this can be imported as two separate but identical failure models, or as a single failure model that's linked from both blocks.

Tip: The default preferences for merging identical resources upon conversion are set on the Conversion page of BlockSim's Application Setup (File > Application Setup). Note that any changes you make in the Conversion Settings window will update your preferences in the Application Setup. In other words, the same options will be selected by default the next time you attempt to convert a BlockSim 6 or 7 file on this computer.

Conversion Constraints and Differences

Numerous improvements have been made to the modeling capabilities and underlying analysis and simulation algorithms used in BlockSim. As a result, analysis or simulation of diagrams imported from previous versions of BlockSim may yield results that differ from the results originally obtained. In particular, results may differ in the following cases and/or for the following reasons:

- **Simulation diagrams:**
 - When multiple blocks are used in conjunction with subdiagrams, the underlying order of block expansion differs between versions, so results may differ.
Starting in Version 8, containers are treated as subdiagrams. The underlying order of block expansion differs between versions, so results may differ. However, some special cases will produce identical results. These include cases where:

- The container is the only block in the diagram.
- The container is at the end of the list in the original diagram (i.e., it was created last and has the highest block ID, which is automatically assigned by the software upon block creation).

The load on contained load sharing blocks is calculated differently. Version 7 required a life-stress relationship for such configurations and based the re-calculation of load after block failure on that relationship; subsequent versions calculates load using the weight proportionality factor as a multiplier.

Normal/lognormal distributions have increased precision starting in Version 8.

Maintenance tasks that are performed at specified intervals (based on item age or calendar time) for multiple blocks are performed in a different order, producing results that are not identical, although the difference will not be statistically significant.

Indirect cost is calculated differently. In Version 7, the following was calculated at the end of the simulation:

\[
\text{Indirect cost} = \text{Average stock level} \times \text{Holding cost per item} \times \text{Simulation end time}
\]

In subsequent versions, the indirect cost is calculated for each simulation and then averaged at the end to yield the indirect cost that is shown. This is because holding cost per item may be a distribution.

The order in which random numbers are assigned in general is by block ID. This means that if diagrams have the same blocks with the same IDs in both the previous version and the current version, the results will be identical. Standby containers represent an exception to this. In Version 7, the order of blocks is overwritten by the standby priority. Therefore, results may not be identical with standby containers if the block IDs do not match the block standby priorities. The difference should not be statistically significant.

For mirrored blocks, in Version 7, the block that fails is the source and all the other mirrors are assigned these failures. In subsequent versions, the failures are assigned to the mirrored block with the lowest block ID. If the failure source is not the block with the lowest ID, then the results will be different between versions.
• Mirrored blocks inside subdiagrams are handled differently. In Version 7, they were treated as different groups of mirrors; subsequent versions treat them as the same group. This may produce results that are statistically different.

• Throughput is not available in fault trees starting in Version 8.

• The throughput property **Send units to failed blocks** works differently for subdiagrams in versions after Version 7, in that it applies to the whole diagram. That is, if the current block is set to not send units to failed blocks and the next block is a subdiagram that is not operating, then the throughput will be re-routed if possible or the current block will accumulate backlog.

• Phases have different rules on how interrupted events are handled and may give different results when re-simulating.

• Starting in Version 8, containers do not exist in maintenance phases. Thus, the availability results for containers in phase simulation may be different than in previous versions.

• **Analytical diagrams:**

 • The load on contained load sharing blocks is calculated differently. Version 7 required a life-stress relationship for such configurations and based the recalculation of load after block failure on that relationship; subsequent versions calculate load using the weight proportionality factor as a multiplier.

 • Mirrored blocks inside subdiagrams are handled differently. In Version 7, they were treated as different groups of mirrors; subsequent versions treat them as the same group. This may produce results that are statistically different.

• **Other issues of interest when opening BlockSim 7 files:**

 • Nodes do not have failure/maintenance properties starting in Version 8. Therefore, if a node has failure properties in BlockSim 7, it will be imported in the current version as two blocks: a node with the \(k\text{-out-of-}n \) and the throughput properties (if applicable) and a block with the failure properties positioned immediately after the node. If the node does not have failure properties, a second block will not be imported.

 • The load on contained load sharing blocks is calculated differently. Version 7 required a life-stress relationship for such configurations and based the recalculation of load after block failure on that relationship; subsequent versions calculate load using the weight proportionality factor as a multiplier. Because of this, if you convert a diagram that uses load sharing containers, you will need to manually configure the contained load sharing blocks after conversion.
• Simulation FRED reports will be imported, but cannot be restarted or have levels appended/removed until the diagram is resimulated.

In addition, certain rules apply when importing maintenance properties from BlockSim 7:

• Preventive maintenance:
 • For each preventive maintenance setting, a new task will be created. For example, if the preventive maintenance policy is set to be performed upon system down and upon system age, two tasks will be created.
 • For each task created, the duration, crews, restoration factor, etc. will be identical.

• Inspections:
 • For each inspection setting, a new task will be created. For example, if the inspection policy is set to be performed upon system down and upon system age, two tasks will be created.
 • For each task created, the duration, crews, restoration factor, etc. will be identical. Note that inspections do not use pools.
 • If a detection threshold is defined in Version 7, an on condition task will be created instead of an inspection task in subsequent versions. A threshold is defined in Version 7 if a Failure Detection Threshold greater than 0 and less than 1 is specified or if a P-F Interval greater than 0 is specified.
 • The inspection properties from Version 7 will be transferred to the inspection properties of the on condition task in subsequent versions.
 • The threshold (i.e., detection) information from Version 7 will be transferred to the failure detection properties of the on condition task in subsequent versions.
 • The preventive maintenance properties from Version 7 will be transferred to the on condition task (upon detection) properties of the on condition task in subsequent versions.
 • If a detection threshold is defined in Version 7 but no preventive maintenance properties are defined, then only an inspection task will be created (i.e., the threshold is ignored).
Chapter 25: ReliaSoft CommonTools

- PM/Inspection based on group:
 - A task will be added and assigned to the maintenance group that the block belongs to. For example, if Block 1 belongs to Item Group 1 and has an inspection policy based on group maintenance in Version 7, then in subsequent versions an inspection task will be created and will be set to be performed upon group maintenance. Maintenance Group 1 will be checked in the list of groups that will trigger a maintenance, and Block 1 will be assigned to Maintenance Group 1.
 - If the block does not belong to a group, a task will not be added.
- The corrective maintenance properties will be imported as corrective tasks.
- A preventive maintenance action or an inspection based on maintenance phase and associated with a block in a standard phase will not be imported.

Converting XFMEA/RCM++ 5 Databases
This topic describes how to convert/import data from an XFMEA/RCM++ 5 database into a Synthesis repository.

For information about converting and importing data from an XFMEA/RCM++ 5 library, please consult the "Configurable Settings" chapter in the XFMEA/RCM++/RBI documentation.

Standard Databases (*.rx5)
For XFMEA/RCM++ 5 standard databases, you must convert the entire *.rx5 file to a new standard repository. (Later, you can use the Import/Export Projects feature to copy specific projects into an existing database, if desired.)

Do the following:

1. In the current version of XFMEA, RCM++ or RBI, choose File > Open Repository.
2. Select RCM++ 5/XFMEA 5 (*.rx5) from the Files of type drop-down list.
3. Select the file you wish to convert and click Open.

The application will create a new standard database file in the same directory with the extension *.rsr19; the existing *.rx5 file will remain unchanged.

Enterprise Databases
For XFMEA/RCM++ 5 enterprise databases, you can select which analysis projects and settings you wish to import into a enterprise repository that has already been created. You must be a member of the Admin group in the Synthesis enterprise repository to perform this task.
Do the following:

1. Connect with the enterprise database you want to import into.
2. Choose **File > Manage Repository > Import from Version 5**.
3. In the area at the top of the Import from Version 5 Enterprise Database window, enter the connection information for the Version 5 enterprise database and click **Connect**.
4. The table shows all of the data and settings in the original database. Use the check boxes to select which data you wish to import and then click **OK** to start the transfer.

Note: If you are importing into a SQL Server database, the **Create SQL Server login** check box will be displayed at the bottom of the window. This is applicable only if you are importing user accounts. (See **SQL Server Logins or Using Windows Impersonation**.)

Conversion Assumptions and Tips
When you convert data from an XFMEA/RCM++ 5 database, please consider the following assumptions and tips:

- **Conversion to Resources**

 Certain types of information in the Version 5 projects will be converted to **resources** in the current version. This includes reliability information (which will be converted to models), controls and actions. In these cases, records that have identical properties will be merged into a single resource. For example, if there were two identical actions in the original project, a single action would be created as a resource in the project and used in both locations.

- **Conversion to Security Groups**

 If you are working with secure databases, the access levels and access groups in Version 5 will be converted to **security groups** in the current version. Specifically:

 - Repository-level security: User permissions assigned by access level in Version 5 will be assigned by the corresponding security group in the current version. For example, if a user had the Admin access level in the original database, then that user will be assigned to the Admin security group in the current version. If there is no corresponding security group in the current version, the user will be imported with no security groups assigned, and a user with "Admin" access level permissions will have to manually assign security groups to the imported user.
• Project-level security: For each access group in the Version 5 database, a security group will be created in the Synthesis repository. Because the Version 5 access groups could have different access levels for different users in the same group, it is not possible to automatically determine which permissions should be assigned for the new security group in the current version. Therefore, these groups will initially be assigned the default permissions; you can edit the permissions via the Security Groups tab of the Users and Security window. Projects that had access limited by access group in Version 5 will continue to have their security set by the appropriate security group(s) at the project level in the current version.

• Configurable Settings for Converted Projects

When you convert an existing project from Version 5, the application will add new configurable settings for new features that were added in the current version. For example, the configurable PFD Worksheet settings will be added to the interface style, the quantitative values will be added to the occurrence rating scale, etc.

It is important to note that these default settings may need to be modified after the conversion. For details, please consult the "Configurable Settings" section in the XFMEA/RCM++/RBI documentation.

Converting MPC 3 Databases

If you have an existing systems and powerplant analysis that was created in MPC 3, it is easy to convert the *.rsm file into a new Synthesis repository.

Choose File > Open Repository, select MPC 3 (*.rsm) from the Files of type drop-down list, and then browse for the desired file.

When prompted to enter a username and password, enter the administrative login from the old *.rsm file.

Note: By default, a converted Version 3 database is a secure database that transfers any user accounts that were defined in the old database. After the new database has been created, the administrator should review the automatically created user accounts and update as appropriate. See Security Options for more information about database-level security.

The final step is to use the Tasks Conversion window to review the task records that will be imported and make any updates that may be needed (see details below). Once you have completed the review, click OK to start the import.

When the process completes, there will be a new standard database file in the same folder and with the same name as the original *.rsm file. The new file will have the extension *.rsr19 and the original *.rsm file will remain unchanged.
Chapter 25: ReliaSoft CommonTools

Tasks Conversion Window
The Tasks Conversion window displays a list of all of the tasks defined in the original database and allows you to review how the records will be converted upon import. For any properties that are displayed with blue text, you have the option to change the task record data before it is imported.

Some task properties are handled a bit differently starting in Version 9 than they were in Version 3. Specifically:

- Some of the Task Types that were combined in Version 3 are now categorized separately (e.g., Operational Check (OPC) and Visual Check (VCK) are now separate task types).

- In Version 3, the task Interval was always stored as a text field. Now, you can choose whether each task's interval will be stored as a text field or if it will instead be recorded as a number with an associated unit (e.g., 2000 flight hours can now be stored as value=2000 and unit=FHr). Numbers may be easier to sort and will also make it possible to perform simulation-based reliability calculations if you choose to import the analysis project to RCM++ or RBI.

- The Zonal field from Version 3 is called Zonal Candidate in the current version. This is now a yes/no field that can be set to Yes only if the failure effect categorization (FEC) is set to 5 or 8 (i.e., a safety issue) and the task type is "General Visual Inspection (GVI)." Also in the current version, the Zone field will be enabled only if Zonal Candidate is set to Yes.

The following subsections describe the default conversion logic for Task Type, Interval and Zone.

Task Type
For the Discard and Restoration task types, there is no difference between Version 3 and subsequent versions. The text in the Task Type (New Value) column will be displayed in italics to indicate that this property cannot be changed via the Tasks Conversion window.

<table>
<thead>
<tr>
<th>Task Type (Old Value)</th>
<th>Task Type (New Value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discard (DS)</td>
<td>Discard (DIS)</td>
</tr>
<tr>
<td>Restoration (RS)</td>
<td>Restoration (RST)</td>
</tr>
</tbody>
</table>

For the remaining task types, the software will use the logic specified below to suggest a task type, but the property will be displayed in blue text to indicate that it can be edited. If you disagree with the default selection, you can choose one of the other eligible task types from the drop-down list, as shown in the following example.
When the task type was set to **Inspection/Functional Check (IN)** in Version 3, the following logic will be applied in the specified order. For example, if the task description contains both the word "Visual" and the word "Function," the General Visual Inspection task type will be applied by default because the word "Visual" will be matched first.

<table>
<thead>
<tr>
<th>If the task description contains:</th>
<th>The default option is to import the task as:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual</td>
<td>General Visual Inspection</td>
</tr>
<tr>
<td>Special Detail</td>
<td>Special Detailed Inspection</td>
</tr>
<tr>
<td>Health Monitor</td>
<td>Scheduled Structural Health Monitoring</td>
</tr>
<tr>
<td>Function</td>
<td>Functional Check</td>
</tr>
<tr>
<td>none of the words/phrases listed above</td>
<td>Detailed Inspection (DET)</td>
</tr>
</tbody>
</table>

When the task type was set to **Lubrication/Servicing (LU)** in Version 3, the default option is to import the task as Servicing (SVC) if the task description contains "Servic" and as Lubrication (LUB) if it does not.

When the task type was set to **Operational/Visual Check (OP)** in Version 3, the default option is to import the task as Visual Check (VCK) if the description contains "Visual" and as Operational Check (OPC) if it does not.

Tip: The task types in Version 9 and later of MPC are determined by the requirements of the MSG-3 guidelines and cannot be changed. However, the abbreviations can be configured to fit your particular preferences. If you want to change the default task type abbreviations (e.g., if you don't want to use DIS for Discard, RST for Restoration, etc.), click the **Task Type Abbreviations** button. The changes that you make in the Define Task Type Abbreviations window will automatically apply to all analyses in the current database. This window is also accessible from File > Manage Repository > Task Types.
Interval Type and Interval

Two options are displayed at the top of the Tasks Conversion window to determine how the task intervals will be imported:

- If you choose **Transfer all intervals as text**, the interval type for all imported task records will be set to **Based on Events (Text)** and the interval will be stored as a text field (just like in MPC 3). The Interval (New Value) column will be displayed in blue text to indicate that you can change the text if desired before the import.

- If you choose **Transfer intervals as numeric if possible**, the application will check to see if the original task interval begins with a number and is followed by a space and at least one text character. If it does (e.g., "2000 flt/hr"), the default option is to import it as a number with an associated unit. If not (e.g., "Per Mfg Life Limit"), the default is to import as text. Either way, you have the option to change both the interval type and new value before the import. For example:

```
<table>
<thead>
<tr>
<th>Interval Type</th>
<th>Interval (Old Value)</th>
<th>Interval (New Value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on Events (Text)</td>
<td>2000 flt/hr</td>
<td>2000 flt/hr</td>
</tr>
</tbody>
</table>
```

Tip: If you want to change the units displayed in the drop-down list, click the **Units** button. The changes that you make in the **Unit Settings window** will apply immediately to the tasks that you are currently importing, and also to all other analyses you may later add to this database. This window is also accessible from **File > Manage Repository > Unit Settings**.
The Tasks Conversion window uses a variety of techniques to try to match the text field from Version 3 with one of the specified units in subsequent versions. There will be a match if the name or abbreviation of a current version unit either starts with or contains the text in the Version 3 field. For some predefined units, the software also recognizes other commonly used abbreviations for the unit (e.g., the software will recognize any of the following abbreviations as flight hours: Flt/Hr, Flight H, Flt H or Flt/H).

If your data set contains a task interval that is not recognized, you can do any of the following:

- Edit the text in the Interval (New Value) column so it will match either the name or the abbreviation of a predefined unit. For example, if the Version 3 task record contains a misspelling for "2000 flight hours," you can click inside the cell and remove the extra i.

- Click the Units button and define a new unit for the database with a name or abbreviation that matches the data you want to import. For example, if the Version 3 task record has an interval of "5 Weeks," you can open the "Unit Settings" window and create a new unit with the name "Weeks."

- Click Cancel to close the Tasks Conversion window then edit the original tasks in MPC 3 before starting the import again.

Zonal Candidate and Zone

If all of the following conditions are met, the Zonal Candidate (New Value) column will be set to Yes by default and any information from the Zone field will be transferred during the import:

- The failure effect categorization (FEC) is set to 5 or 8 (i.e., it is a safety issue).
- The Task Type is set to General Visual Inspection (GVI).
- The Zonal property in the original MPC 3 analysis contains the word "Transfer."

If you don't want the task to be considered for zonal analysis even though it meets the requirements, you can click inside the Zonal Candidate (New Value) column and choose No from the drop-down list. If this column displays No in italics, this indicates that at least one of these conditions is not met and the property cannot be changed.
Importing/Exporting Projects
All ReliaSoft desktop applications make it easy to import or export selected projects from one database to another.

Note that when importing/exporting a project between databases, any resources and FMEAs used by the project will be automatically imported/exported along with the project as local resources, even if they were originally reference resources or global resources. If you do not want the reference resources to be converted to local resources, you must import the both the project and the reference project at the same time. (See Local, Global and Reference Resources.)

To import a project, first choose Project > Management > Import/Export.

In MPC, the Import/Export window opens directly. In all other applications, a wizard displays the options that are relevant for the current application. Select Projects and click OK.

Once the Import Projects or Export Projects window is open, do the following:

1. Use the drop-down list or browse icon to select the database that you want to import from or export to.
 - This can be any existing standard database (*.rsr19) or enterprise database connection file (*.rserp).
 - If you are exporting, you can also use the add icon to create a new standard database to export into.

2. The tree displays the projects that are available to be imported or exported. If desired, you can use the Filter and Find tools to limit the list of projects displayed. (See Project Manager.)

3. Use the check boxes to select which project(s) you want to import/export then click OK to copy the data.
The following considerations apply:

- The names of projects must be unique within each Synthesis repository. If you attempt to import/export a project with a name that already exists in the destination database, the application will automatically increment the name. For example, if "Project1" already exists, the new project might be renamed to "Project1_1."

- If the project has a category, the application will first attempt to match it to an existing category in the destination database. If a matching category does not already exist, and you have the permission to create project categories in the destination database, it will be created automatically.

- If you select a project of a type that you don’t have permission to create in the destination database (private, public or reference), it will be converted to a type that you do have permission to create. For example, if you select to import a reference project but you don’t have the "Create and own reference projects" permission in the destination database, the project will be imported as a public or private project, and any links from other projects will be broken.

Importing/Exporting Project Items or Resources

When applicable, ReliaSoft applications make it easy to import/export selected project items (e.g., folios, diagrams, plot sheets, Synthesis Workbooks, etc.) or resources (e.g., models, maintenance tasks, etc.) between existing projects. The projects can be in the same database or in different databases.

First, open the project you want to import to or export from. Then open the import/export window, there are two ways:

- If you have selected the Allow multiple projects option in the Synthesis Settings page of the Application Setup, you can open both projects simultaneously and then drag/drop items from one project to another.

 OR

- Choose Project > Management > Import/Export.

 ![Arrow Right] or ![Arrow Left]

 In the wizard, choose Items (not available for XFMEA/RCM++/RBI and MPC) or Resources (not available for MPC) and click OK.
Once the Import window or Export window is open, do the following:

1. Use the drop-down list or browse icon to select the database you want to import from or export to.
 - This can be any existing standard database (*.rsr19) or enterprise database connection file (*.rserp).
 - If you are exporting, you can create a new standard database and project by clicking the icon.

2. Use the tree in the **Source Project** or **Destination Project** area to select the project you want to import from or export to. If desired, you can use the **Filter** and **Find** tools to limit the list of projects displayed. (See **Project Manager**.)

3. Use the check boxes in the **Items to Import** or **Items to Export** area to select which project items or resources you want to import/export.
 - For project items, this area will display the same folders that appear in the current project explorer. A +/- icon next to the folder indicates that it contains at least one project item that can be imported or exported.
 - For resources, this area will display a folder for each type of resource that exists in the selected project.

4. Click **Import** or **Export** to copy the data.

Note: The names of project items and resources must be unique within each project. If you attempt to import/export something with a name that already exists in the destination project, the application will automatically increment the name. For example, if "Folio1" already exists, the new folio might be renamed to "Folio1_1," "Folio1_2," etc.

Keeping Associated Items/Resources Together

The application will automatically copy any item/resource that is linked to the imported or exported item, even if you did not specifically select to import/export them. Some examples:

- A **multiplot**, such as an overlay plot, side-by-side plot, or 3D plot, will automatically import/export a copy of the folios or diagrams that were used to generate the plot.
Chapter 25: ReliaSoft CommonTools

- A **BlockSim diagram** will automatically import/export a copy of any utilized subdiagrams and resources.

- A **RENO flowchart** will automatically import/export a copy of any utilized subcharts, resources and Synthesis Workbooks.

- A **Synthesis Workbook** or special analysis folio/tool (e.g., allocation analysis, stress-strength analysis, etc.) will automatically import/export a copy of its data sources.

- A **URD** will automatically import/export a copy of the models, maintenance tasks, crews, etc. that were used to build the URD. The same applies to any resource that is built upon another resource.

Note that when importing/exporting project items between databases, the resources are imported/exported as local resources in the destination database, even if they were originally reference resources or global resources. For more information on how importing/exporting affects a resource, see [Local, Global and Reference Resources](#).

Tip: If you do not want a RENO flowchart to import/export an associated resource or workbook, you can enclose the resource/workbook name in single quotes to reference it by name only. For example, if you export a diagram that contains a block using the expression `'Model1'(1000)`, Model1 will not be transferred along with that diagram. If the destination project already contains a model called Model1, that model will be used in simulating the transferred diagram.

Importing from Excel or Delimited Text Files into a Folio

In Weibull++/ALTA and RGA, it is easy to import data from any of the following file types into a folio.

- Excel files (*.xls, *.xlsx)
- Tab, comma, space and semicolon delimited files (*.txt, *.csv, *.prn, *.smc)

Tip: Other ReliaSoft applications use different tools for importing/exporting via Excel (i.e., for importing Bill of Materials data in Lambda Predict and failure mode data in XFMEA/RCM++/RBI and MPC). For more information about those features, please consult the documentation for each particular application.

First, open the project that you want to import into and choose **Project > Management > Import/Export**.
In the wizard, choose **Other file** and click **OK**.

Browse for the file you wish to import from and click **Open**. Note that:

- In DOE design folios, the data will be copied into a new free form folio, where you can then designate columns for factors and responses and analyze the data. If you are importing from an Excel file that has multiple worksheets, the sheet that was active the last time the file was opened will be used.

- In Weibull++/ALTA and RGA, you will need to specify which data will be imported and how it will be mapped to the columns in the particular type of data folio. The rest of this topic describes how to map the data for import into a Weibull++, ALTA or RGA data folio.

Selecting Which Data Sheets Will Be Imported

The left side of the utility displays the data from the Excel or delimited text file that is currently selected. If you wish to open a different source file, click **Open**.

If you are importing from an Excel file that has multiple worksheets, use the tabs at the bottom of the window to view and set the import preferences for each sheet.

Use the options at the top of the control panel for each sheet to specify whether the data will be imported.

- **Do not import sheet**: The control panel will not contain any other options and the data will not be imported.

- **Import sheet**: The control panel displays the options you need to either manually map the columns or use a template to automatically apply the same mapping that was used for another file.

Using the Control Panel to Map the Columns That Will Be Imported

If you are not using a template, or if you need to modify the settings after an import template has been applied, do the following:

1. Use the **Data Type** drop-down list to specify which type of folio to import into. This can be different for each sheet, and it determines which options will be available in the rest of the control panel.
2. Click inside each column that you wish to import and then click the corresponding button in the control panel to map it to a column in the data folio. This updates the column heading and maps the data to a column in the data folio.

- If the heading displays a letter, the data in that column will not be imported.
- If the heading displays a name, the data will be imported to the column associated with that name.
- To remove the column mapping, click inside the column and click the corresponding button again.

As an example, the following picture shows data that will be imported into a Weibull++ life data folio. Column A will not be imported. The rest of the data has been assigned to columns that are used in the folios.

3. If you are importing to an ALTA life-stress data folio, use the **Number of Stresses** field to specify how many stress columns will be created in the new folio (maximum = 8). Note that:

- If you enter a value that is less than the number of columns that were mapped with the **Stress** button, the "extra" stress column data will not be imported.
- If the number is greater, the additional stress columns will be created in the new folio and you can enter the data later.

4. If the source file contains column headings or other introductory material that should not be imported, use the **Start from Row** field to specify where the actual data begins. For example, in the picture above, the first row contains heading labels so the data import should begin from Row 2.
Chapter 25: ReliaSoft CommonTools

Setting the Import Template Directory
If you will be importing data from multiple files that have the same structure, you can use saved template files (*.waim in Weibull++/ALTA or *.rgaim in RGA) to automatically map the columns for all other similar files that you need to import from.

By default, template files will be stored at C:\Users\<username>\AppData\Roaming\ReliaSoft\<application>\Import Templates. This directory determines which templates will be displayed in the Import Template drop-down list in the control panel. It also sets the default path for saving any new templates you create.

If you want to access templates from a different location, click the Import Template Directory button at the top of the window and select a different folder.

Creating a New Import Template
1. Open a data file and use the control panel buttons to map the columns.
2. Click the Save icon in the Import Template area on the control panel.

3. Specify a name and click Save.

Applying a Saved Import Template
1. Open the data file and select Import sheet to display the rest of the control panel options.
2. Make sure the Import Template Directory is set to the folder that contains the applicable template file(s).
3. Use the drop-down list in the Import Template area to select the template you want to apply.

The utility will automatically assign the column mappings defined in the template. If desired, you can use the control panel to make further adjustments before import.

4. When you are satisfied with the mapping, click Import to create the new folio.
Tip: If you make adjustments after applying the template, you have the option to click **Save** in the **Import Template** area to either replace the existing template, or create a new template with a different name.

Importing the Data
When you are ready to import the data, click the **Import** button.

By default, the application will import the data into a new folio. The status bar will display "Import into New Folio," as shown in the following example.

![Import Template Directory: C:\Users\username\AppData\Roaming\ReliaSoft\APPLICATION\Import Templates Import into New Folio](image)

If you prefer to import into an existing folio instead, click the **Import to Existing Folio** button and choose one of the available folios. When you return to the import window, the status bar will now display the name of the selected folio, as shown in the next example.

![Import Template Directory: C:\Users\username\AppData\Roaming\ReliaSoft\APPLICATION\Import Templates Import into Folio: Folio1](image)

Using XML in BlockSim and Lambda Predict
In BlockSim and Lambda Predict, you have the option to use XML (extensible markup language) files to import or export system configuration data and item properties. XML files can be used to transfer data to/from other applications or database systems.

In BlockSim, the XML files include the block properties and information about how the blocks are connected in a reliability block diagram or fault tree diagram. They do not include visual aspects such as diagram style settings, block style settings, etc. BlockSim supports both import and export via XML.

In Lambda Predict, the XML files include the structure of the system hierarchy in a prediction folio and some of the item properties. Lambda Predict supports export to XML.

Exporting to XML
To create an XML file, first open the project and then choose **Project > Management > Import/Export > Export**.

In the wizard, choose **Other file** and click **OK**.
Specify the desired pathname/filename and click **Save**. This will export the relevant information for all of the diagrams or prediction folios in the current project. Other project items (such as RENO flowcharts, plots, attachments, etc.) are not included.

Importing from XML

There are two ways to import from an XML file.

If you want to import to a new project in a new standard database:

1. Choose **File > Open Repository**.
2. Browse for the file and click **Open**.

If you want to import to a selected project in an existing standard database or enterprise database:

1. Create a new project or open an existing project that you want to import into.
2. Choose **Project > Management > Import/Export > Import**.

In the wizard, choose **Other file** and click **OK**.

3. Browse for the file and click **Open**.

Attachments

All ReliaSoft desktop applications allow you to attach URLs and/or files that were created in other applications. This helps you to keep supporting documentation all together in the same place with your analysis. The locations where you can attach files will vary depending on which application you are using.

In all desktop applications, attachments can be either linked or embedded.

- **URL** and **File Link** attachments store the path to a web page or file. This allows you to open the resource in its original location (e.g., Internet, intranet or network directory), provided that the necessary software is installed on your computer and the link is valid. The files themselves are not stored inside the database. When you delete a file link or URL, this simply removes the link, leaving the original file untouched.

Note: If your organization has implemented an **SEP web portal** for an enterprise database, note that file link attachments (i.e., stored paths to local files on your computer or network) cannot be created, opened or saved within the SEP due to browser security.
- **Embedded** attachments are always files. For these attachments, the software stores a complete copy of the file inside the database. When you delete an embedded file, the actual file is deleted from the database and this cannot be undone (unless you happen to have a saved backup or restore point that you could roll back to).

The Attachments window manages all of the URLs/files attached to a particular location (e.g., project, resource, hierarchy record or block).

The Add/Edit Attachment window specifies the details of an individual file or URL, and will be displayed whenever you choose to create or edit an attachment.
If you are attaching a file, the Address field will display a **Browse** icon (📁) so you can select the file to be attached.

If you are attaching a URL, the **Name** field will be populated automatically as you type the URL into the **Address** field. This is for your convenience only and you can specify a different name if desired.

Attachment Locations
As mentioned above, the locations where you can attach files will vary depending on which application you are using.

Tip: In most cases, the caption bar in the Attachments window will provide an indication of which type of attachment you are working with. For example, when you are working with project-level attachments, the caption bar will indicate "Project:" followed by the specific name of the project.

Project Attachments
All ReliaSoft desktop applications support attachments at the project level. In all applications, project attachments can be displayed/managed from the **Attachments** icon in the Project Properties window.
For most applications, project attachments can also be displayed/managed from the Attachments folder in the current project explorer.

In XFMEA, RCM++, RBI and MPC (which do not have a current project explorer), you can also access the project attachments by selecting **Project > Management > Attachments**.

Resource Attachments
All of the applications that utilize resources support attachments at the resource level. For example, you can attach a file to a URD, a model, etc.

To access attachments for an existing resource, you can click the **Attachments** icon in the resource's properties window.

Hierarchy Attachments
Some applications, including XFMEA, RCM++, RBI, Lambda Predict and MPC, support attachments for individual items or records in a system hierarchy or analysis hierarchy. For example, in XFMEA, you can create attachments for a particular item, or for a particular record in the FMEA for that item.

To access attachments for items or records in a hierarchy, you can double-click inside the Attachments column. (If this column is not displayed on your computer, right-click inside the column headings and choose **Customize Columns**.) You can also choose **Tools > Attachments** on the ribbon tab for the hierarchy that you are currently working with.
For records in an analysis hierarchy (such as FMEA or functional failure analysis), the attachment icon can also be accessed from within the record properties window.

Block Attachments
BlockSim supports attachments for individual blocks in a diagram. To access attachments for a block, you can click the **Attachments** icon in the Block Properties window.

Select Existing Text Window
The Select Existing Text window provides a list of existing descriptions that might apply to the current text field or analysis. This can help to save time on data entry, ensure consistency and facilitate brainstorming. The utility is used extensively in applications such as XFMEA, RCM++, RBI and MPC, and it is also available for certain text fields in other ReliaSoft desktop applications.

There are two ways this utility might be used:

- **Replace or append text in the current field** - If you click the icon inside a text field, you can select text and either replace the current text or append the new text to the end. Starting in Version 2019, many text fields in XFMEA/RCM++/RBI allow selection of multiple descriptions, which will be concatenated in the order in which they were selected using the separator specified in the **Separator** field. Available separators include commas, periods, semicolons, dashes and, for multi-line text fields, new lines.

 When you are using the utility in this way, the **New Text Preview** area shows how the selected text will appear, and provides information on how many characters out of the character limit are being used (e.g., 45 characters out of a possible 2000 in the example below). If you exceed the text field’s character limit, your text will be truncated.

- **Create one or multiple new records** - If you use one of the ribbon commands in an FMEA or P-Diagram (e.g., **Functions > Select Existing Text**), you can select multiple descriptions and the utility will use your selection(s) to create new record(s).
The options will vary depending on the record/field type, and whether you are updating a single description or adding new records. The following example shows how the tool may be used to populate the function description in an FMEA.

Tip: The descriptions are sorted alphabetically under each heading. When the table has focus, you can type a letter to move to the next description that begins with the letter.

Project and Item Filters
This window utilizes the same project and item filters that are available in many other locations throughout ReliaSoft desktop applications. For example, when searching for text for an item in the system hierarchy, you could use a Project Filter to search for analyses performed by Department A and then use an Item Filter to show only those analyses that were modified in the last month.

In addition, when applicable:

- **Current Project** limits the results to data in the current project.
- **Current Item Branch** limits the results to those found in the current branch of the system hierarchy.

Record Filter
When applicable, the Record Filter shows the possible sources for the current record type and field that you can choose to include or exclude. The specific record types vary depending on the field.
Phrase Sets
FMEA records in XFMEA, RCM++ and RBI also have the option to include text from selected phrase sets.

Field Text
Use the drop-down list in the Field Text area to specify how to match the specified keywords, then type the keywords into the input box.

- Contains returns descriptions that contain the exact string entered.
- Contains Any and Contains All allow you to enter multiple keywords (separated by commas) and returns descriptions that contain at least one (any) or all of the keywords entered.
- Begins With returns descriptions where the exact string entered appears at the start of the field.
- is returns descriptions where the exact string entered matches the whole field.
Record Filter Options
When the descriptions can be obtained from more than one type of analysis (e.g., when PFMEA failures can be copied from FMEA causes, or when control plan operations can be copied from PFD Worksheet operations), the headings in the table identify the source. You can use the Record Filter to specify which source(s) to include.

FMEAs

<table>
<thead>
<tr>
<th>FMEA Functions</th>
<th>System Hierarchy Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Diagram Ideal Responses</td>
<td></td>
</tr>
<tr>
<td>PFD Worksheet Operations</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FMEA Failures</th>
<th>P-Diagram Error States</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMEA Causes</td>
<td>FMEA Causes</td>
</tr>
<tr>
<td>PFD Worksheet Product Characteristics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FMEA Effects</th>
<th>FMEA Failures</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>FMEA Causes</th>
<th>P-Diagram Change Over Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-Diagram Control Factors</td>
<td>P-Diagram Piece-to-Piece</td>
</tr>
<tr>
<td>PFD Worksheet Process Characteristics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FMEA Controls</th>
<th>Control Plan Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVP&R Test/Specification Methods</td>
<td></td>
</tr>
</tbody>
</table>

| FMEA Actions | DVP&R Test/Specification Methods |

P-Diagrams

<table>
<thead>
<tr>
<th>Input Signal</th>
<th>System Hierarchy Items</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Control Factors</th>
<th>FMEA Causes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Error States</th>
<th>FMEA Failures</th>
</tr>
</thead>
</table>

| Ideal Response | FMEA Functions |
Control Plans, PFD Worksheets and DVP&Rs

<table>
<thead>
<tr>
<th></th>
<th>FMEA Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Plan Part/</td>
<td></td>
</tr>
<tr>
<td>Process Number</td>
<td>FMEAsaveences</td>
</tr>
<tr>
<td>Control Plan Process</td>
<td></td>
</tr>
<tr>
<td>Name/Operation Description</td>
<td>PFD Worksheet Operations</td>
</tr>
<tr>
<td>Control Plan Product</td>
<td></td>
</tr>
<tr>
<td>Characteristic</td>
<td>PFD Worksheet Product Characteristic</td>
</tr>
<tr>
<td>Control Plan Process</td>
<td></td>
</tr>
<tr>
<td>Characteristic</td>
<td>PFD Worksheet Process Characteristics</td>
</tr>
<tr>
<td>Control Plan Method</td>
<td></td>
</tr>
<tr>
<td>Control Plan Method</td>
<td>FMEA Controls</td>
</tr>
<tr>
<td>PFD Worksheet Operation Description</td>
<td>System Hierarchy Items</td>
</tr>
<tr>
<td>DVP&R Test/Specification Method</td>
<td>FMEA Controls</td>
</tr>
<tr>
<td>DVP&R Test/Specification Method</td>
<td>FMEA Actions</td>
</tr>
</tbody>
</table>

Piece-to-Piece Analysis Plan Assumptions

<table>
<thead>
<tr>
<th>FMEA Causes</th>
<th>PFD Worksheet Product Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Usage Analysis Plan Assumptions

<table>
<thead>
<tr>
<th>FMEA Causes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Environment Analysis Plan Assumptions

<table>
<thead>
<tr>
<th>FMEA Causes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Change Over Time Analysis Plan Assumptions

<table>
<thead>
<tr>
<th>FMEA Causes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Check Spelling

ReliaSoft desktop applications offer the ability to check the spelling of your text. This utility is available in different places within the software. For windows that offer the spell check functionality (e.g., Project Properties window, etc.), the Check Spelling icon will be displayed within the window itself. For data sheets, spreadsheets and system hierarchies that offer the functionality, the Check Spelling icon will be available on the ribbon and you can access it by choosing Home > Edit > Spelling.

Note: In system hierarchies (XFMEA, RCM++, RBI, MPC and Lambda Predict), the utility will check the property fields of the selected item only. This means that sub-items and text in analysis tabs, such as the FMEA tab in XFMEA, are not checked.

Whenever text that is not in the application's dictionary is found, the Check Spelling window displays the text in question and offers a list of suggestions to verify the error or confirm the correction, as shown in the following example.

- Ignore Once ignores the current instance of the highlighted word but continues to highlight it if the same word appears again.
- Ignore All ignores all instances of the word in the current form.
- Add to Dictionary adds the highlighted word to the dictionary on your computer so the spell checker will not treat it as a misspelling. The dictionary file is saved in the default Documents folder on your computer (e.g., My Documents\ReliaSoft\Dictionaries).
• **Change** replaces the current instance of the highlighted word with the word that is currently selected in the **Suggestions** area. If no word is selected, the first one will be used. Double-clicking a word in the **Suggestions** area is another way to change the highlighted text.

• **Change All** replaces all instances of the highlighted word with the word that is currently selected in the **Suggestions** area. If no word is selected, the first one will be used.

• **Options** opens the Spelling Options window, which provides additional settings to how the spell checker functions:
 - The **General options** area provides a list of the types of text that can be ignored by the spell checker (e.g., numbers, e-mail addresses, etc.). Select or clear each check box to specify how the spell checker will work on your computer.
 - In the **Edit custom dictionary** area, the **Edit** button opens a window that displays all of the words that you have added to the custom dictionary on your computer. You can edit the custom dictionary by adding or removing words in the list and then clicking **OK**.
 - **International dictionaries** allows you to choose the language of the dictionary that will be used on your computer.
 - **Undo Last** reverses the last change that was made.

Results Window

The Results window is used in many ReliaSoft applications to show detailed calculation results. From this window, you can edit the results, copy the results to the Clipboard or print the results.

• **Paste** pastes the contents of the Clipboard into the current control.

• **Cut** cuts the selected text to the Clipboard. Data stored in the Clipboard can be pasted into this and other applications.

• **Copy** copies the selected text to the Clipboard. Data stored in the Clipboard can be pasted into this and other applications.

• **Paste Special** opens the Paste Special window, which allows you to paste specific cell contents or attributes (such as formulas, formats, or comments) from the Clipboard.

• **Quick Print** sends the current document directly to the default printer without making changes.
Print opens the Print window, which allows you to specify the printer and the printing options.

Send to Excel allows you to save the current selection as a Microsoft Excel (*.xls or *.xlsx) file and then opens that file in Excel, if it is installed on your computer.

Note that the Results window may contain multiple sheets, accessible via the page index tabs at the bottom of the window.

Quick Parameter Estimator (QPE)

The Quick Parameter Estimator (QPE) allows you to estimate the parameters of a distribution based on information you have about the reliability of a product, the probability of an event occurring or the typical duration of a task. In all ReliaSoft desktop applications, you can open the QPE from the Model properties window or the Model wizard by clicking the QPE icon.

In Weibull++/ALTA, it's also accessible from the Home tab of the ribbon and several analysis interfaces (including the Weibull++ life data folio, the Monte Carlo and SimuMatic utilities, and the Expected Failure Times Plot).

The QPE includes a Wizard view and an Expert view, described below. You can toggle between the different views by clicking the Use Expert or Use Wizard button at the bottom-left corner of the window.

- The Wizard view automatically selects a distribution and estimates that distribution's parameters based on your responses to a series of questions. The first page of the Wizard view asks you to choose among three different types of models that you can build with the QPE. Subsequent pages will ask more specific questions related to your selected model.

- The Expert view allows you to estimate the parameters of a distribution using either two unreliability values at specified times or one unreliability value and the other parameter(s) of the distribution. Unlike the Wizard view, you must select a distribution to solve the parameter(s) for.

Quick Parameter Estimator Wizard View

To use the Wizard view of the Quick Parameter Estimator (QPE), simply follow the prompts on each page. The first page will present and describe three different types of models that you can
build with the QPE. Below are the three models and the kind of information you'll need to provide in subsequent pages.

To build a **Reliability model** you need to provide information about:

- How age affects the product's reliability.
- The product's intended design life and the estimated warranty time.
- Best-case, worst-case and most likely unreliability estimates for the product at the end of the design life and warranty time.

To build an **Event occurrence model** you need to provide information about:

- Whether age affects the probability of the event's occurrence.
- Best-case, worst-case and most likely estimates for how often the event will occur.

To build a **Task duration model** you need to provide information about:

- Best-case, worst-case and most likely estimates for how long it will take to complete the task.

The last window will display the tool's selected distribution and the calculated parameters. It will also provide one of the two options described below.

- If you opened the QPE from an analysis folio or utility, the **Update** button will be available in case you wish to update that window using the selected distribution, calculated parameters and selected units.
- In Weibull++/ALTA, if you opened the QPE from the ribbon, the **Finish & Copy** button will be available in case you wish to copy the parameters results to the Windows Clipboard.

Quick Parameter Estimator Expert View

Follow the steps below to use the Expert view of the Quick Parameter Estimator (QPE):

- Choose a distribution from the **Distribution** drop-down list. This is the distribution that you will solve the parameter(s) for. Then choose the appropriate time units from the Units drop-down list.
 - If you are not sure which distribution to select, consider using the **Wizard view** of the QPE instead.
• Your choice of time units applies to all time inputs and applicable parameters of the distribution (such as the eta parameter when the Weibull distribution is used).

• Select an appropriate option in the **Quantification Method** area.

• The **Unreliability and a Parameter** method solves for one parameter of the distribution. It requires one unreliability point (i.e., an unreliability value at a specified time) and the values of all the parameters of the selected distribution except the parameter you will solve for.

 • If you select this method, you must then enter one unreliability point in the **Point #1** area. For example, if you believe that your product has an unreliability of 10% at 100 hours, then you would enter **100** in the **Time** field and **0.10** in the **Unreliability** field.

 • In the **Solve for Parameter** area, select the parameter that you wish to solve for. The remaining parameters in this area will have input fields enabled. Enter the known values of these parameters.

• The **Two Unreliability Points** method solves for all the parameters of the distribution. It requires two unreliability points that you will provide in the **Point #1** and **Point #2** areas.

 Tip: If you are building an event occurrence or task duration model, you can treat an "unreliability" point as the probability that an event will occur or that a task will be completed by a specified time. For example, if you are modeling the probability of an event's occurrence and you believe that there is a probability of 30% that the event will occur before 150 hours, then you would enter **0.3** in the **Unreliability** field and **150** in the **Time** field.

• Click **Calculate** to solve for the unknown parameter(s).

• Click the **Update** button to update the model using the selected distribution, calculated parameters and selected time units.

Quick Parameter Estimator (ALTA)

In ALTA only, another version of the **Quick Parameter Estimator (QPE)** allows you to estimate the parameters of a model based on information you have about the reliability of a product at normal and accelerated stress levels. You can open the QPE from the ribbon by choosing **Home > Synthesis > Quick Tools > Quick Parameter Estimator (ALTA).**
You can also open the ALTA QPE from the ALTA life-stress data folio (by leaving the folio's data sheet empty and clicking Calculate), as well as the stress-dependent Monte Carlo and stress-dependent SimuMatic utilities.

Follow the steps below to use the ALTA QPE:

- The first page of the window will be used to estimate the product's mean life under normal stress conditions.
 - Choose a model from the Model drop-down list. This is the model that you will solve the parameter(s) for. Then choose the appropriate time units from the Units drop-down list.
 - Your choice of time units applies to all time inputs and applicable parameters of the model (such as the eta parameter when the Weibull distribution is used).
- Select an appropriate option in the Quantification Method area:
 - The Unreliability and a Parameter method solves for one parameter of the model. It requires one unreliability point (i.e., an unreliability value at a specified time) and the values of all the parameters of the selected model except the parameter you will solve for.
 - If you select this method, you must then enter one unreliability point for normal use conditions in the Point #1 area. For example, if you believe that your product has an unreliability of 10% at 100 hours under normal use conditions, then you would enter 100 in the Time field and 0.10 in the Unreliability field.
 - In the Solve for Parameter area, select the parameter that you wish to solve for. The remaining parameters in this area will have input fields enabled. Enter the known values of these parameters.
 - The Two Unreliability Points method solves for all the parameters of the model. It requires two unreliability points under normal use conditions that you will provide in the Point #1 and Point #2 areas.
- In the Use Stress Level area, you must enter the stress level that the product will experience under normal conditions. In multi-stress situations, this stress level will be a combination of stress values for each stress type.
 - If the Number of Stresses field is enabled, enter the number of stresses that will be used in your model. (Note that different models have different requirements for the number of stresses that can be used.)
• Click the arrow inside the **Use Stress Value(s)** field. In the table that appears, enter a stress value for each stress type. If there are multiple stress values, they will appear in the field separated by semicolons.

<table>
<thead>
<tr>
<th>Use Stress Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Stresses</td>
</tr>
<tr>
<td>Use Stress Value(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stress</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stress 1</td>
<td>328</td>
</tr>
<tr>
<td>Stress 2</td>
<td>2</td>
</tr>
</tbody>
</table>

• Click **Next >** to go to the Life at Each Stress Level page. The **Use Stress Level** area of the page will display the product's mean life at the specified use stress level based on your previous inputs. In the **Accelerated Level 1** area, you must enter the estimated mean life for the product at an accelerated stress level.

• To enter the accelerated stress level, double-click inside the **Stress Value(s)** field. In the table that appears, enter the stress value for each stress.
• In the **Characteristic Life** field, enter the product's characteristic life at the associated accelerated stress level.

 • For the Weibull distribution, the characteristic life is equal to the value of the eta parameter (i.e., the time at which unreliability = 63.2%).

 • For the lognormal distribution, it is equal to \(\text{Exp(Log-mean)} \) (i.e., the time at which unreliability = 50%).

 • For the exponential distribution, it is equal to the mean life.

Note: The number of accelerated stress levels you must provide life estimates for will equal the number of stresses that will be used in the selected model. For example, if the model uses two stress types, as shown above, then there will be an **Accelerated Life 2** area in which you must provide a characteristic life estimate for a second accelerated stress level.
• Click **Next >** again to see the calculated parameters.

 • If you opened the QPE from another utility, such as the ALTA Monte Carlo tool, you may click the **Update** button if you wish to update the Monte Carlo tool with the model, parameters and time units defined in the QPE.

 • If you opened the QPE from the ribbon, you may click the **Finish & Copy** button if you wish to copy the results to the Windows Clipboard.
Chapter 26: Resources

In ReliaSoft applications except MPC, resources contain various types of information that can be shared between analyses. Resources may be created in one application and then shared with other ReliaSoft applications where they may be relevant. When the resource is updated with new information, the change is reflected in all analyses that rely upon it.

An example of a resource is a model that represents a product's probability of operating successfully over time. The model may be defined manually or published from an application such as Weibull++/ALTA, RGA or Lambda Predict. Then it can be used in applications such as BlockSim, XFMEA, RCM++ or RBI as part of the universal reliability definition (URD) of a particular component/assembly.

Note: In a secure database, the ability to create, edit and delete resources is available only if the user a) is the project owner, b) has the applicable "resources" permissions, or c) has the applicable "manage all projects" permissions.

Types of Resources

The following tables describe the types of resources that you can use in different ReliaSoft applications. These resources can be created while you're performing an analysis and also from the Resource Manager. (In a secure database, the ability to create, edit and delete resources is available only if the user a) is the project owner, b) has the applicable "resources" permissions, or c) has the applicable "manage all projects" permissions.)

Used in Multiple Applications

<table>
<thead>
<tr>
<th>Resource</th>
<th>Used In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal reliability definitions (URDs)</td>
<td>BlockSim, RCM++, XFMEA, RBI</td>
</tr>
<tr>
<td>Variables</td>
<td>BlockSim, RENO</td>
</tr>
<tr>
<td>describe a set of reliability and maintenance characteristics for a particular component/assembly.</td>
<td></td>
</tr>
</tbody>
</table>
Models
Models can represent probabilities, durations or costs, either fixed or time-dependent. They are used by other resources to represent the reliability of a component, the duration of a task, the expected cost of a repair, etc.

Can be published from analyses in Weibull++, ALTA, BlockSim, RGA and Lambda Predict, or created manually.

Used in BlockSim, RENO, XFMEA, RCM++ and RBI.

Tasks
Tasks represent maintenance activities:

- **Corrective** tasks are unplanned maintenance performed when a failure occurs.
- **Scheduled** tasks can include preventive maintenance, inspections and on condition maintenance.

BlockSim, RCM++, RBI

Task packages
Task packages represent groups of tasks that are performed together at scheduled intervals.

BlockSim, RCM++, RBI

Crews
Crews represent the personnel who will perform a maintenance task.

BlockSim, RCM++, RBI

Spare part pools
Spare part pools determine whether a spare part will be available, how long it will take to obtain and how much it will cost.

BlockSim, RCM++, RBI

Metrics
Metrics display any numerical value of interest, and track how it changes over time.

All applications except MPC via the Project Planner; analyses in Weibull++, ALTA, BlockSim, RGA, XFMEA, RCM++ and RBI

Maintenance groups
Maintenance groups are used to model situations in which some event within the group can trigger maintenance or state changes for other components/assemblies.

BlockSim, RCM++, RBI

Mirror groups
Mirror groups are used to represent the exact same component/event in more than one location within your analysis.

BlockSim, RCM++, XFMEA, RBI
Chapter 26: Resources

Actions describe specific assignments that need to be performed.

All applications via My Portal; Project Planner and FMEAs in RCM++, RBI and XFMEA

Controls may be used in FMEAs and/or control plans to represent methods to reduce or eliminate the risk associated with potential failures.

RCM++, XFMEA, RBI

Profiles represent values that vary with time. They can be used in ALTA to describe stress levels under test conditions, or in BlockSim process flow simulation diagrams to describe patterns of throughput. They can also be used to describe cost and duration in spare part pools.

ALTA, BlockSim, RCM++, RBI

Used Only in BlockSim

<table>
<thead>
<tr>
<th>Resource</th>
<th>Used In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switches</td>
<td>BlockSim</td>
</tr>
<tr>
<td>describe how the activity transfers between active and standby blocks in BlockSim’s standby containers/gates.</td>
<td></td>
</tr>
</tbody>
</table>

| **Maintenance templates** | BlockSim |
| define the activities that will be performed during a maintenance phase in a phase diagram. |

| **Flow groups** | BlockSim |
| are used to model situations in which meeting a particular flow threshold can trigger maintenance tasks. These groups are used only in BlockSim process flow simulation diagrams (if supported by your license). |

Used Only in RENO

<table>
<thead>
<tr>
<th>Resource</th>
<th>Used In</th>
</tr>
</thead>
<tbody>
<tr>
<td>RENO functions</td>
<td>RENO</td>
</tr>
<tr>
<td>store equations that are evaluated based on input values passed to the function during simulation.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RENO static functions</th>
<th>store equations that are evaluated before simulation begins.</th>
<th>RENO</th>
</tr>
</thead>
<tbody>
<tr>
<td>RENO simulation definitions</td>
<td>are used to trigger simulation of a BlockSim diagram from within a REN...</td>
<td>RENO</td>
</tr>
<tr>
<td>RENO tables</td>
<td>store arrays of values in rows and columns.</td>
<td>RENO</td>
</tr>
</tbody>
</table>

Local, Global and Reference Resources

There are three types of resources:

- **Local resources** can be used only within the project in which they were created, and are therefore available only to users with permissions within that project.

- **Reference resources** (which are resources created in a reference project) can be used in any project throughout the database. However, in a secure database, they can be created and edited only by users who have the "Create/edit/delete local resources" permission within the reference project. These resources can be selected by any user who has at least the "Read" permission in the reference project. Users without permissions in the reference project can see the reference resources wherever they are used, but they will not be able to select or modify them.

- **Global resources** can be used in any project throughout the database. In a secure database, they can only be created and edited by users who have the “Create/edit/delete global resources” permission. However, they can be selected by any database user.

To make a resource global, select it in the Resource Manager and choose **Home > Actions > Make Global**.

Making a resource global cannot be undone and this option is not available for all resource types. If you make a resource global, any resources assigned to it will become global as well (e.g., if a URD has an assigned model, making that URD global will also make the model global, regardless of whether it was originally local or reference).
Chapter 26: Resources

Parent/Child Resource Relationships

Certain resources can have other resources assigned to them (e.g., URDs can have models and tasks assigned to them, tasks can have models, crews and spare part pools assigned to them, etc.). This can be considered a "parent/child" relationship.

When you create a resource from within its parent, the child resource will be of the same type as its parent. For example, if you are working with a global URD and you add a model to it, the model will be global. If you are working with a reference task and you add a crew to it, the crew will be added to the reference project that contains the task.

When you assign existing resources to a parent resource, the following rules apply:

- Any resource assigned to a reference resource must be either a reference resource within the same project or a global resource (e.g., a local model cannot be assigned to a reference URD, nor can a model in "Reference Project 2" be assigned to a URD in "Reference Project 1").
- Any resource assigned to a global resource must be either a reference resource or a global resource (e.g., a local model cannot be assigned to a global URD).

Keeping Resources Together

The application will automatically keep copies of a project’s resources and linked FMEAs when the project is restored, checked out, imported or exported.

- When you create a restore point, any reference resources, global resources or linked FMEAs used in the project are converted to local resources/FMEAs and stored with the backup.
- When you check out a project for local editing, any reference resources, global resources or linked FMEAs used in the project are converted to local resources/FMEAs and stored with the project.
- When importing/exporting a project item that uses reference resources, global resources or linked FMEAs:
 - If you import/export within the same database, the references will remain unchanged.
 - If you import/export between databases, the destination project will contain local copies of the original resources/FMEAs.
- When importing/exporting a project:
 - If you import/export a project that uses global resources, the destination project will contain local copies of the original resources.
Chapter 26: Resources

- If you import/export a project that uses reference resources or linked FMEAs:
 - The references/FMEAs will be maintained if you also import/export the reference project at the same time.
 - If you don’t import/export the reference project at the same time, the new project will instead contain copies of the original resources/FMEAs.

Creating and Selecting Resources
This topic describes how to use resource wizards to create and edit resources while you’re performing an analysis or creating a URD. In addition, you may also need to:

- Use the Resource Manager to see all of the resources that are available to use in the current project. In addition to creating and editing resources, the manager also allows you to:
 - Delete resources that are no longer needed.
 - Create global resources that are available to all projects in the database.
 - Publish a model that is linked to an existing analysis.

(In a secure database, the ability to create, edit and delete resources is available only if the user a) is the project owner, b) has the applicable "resources" permissions, or c) has the applicable "manage all projects" permissions.)

Opening a Resource Wizard
Throughout all ReliaSoft desktop applications, the availability of a resource wizard is usually indicated by an ellipsis (...) or an arrow in the resource field. Simply click twice in the field to open the wizard.
Tip: If a resource is already assigned in the field, you can edit it directly without opening the wizard by clicking the Edit icon that appears in the field.

Back Arrow and Main Page
Each wizard contains multiple pages with different options on each page. If the option you need is not immediately visible, you can click the Back arrow to see the Main page, which shows all the options that are applicable for the current situation.

As an example, the following pictures show some of the different options that will be available on the Main page for specific situations and resource types.
Selecting an Existing Resource

The Select page of the wizard displays a list of existing resources that meet the criteria specified on the Settings page. You can then further limit the list by typing inside the text box.

As an example, the following pictures show a situation in which the settings are configured to display up to 2,000 models (more resources take longer to load) from the current project only (called local resources), and the user has selected to see only the ones in which the name includes “bulb.”
In addition, for model resources only, you must specify whether you want to display the model parameters in the list (which also takes longer to load).

To change the initial criteria for the list, click the Back arrow and then click the Settings button on the main page.

Alternatively, if you need more information about the available resources and/or a wider range of filtering tools, you can click the icon to open the Select Resource window.

Creating a Resource

In most wizards, you can click the Create New button or icon to create a new resource.

In the model wizard, click the button or icon for the type of model you want to create:

- New Constant
- New Distribution
- New Dynamic
- New Profile (available only when creating a cost or duration model for use in a spare part pool)

Editing a Resource

If a resource has already been assigned, you can view and/or edit its properties by clicking the View/Edit button or icon in the field or in the wizard.

Any changes you make will apply everywhere that the resource is used. This includes analyses in other ReliaSoft applications.

Removing a Resource

If a resource has already been assigned, you can remove it from this location by clicking the Remove button or icon.
The resource will remain in the database for use in other locations. If you want to completely remove a resource from the database, you’ll need to use the Resource Manager or Select Resource window.

Universal Reliability Definitions (URDs)

A universal reliability definition (URD) describes a set of reliability and maintenance characteristics for a particular component/assembly. Like any other resource, you can create or edit URDs while you're performing a relevant analysis, and from the Resource Manager.

Note: Depending on where you are using a URD, only those properties that are relevant are applied. For example, if you apply a URD to a block in an analytical diagram in BlockSim, only the failure model associated with the URD will be applied to the block.

For a new resource, a name will be proposed automatically based on the default naming criteria established for the current database (see Default Name Formats window). You can replace this with your own name of up to 150 characters, if desired. Remember that the name and identifiers are the primary way in which your team will be able to find the resources you need for your analyses.

When editing the URD's properties, you can choose or create:

- **A model** to describe the behavior associated with the URD. This can be a reliability model, a probability of failure model or an event occurrence model.

- **A corrective task** that describes the maintenance action taken to restore a failed component to operational status.

- Zero, one or many **scheduled tasks** that describe the preventive maintenance, inspections and/or on condition maintenance tasks. The order in which the tasks are displayed reflects the priority with which tasks that are scheduled in the same way (see Task Scheduling) will be performed; for example, if there are two tasks scheduled based on interval and they conflict, the task higher in the priority list will be performed and the lower priority task will be disregarded. You can use the up and down arrows in the cells in this column to move the tasks up and down the priority list.

Additionally, the following are shown:

- **Identifiers** contains additional identifying information that can be used to search for this resource.
• **History** provides information about when the record was created and last updated. If the history log has been activated at the project level, you can click the **View Item History** icon to open the Record History Log for the record.

• **Watch** allows each individual user to subscribe to receive an alert (via e-mail, SMS text message or portal message) when the resource is changed.

Trace Usage

For existing resources, the link at the bottom of the window indicates how many times the resource is currently being used. If you need more information, click the link or the icon to open the **Dependency Viewer**.

Models

In ReliaSoft applications, *models* can represent probabilities, durations or costs, either fixed or time-dependent. They are used by other resources to represent the reliability of a component, the duration of a task, the expected cost of a repair and many other characteristics.

Like any other resource, you can create or edit models while you’re performing a relevant analysis, and from the **Resource Manager**. In addition, you can publish models that are based on an existing analysis (e.g., a life data analysis in Weibull++, a diagram in BlockSim, etc.).

This topic describes the properties for both types of models. The interface will vary based on the particular situation.

Naming the Resource

For a new resource, a name will be proposed automatically based on the default naming criteria established for the current database (see **Default Name Formats window**). You can replace this with your own name of up to 150 characters, if desired. Remember that the name and identifiers are the primary way in which your team will be able to find the resources you need for your analyses.

Associated Analysis

In published models only, the **Associated Analysis** area identifies the analysis that the model is based on. If the published model reflects the latest analysis results, the status is "Synchronized." If the analysis has been modified since the model was last published, the status is "Out of Sync."
Tip: If you have the ability to open the original analysis (i.e., if the required ReliaSoft application is activated on your computer and your user account has permissions to access the analysis), the **Source** will be configured as a link and there will also be a **Data Source** button at the bottom of the window.

Model Category

The category determines where and how a model can be used. If you are using a **resource wizard** to create a new model, it will be assigned automatically based on what’s relevant for the current field. If you are publishing a model or creating it from the Resource Manager, you must select the appropriate option. Once a model has been created, you cannot change its category.

- **Reliability**, **Probability of Failure** and **Event Occurrence** models represent a likelihood of occurrence.
- **Duration** models represent a length of time.
- **Cost per Unit Time** models are used for costs that accrue over time (e.g., the crew charges $50 per hour).
- **Cost** models are used for costs that don’t depend on time (e.g., the part costs $100 or the crew charges $50 per service call in addition to their hourly rate).

Model Type

- A **distribution** model represents behavior that varies based on factors such as time and/or applied stress. For a published model, the inputs and parameters will be specified automatically based on the associated analysis. For manually created models, you can:
 - Select a distribution from the drop-down list and then enter the required parameter(s).
 - Use the **Quick Parameter Estimator (QPE)** to estimate the parameters of a distribution based on what you know about the behavior.

Tip: A published model includes one additional parameter that is not relevant for manually created models. **PNZ** stands for **percent non-zero**. A value of 1 indicates that there are no zero failure times in the data set (which is the most common scenario in life data analysis). A decimal value indicates that the data set does include zero failure times (such as out-of-the-box failures, for example). In such cases, the parameters are calculated based on the non-zero failure times, and then the PNZ value is used as a multiplier when calculating certain metrics (e.g., reliability, unreliability).
A constant model represents a fixed probability (e.g., 0.9), duration (e.g., 2 hours) or cost (e.g., $10 or $10 per hour).

A dynamic model represents a fixed probability, duration or cost, based on a specified variable. The variable can then be programatically varied during simulation in one of two ways, thereby changing the value of the model for successive simulation runs.

- For RENO flowcharts, the variable can be varied using RENO’s sensitivity analysis/multiple analyses features.
- When simulating a simulation worksheet, the values used by the variable will be specified in the worksheet.

When dynamic models are used outside of these circumstances, they are treated as constant models using the defined initial value of the variable.

New in Version 2019, a profile model represents a changing duration or cost over time, based on a specified profile. Profile models are available only for the cost and duration model categories. The cost or duration of the model will be programatically varied based on an input time parameter used in the profile. When creating a profile model, you must specify a time unit; this will be used for the profile’s segment times and, if applicable, for the profile’s output duration.

Profile models can be used for all direct costs and acquisition times for spare part pools. The execution time of the task using the spare part pool will be used as the input time parameter for the profile. Profile models are not available for selection anywhere other than in the relevant fields within spare part pools.

Note that models that are in use cannot be changed to profile models.

Additional Tools
Additionally, the following are shown:

- Identifiers contains additional identifying information that can be used to search for this resource.
- History provides information about when the record was created and last updated. If the history log has been activated at the project level, you can click the View Item History icon to open the Record History Log for the record.
Chapter 26: Resources

- **Trace Usage.** For existing resources, the link at the bottom of the window indicates how many times the resource is currently being used. If you need more information, click the link or the icon to open the Dependency Viewer.

Publishing Models

This topic provides general information about how to create and work with *published models*, which are *model resources* that have been published from and continue to be associated with an existing analysis. For information about additional options and requirements in specific applications, see:

- "Publishing Fitted and Analytical Models" in the BlockSim documentation.
- "Publishing Models from R-DOE Results" in the Weibull++/ALTA documentation.
- "Publishing from Failure Rate Predictions" in the Lambda Predict documentation.
- "Publishing Models from Analysis Results" in the RGA documentation.

The Synthesis Platform does not automatically update the published model when something changes in the original analysis, but users have the option to republish the model at any time. For any other analysis that uses the model, the change will be reflected the next time that other analysis is recalculated/resimulated.

Publishing Tools

For most ReliaSoft desktop applications, the following model publishing tools are found on the Publishing page of the control panel. In Lambda Predict, they are located on the Publishing tab of the Properties panel.

- **Publish Model** publishes the analysis to a model, making it accessible to all ReliaSoft applications.
 - If the analysis has never been published, this will create a new model and you will be prompted to specify the name and category.
 - If the analysis has already been published, this will update the existing model and change the model's status from "Out of Sync" to "Synchronized."

- **Publish to Existing Model** allows you to select an existing model (using the Select Resource window) and replace it with an association to the current analysis.
Trace Usage opens the Dependency Viewer, which allows you to see where the model is used.

View Model displays the properties for the published model. This information will be available to any user who is considering whether to use the model in a particular analysis.

Remove Association removes the link between the current analysis and the published model. The model will continue to be a resource in the database but it can no longer be synchronized with the analysis.

Published Model Summary
After the model has been published, the summary table in the control panel (or Publishing tab in Lambda Predict) will display the model's name, along with the following details:

- When the Status changes from "Unpublished" to "Published," the label becomes a link that opens the model's properties window.
- Linked? indicates whether the published model has been used. If the model is in use, you can click the link in this field to open the Dependency Viewer.
- Synchronized? displays "Synchronized" if the published model reflects the latest results from the associated analysis. If that analysis has been modified since the model was last published (e.g., if more data has been added, an analysis setting has changed, etc.), the status will display as "Out of Sync."
- The Created By and Modified By fields display the names of the users who created and last updated the model. Click either of the links to see the dates and times.

Model Basis and Status
When a model has been published from an existing analysis, its properties window will include the following additional information:

<table>
<thead>
<tr>
<th>Associated Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Name:</td>
</tr>
<tr>
<td>Folio1/Data1</td>
</tr>
<tr>
<td>Application:</td>
</tr>
<tr>
<td>Weibull++</td>
</tr>
<tr>
<td>Source:</td>
</tr>
<tr>
<td>Folio1/Data1</td>
</tr>
<tr>
<td>Type:</td>
</tr>
<tr>
<td>Standard Folio</td>
</tr>
<tr>
<td>Status:</td>
</tr>
<tr>
<td>Synchronized</td>
</tr>
</tbody>
</table>

- Source is the ReliaSoft analysis that the model was published from.
- Application is the ReliaSoft application that is required to view/edit the original analysis.
Chapter 26: Resources

- **Type** is the kind of folio or diagram that the model is based on. For example, this might be a life data folio in Weibull++, an analytical diagram in BlockSim, a failure rate prediction in Lambda Predict, etc.

- **Status** displays "Synchronized" if the published model reflects the latest results from the associated analysis. If that analysis has been modified since the model was last published (e.g., if more data has been added, an analysis setting has changed, etc.), the status will display as "Out of Sync."

Tip: If you have the ability to view the original analysis (i.e., if the required ReliaSoft application is activated on your computer and your user account has permissions to access the analysis), the **Source** will be configured as a link and there will also be a **Data Source** button at the bottom of the window.

Tasks

To properly analyze repairable systems, we first need to understand how components in these systems are restored (i.e., the maintenance activities that are performed on the components). In general, maintenance is defined as any action that restores failed units to an operational condition or keeps non-failed units in an operational state. For repairable systems, maintenance plays a vital role in the life of a system. It affects the system's overall reliability, availability, downtime, cost of operation, etc.

In ReliaSoft applications, maintenance activities are represented using tasks, which are resources that can be shared among analyses and can be managed via the **Resource Manager**. There are two basic kinds of tasks, which comprise four task classes:

- **Corrective tasks** are the action(s) taken to restore a failed component to operational status. These cannot be scheduled, as the component's exact failure time is not known before it happens.

- **Scheduled tasks** can be performed on a known schedule, based on time, component condition or other factors. These include:
 - **Preventive tasks**
 - **Inspection tasks**
 - **On condition tasks**

Tasks are assigned to **URDs**, which are in turn used to represent a set of properties that can be applied to standard blocks in RBDs and to events in fault trees.
Chapter 26: Resources

What’s Changed? Starting in Version 2019, crews are assigned to tasks as part of teams. This allows you to require multiple crews to complete a task (e.g., if a task requires both a mechanic and an electrician).

The Maintenance Task window allows you to create, view and edit all classes of maintenance tasks. It can be accessed by clicking the Create New or View/Edit icon in the Task wizard, which is accessed from Task fields in properties windows (e.g., the Corrective Maintenance Task field in the Universal Reliability Definition window).

It can also be accessed from the Corrective Tasks and Scheduled Tasks pages of the Resource Manager by choosing Home > Edit > Add, by selecting a task and choosing Home > Edit > View or by double-clicking a task.

For a new resource, a name will be proposed automatically based on the default naming criteria established for the current database (see Default Name Formats window). You can replace this with your own name of up to 150 characters, if desired. Remember that the name and identifiers are the primary way in which your team will be able to find the resources you need for your analyses.

The following options must be configured for all classes of tasks. Configuration options that are specific to particular task classes are presented in the corresponding sections.

- **Basic Task Properties**

 - **Task duration** allows you to assign a model, which may represent a fixed time or a distribution, to describe the duration of the task. You can choose an existing model or create a new one. If no model is assigned, it is assumed that the task has a duration of zero (i.e., immediate repair).

 - **Teams for task** allows you to choose or create one or more teams that can perform the task. Each team is made up of one or more crews; all crews assigned to the team are considered to be required (i.e., if any one of the crews assigned to a team is unavailable, the team is unavailable). You can add, remove or edit the crews assigned to any team. You can also remove a team from the task, thereby quickly removing all of its crew associations. An empty team is available at the end of the team list, allowing you to define a new team.

If multiple teams are assigned to the task and a team is needed, they will be checked for availability in the order in which they are displayed in this list. Use the Priority Up and Priority Down arrows that appear when you click a team name in the list to move it up and down in the list. If a team is needed and all teams are engaged, the team with the shortest wait time (based on the longest wait time of its constituent crews) is chosen to perform the task.
If no team is assigned, it is assumed that the work will be done by some undefined team that is always available.

- **Restoration** These properties allow you to specify the degree to which the block will be restored after the performance of the task. In the **How much does this task restore the item?** field, you can specify that the item will be returned to as good as new condition (i.e., full repair, equal to a restoration factor of 1), to the same condition it was in when it failed (i.e., "as bad as old" or minimal repair, equal to a restoration factor of 0), or you can choose **Partial restoration**. This option provides you with the ability to model maintenance involving "used parts" or imperfect maintenance. The **Restoration amount** field will appear; starting in Version 2019, you can specify the amount of restoration achieved by the task by entering the value as a decimal from 0 to 1. If you specify anything other than 0 (0%) or 1 (100%), you will need to specify what the restoration effect applies to (i.e., the restoration type). You can select:

 - **Only damage accumulated since last repair**: Each repair will remove only the damage since the last repair (i.e., the nth repair cannot remove the damage incurred before the (n-1)th repair). Note that in this context any task is considered a repair and any damage that has occurred since the last event (corrective task, preventive task, inspection or on condition task) will be reduced.

 - **All accumulated damage**: Each repair can reduce any damage accumulated up to that failure.

For simulation, the application uses the restoration factor to determine the new age of the block after the maintenance action.

For example, consider an automotive engine that fails after 6 years. If the engine is rebuilt and the rebuilding task has a 50% restoration factor:

- If **Only damage accumulated since last repair** is selected, the initial rebuild has the effect of rejuvenating the engine to a condition as if it were 3 years old.

 The engine fails again after 3 years (when it again reaches the effective "age" of 6 years), but the rebuild this time affects only the age accumulated after the first rebuild. Thus the engine has an effective age of 4.5 years after the second rebuild (3 + 3 x (1 - 0.5) = 4.5).

 After the second rebuild, the engine fails again after a period of 1.5 years (when it again reaches the effective age of 6 years) and a third rebuild is required. The effective age of the engine after the third rebuild is 5.25 years (4.5 + 1.5 x (1 - 0.5) = 5.25).
If All accumulated damage is selected, the initial rebuild has the effect of rejuvenating the engine to a condition as if it were 3 years old.

The engine fails again after 3 years (when it again reaches an effective age of 6 years) and another rebuild is required. This rebuild also rejuvenates the engine by 50%, thus making it effectively 3 years old again.

After the second rebuild, the engine fails again after a period of 3 years (when it again reaches the effective age of 6 years) and a third rebuild is required. The effective age of the engine after the third rebuild is 3 years.

Compare the following tables to see how the two options differ.

Only Damage Accumulated Since Last Repair

<table>
<thead>
<tr>
<th>Time</th>
<th>Time Since Last Repair</th>
<th>Effective Age Before Repair</th>
<th>Effective Age After Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start = 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6 years</td>
<td>6</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>9 years</td>
<td>3</td>
<td>6</td>
<td>4.5</td>
</tr>
<tr>
<td>10.5 years</td>
<td>1.5</td>
<td>6</td>
<td>5.25</td>
</tr>
</tbody>
</table>

All Accumulated Damage

<table>
<thead>
<tr>
<th>Time</th>
<th>Time Since Last Repair</th>
<th>Effective Age Before Repair</th>
<th>Effective Age After Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start = 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6 years</td>
<td>6</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>9 years</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>12 years</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>
Chapter 26: Resources

The ReliaWiki resource portal has more information on restoration factors at:

What’s Changed? In versions prior to 2019, the **Restoration amount** was specified as a percentage rather than a decimal, and was entered either manually or using a slider bar.

- **Additional Costs to Consider** allows you to choose or create models to represent costs that are always associated with the task. **Cost per task** uses a cost model, and **Downtime rate** uses a cost per unit time model. If no models are assigned, it is assumed that there are no additional costs.

- **Identifiers** contains **additional identifying information** that can be used to search for this resource.

- **History** provides information about when the record was created and last updated. If the **history log** has been activated at the project level, you can click the **View Item History** icon to open the Record History Log for the record.

- **Watch** allows each individual user to **subscribe to receive an alert** (via e-mail, SMS text message or portal message) when the resource is changed.

- **Trace Usage.** For existing resources, the link at the bottom of the window indicates how many times the resource is currently being used. If you need more information, click the link or the icon to open the **Dependency Viewer**.

Corrective Tasks
Corrective maintenance consists of the action(s) taken to restore a failed component to operational status. Corrective maintenance is performed at unpredictable intervals because a component's failure time is not known *a priori*.

Corrective tasks:

- Always bring the block down.
- May bring the system down.
- Require spare parts.
In addition to the common task properties, the following options are used to configure corrective tasks in the Maintenance Task window:

- **Task Scheduling** allows you to specify when the corrective task will be performed.
 - If you choose **Upon item failure**, the task will be initiated upon failure of the component.
 - If you choose **When found failed during an inspection**, the task will be initiated if the component is found to be failed at the next scheduled inspection. This is useful in the case of "hidden failures" (i.e., failures that are not apparent until an inspection is performed) and in cases where the component is not considered mission critical and repair can wait until the next scheduled maintenance.
 - If a preventive task takes place before the next inspection, then preventive maintenance (not corrective maintenance) will be performed to restore the block. The downtime, etc. will depend on the preventive task properties.
 - If a corrective task is performed upon inspection and an inspection finds the block failed, then the total downtime includes the full inspection duration followed by the corrective task duration.

If you have selected to perform a corrective task upon inspection and an inspection or preventive task does not occur after the failure, then the block will never be restored. This could happen under either of the following circumstances:

- Neither an inspection nor a preventive task is specified for the block.
 and/or
- The conditions have not been met to perform an inspection or preventive task.

- **Basic Repair Properties > Spare Part Pool** allows you to choose or create the **spare part pool(s)** that will be used in performing the task. A spare part pool describes the conditions that determine whether a spare part will be available when needed and specifies the time and costs associated with obtaining the spare part. If a spare part pool is not assigned, it is assumed that unlimited free spares are always immediately available.

In Version 2019, the following enhancements have been added:
• For each task, you now need to specify a quantity of parts requested from the pool by the task. The default value in the **Quantity requested by task** field is 1.

• You can assign multiple spare part pools to a task. In this case, the task is assumed to require all requested parts from all requested pools. In other words, the pools are in an AND relationship, not an OR relationship.

For corrective and preventive tasks, the simulation requests a team as soon as a task is initiated; however, the team does not begin performing the task unless/until all required spare parts are available.

The total time for the task consists of:

• The time to complete corrective and preventive maintenance (based on the corrective task or preventive task properties).

PLUS

• The longer of the following times:

 • The time to obtain all spare parts (based on the spare part pools).

 OR

 • The time to obtain an available crew (based on crew availability) and any logistical delay time associated with the crew.

For example, consider a block that fails at 10 hours (on the system clock). Its corrective task will take 5 hours, the time required to obtain all spares will be 48 hours and the team consists of a single crew with a logistical delay time of 8 hours. In this case:

• All spares will arrive by 58 hours (on the system clock).

• The team will be requested at 10 hours and will arrive at 18 hours (on the system clock).

• The maintenance will be completed at 63 hours (on the system clock).

• The total time for the corrective maintenance will be 53 hours (48 for the spares plus 5 for the task).

• The team's crew will have traveled for 8 hours, waited 40 hours for the spare parts and performed the task for 5 hours for a total of 53 hours (including waiting for the spare parts).
If the spare parts are available without delay and all other conditions are the same, then:

- The team will be requested at 10 hours and will arrive at 18 hours (on the system clock).
- The maintenance will be completed at 23 hours (on the system clock).
- The total time for the corrective maintenance will be 13 hours (8 for the team plus 5 for the task).
- The team's crew will have traveled for 8 hours and performed the task for 5 hours, for a total of 13 hours.

Task Consequences

- **Does this task bring the system down?** By default, corrective tasks will not bring the system down unless having the block down brings the system down based on the reliability-wise configuration in the diagram. If you answer Yes, the task will bring the system down even if the task has a zero duration. This forces the task to be included in the count of system downing events, regardless of the task's duration.

- **Does this task bring the item down?** It is assumed that a block will always be down when a corrective task is performed, even a task with a zero duration; thus, this option cannot be changed.

Preventive Tasks

Preventive maintenance is the practice of repairing or replacing components or subsystems before they fail in order to promote continuous system operation or to avoid dangerous or inconvenient failures. The schedule for preventive maintenance is based on observation of past system behavior, component wearout mechanisms and knowledge of which components are vital to continued system operation. In addition, cost is always a factor in the scheduling of preventive maintenance. In many circumstances, it is financially more sensible to replace parts or components at predetermined intervals rather than to wait for a failure that may result in a costly disruption in operations.

Preventive tasks:

- Always bring the block down.
- May bring the system down.
- Require spare parts.
There are restrictions on the tasks that can be performed simultaneously on the same block. Please refer to Multiple Tasks on the Same Block in the BlockSim/RENO documentation.

In addition to the common task properties, the following options are used to configure preventive tasks in the Maintenance Task window:

- **Task Class** allows you to specify the kind of maintenance that the task performs: preventive, inspection or on condition. The options available in the Maintenance Task window will vary depending on your choice in this field.

- **Task Scheduling** allows you to specify the circumstances under which the task will be performed. (See Task Scheduling.)

- **Basic Task Properties > Spare Part Pool** allows you to choose or create the spare part pool(s) that will be used in performing the task. A spare part pool describes the conditions that determine whether a spare part will be available when needed and specifies the time and costs associated with obtaining the spare part. If a spare part pool is not assigned, it is assumed that unlimited free spares are always immediately available.

In Version 2019, the following enhancements have been added:

- For each task, you now need to specify a quantity of parts requested from the pool by the task. The default value in the Quantity requested by task field is 1.

- You can assign multiple spare part pools to a task. In this case, the task is assumed to require all requested parts from all requested pools. In other words, the pools are in an AND relationship, not an OR relationship.

For corrective and preventive tasks, the simulation requests a team as soon as a task is initiated; however, the team does not begin performing the task unless/until all required spare parts are available. For a complete explanation of how this affects the total time for the task, see Corrective Tasks.

- **Task Consequences**

- Does this task bring the system down?: By default, preventive tasks will not bring the system down unless having the block down brings the system down based on the reliability-wise configuration in the diagram. If you answer Yes, the task will bring the system down, even if the task has a zero duration. This forces the task to be included in the count of system downing events, regardless of the task's duration.

- Does this task bring the item down?: It is assumed that a block will always be down when a preventive task is performed, even a task with a zero duration; thus, this option cannot be changed.
• **If bringing the item down causes the system to go down, do you still perform the task?** If you answer *Yes*, the task will be performed even if doing so brings the system down, either because the task itself brings the system down or because the task brings the block down and the block being down causes the system to go down. If you answer *No* and the task brings the system down, the task will never be performed during simulation unless the system is already down for another reason. For instance, a preventive task that is specified to be performed upon system down will be performed even if it brings the system down regardless of your answer here. This is because the system is already down, which is what triggered the task in the first place.

A preventive task that does not bring the system down at the preventive maintenance time will still be factored into the simulation even if its duration will bring the system down at a later time.

For a preventive task that is scheduled to occur based on item age and for which you have answered *No* to this question, if the task is going to bring the system down, then it will not take place. If, however, the block reaches the age again (after restoration by a corrective action, inspection or another type of preventive maintenance) and this time it will not bring the system down, then it will be performed.

• **Perform this task even if the item failed before this task was scheduled to occur?** If you answer *Yes*, the task will be performed even if the item has already failed. This option is available only for the following tasks:

 • Preventive tasks and inspection tasks (including the inspection portion of on condition tasks) that are scheduled based on item age. In this case, the item's "clock" is not stopped upon failure, and the item's "virtual age" is used to trigger the task.

 • Inspection tasks (including the inspection portion of on condition tasks) that are scheduled upon system down or events in a maintenance group.

 • The inspection portion of on condition tasks scheduled based on calendar age.

Note that this setting is not relevant when a task is scheduled to be performed as part of a maintenance phase in a phase diagram; all such tasks are performed regardless of whether the item has failed.
• **RCM** properties are text-based properties that are used to keep track of details that may be helpful in reliability centered maintenance analysis, but are not used in reliability/maintainability simulations. These properties are shown only if they are enabled for the project via the interface style settings in RCM++/RBI.

 • **Status**: The status of the task (choose from a drop-down list). This setting could be used if you want to keep track of all tasks that have been considered, regardless of whether they end up in the actual maintenance plan (e.g., recommended, rejected, assigned).

 • **Proposed Interval**: The interval that was initially proposed for the task. This may be different from the interval that is actually assigned to the task. For example, you may wish to use this property if the team originally suggests a particular interval for the task (perhaps the calculated optimum interval) but then decides to assign a different interval (perhaps an interval that is more convenient for packaging a group of tasks).

 • **Reference Document**: A reference to another document that provides more detailed information about the task (e.g., procedure instructions).

 • **Condition**: A description of the condition that indicates that a failure will occur (e.g., a threshold for a measurement of wear, vibration, etc). Typically, this field is used for on condition maintenance tasks.

 • **Zone**: The zone of the system in which the task will be performed. Typically, this field is used for aircraft MSG-3 analyses.

 • **Access**: The access that will be required in order to perform the task. Typically, this field is used for aircraft MSG-3 analyses.

Note: A preventive task with a restoration factor of 0 will generate a new failure with the current age.

Inspection Tasks

Inspections are used in order to uncover hidden failures (also called “dormant failures”); they are also used as part of on condition tasks to detect impending failures so that preventive maintenance can be performed.

In general, no maintenance action is performed on the component during an inspection unless the component is found failed, in which case a corrective maintenance action is initiated. However, there might be cases where a partial restoration of the inspected item would be performed during an inspection. For example, when checking the motor oil in a car between scheduled oil changes, one might occasionally add some oil in order to keep it at a constant
level. This sort of restoration is not considered to be preventive maintenance; the deciding factor is that inspection tasks do not use spare parts. Note that an inspection task that triggers a corrective task will not restore the failed block. Only the corrective task will restore the block.

Inspection tasks (including the inspection and associated minor work):

- May bring the block down.
- May bring the system down; if the task brings the system down, it also brings the block down.
- Do not use spare parts.

In addition to the common task properties, the following options are used to configure inspection tasks in the Maintenance Task window:

- **Task Class** allows you to specify the kind of maintenance that the task performs: preventive, inspection or on condition. The options available in the Maintenance Task window will vary depending on your choice in this field.

- **Task Scheduling** allows you to specify the circumstances under which the task will be performed. (See Task Scheduling.)

- **Task Consequences**: An inspection task will not bring the block down unless one of the following options is selected.

 - **Does this task bring the system down?**: If you answer Yes, when the task is performed, the system will be down, even if the task has a zero duration. If not selected, the task will bring the system down only if it brings the block down and having the block down brings the system down based on the reliability-wise configuration in the diagram. If this option is selected, even tasks with a zero duration will bring the system down. This forces the task to be included in the count of system downing events, regardless of the task's duration.

 - **Does this task bring the item down?**: If you answer Yes, when the task is performed, the block will be down. Even tasks with a zero duration will bring the block down in this case.

 - **Perform this task even if the item failed before this task was scheduled to occur?**: If you answer Yes, the task will be performed even if the item has already failed. This option is available only for the following tasks:

 - Preventive tasks and inspection tasks (including the inspection portion of on condition tasks) that are scheduled based on item age. In this case, the item's "clock" is not stopped upon failure, and the item's "virtual age" is used to trigger the task.
• Inspection tasks (including the inspection portion of on condition tasks) that are scheduled upon system down or events in a maintenance group.

• The inspection portion of on condition tasks scheduled based on calendar age.

Note that this setting is not relevant when a task is scheduled to be performed as part of a maintenance phase in a phase diagram; all such tasks are performed regardless of whether the item has failed.

• **RCM** properties are text-based properties that are used to keep track of details that may be helpful in reliability centered maintenance analysis, but are not used in reliability/maintainability simulations. These properties are shown only if they are enabled for the project via the interface style settings in RCM++/RBI.

• **Status**: The status of the task (choose from a drop-down list). This setting could be used if you want to keep track of all tasks that have been considered, regardless of whether they end up in the actual maintenance plan (e.g., recommended, rejected, assigned).

• **Proposed Interval**: The interval that was initially proposed for the task. This may be different from the interval that is actually assigned to the task. For example, you may wish to use this property if the team originally suggests a particular interval for the task (perhaps the calculated optimum interval) but then decides to assign a different interval (perhaps an interval that is more convenient for packaging a group of tasks).

• **Reference Document**: A reference to another document that provides more detailed information about the task (e.g., procedure instructions).

• **Condition**: A description of the condition that indicates that a failure will occur (e.g., a threshold for a measurement of wear, vibration, etc). Typically, this field is used for on condition maintenance tasks.

• **Zone**: The zone of the system in which the task will be performed. Typically, this field is used for aircraft MSG-3 analyses.

• **Access**: The access that will be required in order to perform the task. Typically, this field is used for aircraft MSG-3 analyses.

To understand how inspections work during simulation, you should be aware of the following:

• Multiple non-downing inspections cannot occur on the same block at the same time.

• A non-downing inspection with a restoration factor greater than 0 restores the block based on the age of the block at the beginning of the inspection (i.e., the task duration is not restored).
On Condition Tasks

On condition maintenance relies on the capability to detect failures before they happen so that preventive maintenance can be initiated. If, during an inspection, maintenance personnel can find evidence that the equipment is approaching the end of its life, then it may be possible to delay the failure, prevent it from happening or replace the equipment at the earliest convenience rather than allowing the failure to occur and possibly cause severe consequences. In BlockSim, on condition tasks consist of an inspection task that triggers a preventive task when an impending failure is detected during inspection.

For on condition tasks, the Inspection properties allow you to configure the inspection portion of the task, and the options are identical to those available for configuring inspection tasks. The On Condition Task (Upon Detection) properties allow you to configure the preventive portion of the task. The options are the same as those available for configuring preventive tasks, except that the Task Scheduling properties are not available. Instead, Failure Detection properties are used to specify the "warning period" that spans from the time when a potential failure can first be detected to the time when the failure occurs.

To define the Failure Detection properties, first specify when the task is likely to detect an imminent failure. If you choose When a certain percentage of the life of the item has been consumed, you must then specify the percentage of the item's life that must have elapsed in order for approaching failure to be detected. This is called the failure detection threshold (FDT). For example, if the FDT is 0.9 and the item will fail at 1,000 days, the approaching failure can begin to be detected at 900 days. If you choose Within a fixed time frame prior to failure, you must then specify the amount of time before a failure when the approaching failure can be detected by inspection. This is called the P-F interval. For example, if the P-F interval is 200 days and the item will fail at 1,000 days, the approaching failure can begin to be detected at 800 days.

On condition tasks can be set to perform the preventive portion of the task even if the item failed before the approaching failure could be detected. If the inspection portion of the task is scheduled based on item age, you can answer Yes to the Perform this task even if the item failed before this task was scheduled to occur? option. (For more about this option, see Inspection Tasks.)

Note the following simulation assumptions regarding on condition tasks:

- An inspection that finds a block at or beyond the failure detection threshold or within the range of the P-F interval will trigger the associated preventive task as long as preventive maintenance can be performed on that block.
- If a non-downing inspection triggers a preventive maintenance action because the failure detection threshold or P-F interval range was reached, no other maintenance
task will be performed between the inspection and the triggered preventive task; tasks that would otherwise have happened at that time due to system age, system down or group maintenance will be ignored.

- A preventive task that would have been triggered by a non-downing inspection will not happen if the block fails during the inspection, as corrective maintenance will take place instead.

- If a failure will occur within the failure detection threshold or P-F interval set for the inspection, but the preventive task is only supposed to be performed when the system is down, the simulation waits until the requirements of the preventive task are met to perform the preventive maintenance.

- If the on condition inspection triggers the preventive maintenance part of the task, the simulation assumes that the maintenance team will forego any routine servicing associated with the inspection part of the task. In other words, the restoration will come from the preventive maintenance, so any restoration factor defined for the inspection will be ignored in these circumstances.

Task Scheduling

The following information applies to the task scheduling properties for preventive tasks, inspection tasks and the inspection portion of on condition tasks.

Click the arrow in the **When is this task performed?** field to define the criteria for performing the task. The remaining fields in the task scheduling properties will depend on your selection in this field. The task can be performed:

- **At certain intervals.** If you select this option, you must then specify:
 - Whether the interval is fixed or dynamic.
 - Whether the interval is based on the item's age (taking duty cycle into account) or on calendar time.

- **Upon certain events.** If you select this option, you can choose for the task to be performed:
 - Whenever the system is down for any reason. No further task scheduling properties are required for this option.
 - Based on events in a maintenance group. The task will be performed when user-specified events occur for either some or all blocks in one or more user-specified maintenance groups. The item that the task is assigned to does not need to be part of the selected maintenance group(s).
• When a maintenance phase in a phase diagram starts. Please note that if the task is selected to be performed only at the start of a maintenance phase and the item that the task is associated with is not included in the maintenance phase's associated maintenance template, the task will never be performed. No further task scheduling properties are required for this option.

• Based on events in a flow group (see Flow Groups in the BlockSim documentation). This setting is appropriate only for tasks used in BlockSim process flow simulation diagrams. The task will be performed when flow either reaches/exceeds its threshold or drops to or below its threshold in one or more user-specified flow groups. The block(s)/item(s) affected by the task may or may not belong to any of the flow groups.

The remaining task scheduling properties for each type of schedule are given next. For any interval that you specify, you will be asked to specify the units used.

• **Fixed interval based on either item age or calendar time:** Enter the interval when the task will be performed (e.g., if you enter 100, the task will be scheduled for 100, 200, 300, etc.).

 • Item age refers to the accumulated age of the block, which gets adjusted each time the block is repaired (i.e., restored). If the block is repaired at least once during the simulation, this will be different from the elapsed simulation time. For example, if the restoration factor is 1 (i.e., "as good as new") and the assigned interval is 100 days based on item age, then the task will be scheduled to be performed for the first time at 100 days of elapsed simulation time. However, if the block fails at 85 days and it takes 5 days to complete the repair, then the block will be fully restored at 90 days and its accumulated age will be reset to 0 at that point. Therefore, if another failure does not occur in the meantime, the task will be performed for the first time 100 days later at 190 days of elapsed simulation time.

 • Calendar time refers to the elapsed simulation time. If the assigned interval is 100 days based on calendar time, then the task will be performed for the first time at 100 days of elapsed simulation time, for the second time at 200 days of elapsed simulation time and so on, regardless of whether the block fails and gets repaired correctively between those times.
If the task is performed at fixed intervals, you can select the **Override task scheduling properties with a task package** option to assign the task to a task package, which is a group of tasks that are performed together at scheduled intervals. (Note that if a task has been assigned to a task package, the task scheduling properties will be disabled and displayed in italics.)

- **Dynamic interval based on either item age or calendar time**: The task will be performed at variable user-specified intervals. This can be used, for example, to schedule maintenance to be performed with increasing frequency as an item gets older. The **Dynamic intervals** field shows the number of intervals specified. Click the button (...) to open the Intervals window, which allows you to enter the item age intervals when the task will be performed. The intervals are the actual time between maintenance (i.e., they are not cumulative). Note that the last value entered in the Intervals window will repeat, if necessary, until the end of the simulation time.

- **Based on events in a maintenance group**: Specify the events that can trigger the task (i.e., a block fails; a corrective, preventive or inspection task starts; a block is restored to operation), and choose the maintenance group(s) in which the event(s) must occur in order to trigger the task.

- **Based on events in a flow group**: Specify the events that can trigger the task (i.e., flow rate through any connector exceeds or drops below a certain level), and choose the flow group(s) in which the event(s) must occur in order to trigger the task.

Note: For preventive and inspection tasks that are scheduled based on item age, the **Perform this task even if the item failed before this task was scheduled to occur?** property determines whether actual age or "virtual age" is considered. If you answer **Yes**, the task will be performed even if the item has already failed. In other words, the item's "clock" is not stopped upon failure, and the item's virtual age is used to trigger the task. (For more about this option, see [Preventive Tasks](#).)

Crews

Crews are resources that can be shared among analyses and can be managed via the **Resource Manager**. You can assign the crews to maintenance tasks. Starting in Version 2019, crews are assigned to maintenance tasks as part of teams. This allows you to require multiple crews to complete a task (e.g., if a task requires both a mechanic and an electrician). A team can also consist of a single crew.

The Crew window allows you to create, view and edit crews. It can be accessed by clicking the **Create New** or **View/Edit** icon in the Crew wizard, which is accessed from **Crew** fields in properties windows (e.g., under **Teams for task** in the **Maintenance Task window**).
It can also be accessed from the Crews page of the Resource Manager by choosing Home > Edit > Add, by selecting a crew and choosing Home > Edit > View or by double-clicking a crew.

For a new resource, a name will be proposed automatically based on the default naming criteria established for the current database (see Default Name Formats window). You can replace this with your own name of up to 150 characters, if desired. Remember that the name and identifiers are the primary way in which your team will be able to find the resources you need for your analyses.

The following settings are available to configure the crew:

- **Crew**
 - **Direct cost** allows you to choose or create a model to represent the direct cost per unit time to engage the crew (e.g., the hourly charge for the time that the crew spends performing the task). This field uses a cost per unit time model. If no model is assigned, it is assumed that there is no cost.
 - **Cost per incident** allows you to choose or create a model to represent the cost per incident to engage the crew (e.g., if you have to pay a fixed fee instead of or in addition to the hourly rate). This field uses a cost model. If no model is assigned, it is assumed that there is no cost.
 - **Is there a limit to the number of tasks this crew can perform at the same time?** If you answer Yes, you must specify the limit in the Number of tasks field. For example, if the crew can only fix 3 components at any given time and 4 components fail at the same time, then the crew will not be able to fix the fourth component until one of the other components has been restored.
 - **Logistic Delay** allows you to choose or create a model to describe the delay time before the crew can start the task. If no model is assigned, it is assumed that the crew can start the task immediately without any delays (i.e., immediate repair). The team with the highest priority is always called upon first, regardless of logistic wait times for the team's crews. If a team is needed and all teams are engaged, the team with the shortest wait time (based on the longest wait time of its constituent crews) is chosen to perform the task.

For a given simulation, a crew's logistic time is constant across that one simulation for the task. It is taken randomly from its distribution or from its fixed time.

For on condition tasks, if the same crew performs the inspection and preventive maintenance and there are logistic delays associated with the crew, the logistic delays will be factored into the simulation for both parts of the task.
Chapter 26: Resources

- If Include logistic delay in cost is selected, then the time spent waiting for the crew (including logistic delay and any delay incurred due to limits on the number of tasks the crew can perform simultaneously) will be included when calculating crew costs, based on the direct cost specified for the crew.

- If Include part delay in cost is selected, then the time spent by the crew waiting for spare parts will be included when calculating crew costs, based on the direct cost specified for the crew.

- Identifiers contains additional identifying information that can be used to search for this resource.

- History provides information about when the record was created and last updated. If the history log has been activated at the project level, you can click the View Item History icon to open the Record History Log for the record.

- Watch allows each individual user to subscribe to receive an alert (via e-mail, SMS text message or portal message) when the resource is changed.

- Trace Usage. For existing resources, the link at the bottom of the window indicates how many times the resource is currently being used. If you need more information, click the link or the icon to open the Dependency Viewer.

Spare Part Pools
Spare part pools are resources that can be shared among analyses and can be managed via the Resource Manager. A spare part pool describes the conditions that determine whether a spare part will be available when needed and specifies the time and costs associated with obtaining the spare part. You can assign the pools to maintenance tasks.

What's Changed? Starting in Version 2019, tasks can request multiple spare parts from a pool. All requested parts must be delivered before the task can be performed.

In addition, multiple spare part pools can be assigned to tasks. In this case, the task is assumed to require all requested parts from all requested pools.

The Spare Part Pool window allows you to create, view and edit spare part pools. It can be accessed by clicking the Create New or View/Edit icon in the Spare Part Pool wizard, which is...
accessed from **Spare Part Pool** fields in properties windows (e.g., in the **Maintenance Task window**).

It can also be accessed from the Spare Part Pools page of the Resource Manager by choosing **Home > Edit > Add**, by selecting a spare part pool and choosing **Home > Edit > View** or by double-clicking a spare part pool.

For a new resource, a name will be proposed automatically based on the default naming criteria established for the current database (see **Default Name Formats window**). You can replace this with your own name of up to 150 characters, if desired. Remember that the name and identifiers are the primary way in which your team will be able to find the resources you need for your analyses.

The following settings are available to configure the spare part pool:

Tip: New in Version 2019, **profile models** can be used to define any acquisition time and non-holding costs. This new model type allows you to model changes in cost and duration over time. You can also still use all other model types for these fields.

- **Spares**
 - **Direct cost per dispensed item** allows you to specify the direct cost of each spare part in the pool.
 - **Spare acquisition type:** You can select **Unlimited spares** to indicate that an unlimited number of spare parts exist in the pool (i.e., if a spare part is required, it will always be available). If you select **Limited number of spares**, the Pool Restock properties and the Emergency Spare Provisions properties will become available. In addition, you will need to define the following properties:
 - **Initial stock level** is the number of spare parts in the pool at the start of simulation.
 - **Holding Cost ($/Hour in pool)** allows you to choose or create a model to represent the cost of holding a spare part in the pool. The unit used is the default unit for the database. This field uses a cost per unit time model. If no model is assigned, it is assumed that there is no cost. (To determine which unit is defined as the default, choose **File > Manage Repository > Unit Settings**. The default unit is the one that is selected in the Use as Default column.)
 - If you select the **Pool has maximum capacity** check box, you will need to specify the maximum number of items that can exist in the spare part.
pool at any given time. The restock options will add parts only up to this maximum capacity. For example, suppose that the maximum capacity is 20 units and the restock quantity is 5 units. If the current stock level is 18 when a restock is triggered (either on a scheduled interval or because the stock fell to a specified level), then only 2 units will be added to the spare part pool, even though the restock options call for the addition of 5 units at each restock.

If you select **Fixed probability of stockout**, the Emergency Spare Provisions properties will become available. In addition, you will need to enter the probability of running out of stock as a decimal value.

- **Logistic Time for Spare Acquisition** allows you to choose or create a model to describe the amount of time required to obtain the part when it is required for maintenance, assuming that the part is in stock. This field uses a duration model. If no model is assigned, it is assumed that the spare part is available for use immediately.

- The **Pool Restock** properties allow you to define how the spare part pool will be restocked. These properties are available only if you have selected the **Limited number of spares** option in the **Spare acquisition type** field. You can select either or both of the following restock schemes:
 - If the **Scheduled restock** option is selected, the pool will be restocked at fixed intervals. The following properties will be available:
 - **Restock every** allows you to specify the time interval at which the pool will be restocked.
 - **Number added per restock** allows you to specify the number of parts that are added to the pool at every scheduled interval.
 - If the **Restock as needed** option is selected, the pool will be restocked when the stock drops to a specified quantity. This option is available only if the initial stock level entered is at least 1. The following properties will be available:
 - **Restock when stock drops to** allows you to specify the number of parts in the pool that will trigger the restock (e.g., when the stock drops to 5, order more parts).
 - **Number added per restock** allows you to specify the number of parts that are added to the pool when the restock condition has been met.
 - **Required time for stock arrival** allows you to choose or create a model to describe the amount of time required for the new parts to arrive after
the restock has been initiated. This field uses a duration model. If no model is assigned, it is assumed that the parts arrive immediately.

- **Off-site spare part pool** allows you to assign an off-site spare part pool to the current pool. If specified, this pool is considered to be the source for restocking the current pool, which allows you to describe properties for the next level of spare parts that can be accessed when needed. If no off-site spares pool is specified, the parts are assumed to be ordered and no properties are described for the source.

 Tip: Circular references between spare part pools are not permitted. In other words, if Pool 1 calls Pool 2 as its off-site spare part pool, and Pool 2 calls Pool 1 as its off-site spare part pool, BlockSim will display a message notifying you of the problem upon simulation.

- The **Emergency Spare Provisions** properties allow you to define the circumstances when the spare part pool is empty but a spare part is required for a task. These properties are available only if you have selected either the **Limited number of spares** option or the **Fixed probability of stockout** option in the **Spare acquisition type** field. Selecting the **Can obtain emergency spares if needed** option indicates that a spare part can be obtained if required and the spare part pool is empty; otherwise, the repair will be delayed until more spare parts arrive in the spare part pool. Selecting this option makes the following properties available:

 - **Number added per emergency** allows you to specify the number of parts that are added to the pool when an emergency acquisition occurs.

 - **Additional costs for emergency spares** allows you to choose or create a model to represent a per incident cost for emergency acquisition of spares (e.g., there is a $50 surcharge when emergency spares are required). This field uses a cost model. If no model is assigned, it is assumed that there is no cost.

 - **Required time for emergency spare** allows you to choose or create a model to describe the amount of time required for the emergency spare parts to arrive after the emergency acquisition has been initiated. This field uses a duration model. If no model is assigned, it is assumed that the parts arrive immediately.

 - **Off-site spare part pool** allows you to assign an emergency off-site spare part pool to the current pool. This allows you to create another level of spare parts that can be accessed for the emergency acquisition.

 - **Identifiers** contains additional identifying information that can be used to search for this resource.
Chapter 26: Resources

- **History** provides information about when the record was created and last updated. If the history log has been activated at the project level, you can click the View Item History icon to open the Record History Log for the record.

- **Watch** allows each individual user to subscribe to receive an alert (via e-mail, SMS text message or portal message) when the resource is changed.

- **Trace Usage.** For existing resources, the link at the bottom of the window indicates how many times the resource is currently being used. If you need more information, click the link or the icon to open the Dependency Viewer.

Metrics

A *metric* is a resource that provides a flexible way to display any numerical value of interest, and track how it changes over time. This can be used for tracking and displaying a variety of Key Performance Indicators (KPIs) and other values, including:

- Reliability metrics (e.g., reliability, BX% life, etc.) calculated from a model resource.
- Any result from a simulated BlockSim diagram.
- The completion percentage and resource usage for Project Planner gates.
- The reliability or availability calculated from an FMRA in XFMEA/RCM++/RBI.
- Any other user-defined value that you wish to display and track.

Like any other resource, you can create or edit metrics from the Resource Manager, and while you’re performing a relevant analysis. (See Showing Metrics in Folios/Diagrams, Using Metrics in Project Planner Gates and Pushing Metrics from an FMRA.)

If your organization chooses to implement an SEP web portal, it's easy to choose specific metrics that you want to access quickly from any web-enabled device.

Note: Metrics are always local resources. They cannot be made global. Metrics in a reference project are local to that project and can't be selected for use in other projects.
Metric Types

The following pictures demonstrate the four basic options for specifying the value that will be displayed and tracked.

Calculate from a model resource

<table>
<thead>
<tr>
<th>Metric Type</th>
<th>Type</th>
<th>Associated Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reliability Given Time</td>
<td></td>
</tr>
</tbody>
</table>

Obtain from a BlockSim simulation diagram

<table>
<thead>
<tr>
<th>Metric Type</th>
<th>Type</th>
<th>Associated Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Simulation Result</td>
<td></td>
</tr>
</tbody>
</table>

Enter any user-defined value

<table>
<thead>
<tr>
<th>Metric Type</th>
<th>Type</th>
<th>Constant Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Constant</td>
<td>100</td>
</tr>
</tbody>
</table>

The value is "pushed" from a Project Planner gate or FMRA

<table>
<thead>
<tr>
<th>Metric Type</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Application Driven Value</td>
</tr>
</tbody>
</table>

Calculated Result and Saved Values

The Calculated Result field shows the latest calculated value for the metric. This will be updated automatically if the associated analysis or model changes, and the latest result will be stored in an array of saved values.

You can then click the View Saved Values icon to view the history of how the metric has changed over time.

If you change any of the properties that affect the way the result is calculated, you will be prompted to decide whether to clear the array of values that were saved before the change. For example:

- If you change the metric from Reliability to Probability of Failure, or from 1,000 hours to 500 hours, you will probably want to clear the array so the timeline of saved values is not misleading.
Chapter 26: Resources

- Alternatively, if you change the metric's associated model from prototype1 to prototype2 to prototype3 at different stages of development, you may wish to keep the saved values after each change so the timeline shows the improvement across all three stages.

In the Metric Results Viewer, you can also choose to clear the entire history or delete only a particular saved value.

The results viewer also allows you to copy the values to the Clipboard so you can paste into another application. For example, if the metric stores the calculated reliability at different points in time, you may wish to analyze the data with a reliability growth model in RGA.

- Copy > All rows (dates) copies the exact dates shown in the table.
- Copy > All rows (cumulative days) replaces the dates with the cumulative number of days since the date of the last saved value. For example, if the first date is 1/1/2015 and the second date is 12/31/2015, the cumulative days would be 0 for the first date and 365 for the second date.

Target Conditions and Result Indicator

The Target Conditions feature color-codes the current value of the metric. If all specified conditions are met, then the metric's value will be displayed in green. If one or more conditions are not met, then it will be in red. For example, in the following pictures, the result is green if the estimated system reliability is at least 80%, and red if it is not.

The Result Indicator feature color-codes the indicator that shows whether the value has increased or decreased since the prior saved value. If the direction of the change is desirable, the indicator will be green; if it is undesirable, the indicator will be red. As an example, the following pictures are from the SEP.
Identifiers, History, Watch and Trace Usage
As with most other resources:

- **Identifiers** contains additional identifying information that can be used to search for this resource.

- **History** provides information about when the record was created and last updated. If the history log has been activated at the project level, you can click the View Item History icon to open the Record History Log for the record.

- **Watch** allows each individual user to subscribe to receive an alert (via e-mail, SMS text message or portal message) when the resource is changed.

- **Trace Usage.** For existing resources, the link at the bottom of the window indicates how many times the resource is currently being used. If you need more information, click the link or the icon to open the Dependency Viewer.

Showing Metrics in Folios/Diagrams
The Publishing page of the control panel shows all of the metric resources that are associated with the current analysis. (The metrics can be created and edited either from the Resource Manager or the control panel.) This applies for:

- Data sheets in Weibull++, ALTA or RGA that have a published model.

- Analytical or simulation diagrams in BlockSim that have a published model for the entire system (either a fitted model or an analytical model).

- Simulation diagrams in BlockSim that have simulation results.

This makes it easy to see the metrics that have been created for each analysis (which may also be displayed in relevant Project Planner gates or in the SEP web portal) and to see the history of how the analysis results changed over time. It also provides a convenient way to create new metrics for the analysis, if desired.

As an example, the following picture shows a typical scenario for Weibull++. In Weibull++, ALTA or RGA, the control panel shows all metrics that are associated with the model published from the current data sheet. In BlockSim, it shows all metrics that are associated with a model published from the diagram and/or obtained from the diagram’s simulation results.

- Double-click a metric to see its properties and history of saved values.
A Watch icon will be shown beside any metric for which you have subscribed to receive an alert when the resource is changed.

Click the Metric Summary icon to see a quick report of all the metrics displayed in the current branch.

Click the Create New icon to create a new metric.

Associating Existing Metrics with a Different Data Sheet

When an analysis changes (e.g., new data, after a design change, etc.), you may choose to simply update the existing data sheet and recalculate, or keep the original analysis unchanged and perform the updated analysis in a new data sheet.

If you decided to create a new data sheet, there are two ways to ensure that the metrics will reflect the complete history from both analyses:
Publish to the existing model from the new data sheet
If you want the published model to reflect the latest analysis results, you can simply transfer both the model and the associated metrics to the new data sheet. To do that:

1. Calculate the new data sheet and then go to the Publishing page of the control panel.
2. Click Publish to Existing Model and then select the model from the original data sheet.

Change the model for the for the existing metrics
If you want to keep the original published model associated with the original data sheet, you can publish a new model for the new data sheet and then transfer the metrics to the new model. To do that:

1. Publish a new model for the new data sheet.
2. From either the original data sheet’s control panel or the Resource Manager, open each metric that was associated with the original data sheet and change the Associated Model.

As a shortcut, you can click the Select Existing icon on the new data sheet’s control panel and choose one or more existing metrics in the Select Resource window. It is important to keep in mind that when you do this, you are changing the associated model for each selected metric.

Using Metrics in Project Planner Gates
There are two ways to utilize metrics in a Project Planner gate:
Relevant Metrics
For any gate in a project plan, you can choose to display up to three metrics that are relevant to this stage of the project (e.g., the target reliability, the latest calculated reliability, etc.).

Use the fields under the Relevant Metrics heading to select an existing metric or create a new one.

Push to Metrics
For any gate in a project plan, you can also choose to push any of the following values to a metric resource. This makes it easy to see the history of all saved values, and enables users to subscribe to receive alerts when the metric changes. You can also choose to show this information in the SEP web portal if it is implemented for the current database.

- **Percent Completed** is the percentage of the total duration of dependent actions/gates that is complete. For example, if Action 1 (duration = 3 days) is complete and Action 2 (duration = 1 day) is incomplete, the progress is 75%.

- **Actual Man Hours %** is the percentage of planned hours that have been used to complete the gate.

- **Actual Costs %** is the percentage of the budget that has actually been used to complete the gate.

Use the fields under the Push to Metrics heading to create a new metric or select an existing metric that is not already assigned to receive a pushed value. (Note that only unused metrics are shown in this list.)

When you first assign a metric in one of these fields, the current value will be automatically saved to the metric. Subsequently, the value will be recalculated each time an associated action or gate is changed. If the value is found to have changed, it will be saved to the metric. To see the current saved value, click inside the field. This will also display a result indicator and the View Saved Values icon, which you can click to see a history of all saved values.
Pushing Metrics from an FMRA

The Push to Metrics fields on the Properties tab of the Analysis panel in XFMEA/RCM++/RBI enable you to "push" the reliability and availability values that were calculated/simulated from the Failure Modes and Reliability Analysis (FMRA) to metric resources.

This makes it easy to see the history of all saved values while you’re working in the FMRA, and enables users to subscribe to receive alerts when the metric changes. If desired, you can also choose to show this information in a specific Project Planner gate (under the Relevant Metrics heading), and in the SEP web portal if it is implemented for the current database.

1. Go to the FMRA tab in the system panel. (See Enabling and Viewing the FMRA in the XFMEA/RCM++/RBI documentation.)

2. Select any item in the FMRA hierarchy and use the fields under the Push to Metrics heading to create a new metric or select an existing metric that is not already assigned to receive a pushed value.

3. Calculate and/or simulate the FMRA:
 a. To calculate the reliability, choose FMRA > Calculations > Calculate (Reliability).
b. To simulate the availability, choose **FMRA > Calculations > Simulate (Availability)**.

4. Each time you calculate/simulate the FMRA, the latest value(s) will be automatically saved to the metric(s). To see the history of all saved values, click **View Saved Values**.

<table>
<thead>
<tr>
<th>Reliability / Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Reliability</td>
</tr>
<tr>
<td>Current Reliability</td>
</tr>
<tr>
<td>Target Availability</td>
</tr>
<tr>
<td>Current Availability</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Push to Metrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Push Current Reliability</td>
</tr>
<tr>
<td>Push Current Availability</td>
</tr>
</tbody>
</table>

Variables

A variable is a resource that stores a numerical value and allows you to assign a name to that value. You can then use the variable name in place of the actual value in the equations that you create. You can also use variables in functions and/or as conditional output values in conditional blocks, logic gates and branch gates.

A variable starts with an assigned initial value, which may be fixed or varied during simulation. You can use variables:

- In RENO, to act as a constant (i.e., maintain a fixed numerical value during simulation).
- In RENO, to temporarily store the output value of a block during simulation. See the next section for more information.
- In RENO, to perform a sensitivity analysis, which involves varying the value of one or two variables between runs (i.e., sets of simulations). For example, if you are analyzing potential investment strategies, you may wish to vary the number of years that you will be investing and/or the percentage of your income that will be invested to see how different inputs will affect the final results.
• As the basis for a dynamic model, which represents a fixed probability, duration or cost. The variable can be programmatically varied during simulation, thereby changing the value of the model for successive simulation runs.

• In BlockSim process flow simulation diagrams, to define a throughput amount.

• As inputs for certain fields in BlockSim simulation RBDs via simulation worksheets, allowing programmatic variation of the field value during simulation.

What's Changed? In previous versions of RENO, variables that stored fixed values were known as constants, and variables that stored outputs were known as storage variables.

Using Variables to Store Output Values in RENO
You can use variables to hold numerical values passed to them during simulation. In RENO, the following blocks are able to store their output values in variables:

• Standard blocks
• Result storage blocks
• Flag markers
• Counter blocks

Depending on your choice in the When to Reset field of the variable's properties window, you can configure the variable to retain the value passed to it during simulation or reset the variable to its initial value at specific times. The options are:

• Reset After Each Simulation (i.e., reset after a single pass through the flowchart)
• Reset After Each Run (i.e., reset after each set of simulations)
• Reset After Analysis (i.e., reset after each set of runs)
• Never Reset

When the simulations end, the variable always returns to its initial starting value unless you have selected Never Reset. If you wish to keep the value used during simulation, you can use a result storage block to store it.

Example
The following example demonstrates two things: a) how a variable may be used to store an output value and b) how a variable may be used in an equation.

In the following configuration, the first block calculates the gross profit from a sale, and then stores its output into a variable called "Profit." The conditional block determines whether the
gross profit exceeds 500. If the output is true, the third block deducts the sale's commission from the profit, and overwrites the stored value with the new output.

The following picture shows the properties window of the variable called "Profit." The initial value of this variable is set to 0.

The following picture shows the Block Properties window of the first block in the example. The output of the equation is stored in the variable.
The following picture shows the Block Properties window of the third block in the flowchart. The equation shows that the commission is deducted from the existing value in the variable, and then the variable is overwritten with the new result. At the end of the simulation, the result storage block in the flowchart stores the final value of the variable, and then the variable resets to 0.
Profiles
A profile is a resource that allows you to represent a value that varies with time. It consists of a basic pattern that either repeats as a cycle or occurs once and then continues from its last defined setting.

There are several types of profiles:

- Stress profiles are used in ALTA life-stress data folios. These profiles can be created manually, or by importing data from nCode GlyphWorks. For information about how to use stress profiles, see Time-Dependent Stress Profiles in the ALTA documentation.

- Throughput profiles are used in BlockSim process flow simulation (PFS) diagrams (if supported by your license). For information about how to use throughput profiles, see BlockSim Process Flow Simulation Diagrams in the BlockSim documentation.

- New in Version 2019, cost profiles and duration profiles are used in profile models, which are available for use in spare part pools.
Creating Profiles Manually (All Types)

Like any other resource, you can create or edit profiles from the Resource Manager, or while you’re performing a relevant analysis. To create a profile:

1. Specify the type of profile that you are creating.

2. Define a pattern for how the stress, throughput level, cost or amount of time (i.e., duration) will change over a specified period of time. The pattern you will define consists of a series of segments, where each segment has a specified duration and a value expressed in one of two ways:
 - a constant stress, throughput, cost or duration value, or
 - a function that takes a time value and returns a stress, throughput, cost or duration value.

These segments are defined in the spreadsheet, as shown next.

```
<table>
<thead>
<tr>
<th>Segment Start</th>
<th>Segment End</th>
<th>Stress S(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1100</td>
<td>328</td>
</tr>
<tr>
<td>1100</td>
<td>2200</td>
<td>338</td>
</tr>
<tr>
<td>2200</td>
<td>3300</td>
<td>348</td>
</tr>
</tbody>
</table>
```

- **Segment Start** is calculated automatically by the software and cannot be entered manually. The first segment's start time is always 0. For every subsequent segment, the start time is identical to the prior segment's end time.

- **Segment End** allows you to enter the end time for each segment, which must be smaller than the end time of the next segment.

- **Stress S(t), Throughput T(t), Cost C(t) or Duration D(t)** is the value or function for the segment. If the stress, throughput level, cost or duration will stay constant during a segment, enter a constant value (e.g., 30). If the value will change during a segment, enter the it as a function of time (e.g., at time = 20, the function t + 20 will return a value of 40). When entering a function, you must use t or T as the time variable.

Tip: Because units are not defined in the profile, it is important to apply stress and throughput profiles only to folios or diagrams that are intended to use the same stress/throughput and time units. In the Profile window, you may want to use the Comments page as a reminder of which units are applicable to that profile.

For cost and duration profiles, the time units are defined within the model where the profile is.
used. This setting applies to the time segments within the profile and, for duration profiles, to the
duration values.

For example, suppose you are creating a stress profile where the stress unit is psi and the
time unit is seconds. Now suppose you wanted to define the following 120-second
pattern: a stress value of 30 psi for 60 seconds, followed by a stress value of 50 psi for 30
seconds, followed by a stress function that begins at 50 psi and gradually decreases at a
rate of 1 psi per second for the remainder of the pattern. For this pattern, you could fill
out the spreadsheet as follows:

<table>
<thead>
<tr>
<th>Segment Start (sec)</th>
<th>Segment End (sec)</th>
<th>Stress S(t) (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>60</td>
<td>90</td>
<td>50</td>
</tr>
<tr>
<td>90</td>
<td>120</td>
<td>50 - (t - 90)</td>
</tr>
</tbody>
</table>

Notice that the last segment of this profile uses a function. Since t is the test time (or, if
the profile is cyclical, the time since the pattern was last restarted), $t = 90$ when the last
segment begins. So the last segment’s stress level starts at $50 - (90 - 90) = 50$. Then, at 91
seconds, the stress level will have dropped to $50 - (91 - 90) = 49$. After another second it
will have dropped to $50 - (92 - 90) = 48$, and so on.

Note, too, that the columns have been renamed to reflect the units for the profile.

3. Next, choose the appropriate option in the After Last Segment area of the control
panel. Your selection here will determine what happens after the end time of the
profile’s last segment (in the above example, after time = 120).

If you select Continue with last value, all times after the last segment will use the
value/function defined in the last segment.

If you select Repeat cycle, the entire pattern of segments will be treated as a repeating
cycle.

For example, suppose you defined a stress pattern that is made up of five segments, each
an hour long and increasing stepwise from the segment before. The graphs below
illustrate the difference between continuing from the last stress (left) and selecting to
repeat (right). In this example, the test has a duration of 20 hours, and the graphs explain
what would happen through the entire duration of the test.
4. Before you can use the new profile in your analysis, you must save any changes you have made and validate the current profile settings. To do this, click the **Validate Profile** icon.

After you save the changes in your profile, the **Profile Summary** area will appear. Click the **Detailed Summary** icon to open the Results window, which shows the current profile in a worksheet that you can copy or print.

To view a stress vs. time or throughput vs. time plot of the profile, click the **Plot** icon. (See **ReliaSoft Plot Utilities** for general information on plots.)

Note: Clicking the **Validate Profile** icon will not automatically update your plot. To make sure your plot reflects the most recent profile information, click the **Plot** icon.

If desired, you can use the Comments page of the control panel to enter notes or other text that will be saved with the profile.

5. Click **OK** to save your changes.

Importing Data from nCode GlyphWorks to Create Stress Profiles

You can import **nCode GlyphWorks** time series data from .S3T files for use as stress profiles. The stress values in the .S3T file must be greater than zero in order for the data to be imported.
To import data from an nCode .S3T file, first create a new profile from the Resource Manager ([Home > Synthesis > Resource Manager]). In the Profile window, click the Import from GlyphWorks icon on the control panel.

This launches the import wizard, which guides you through the steps required to import data from the file. You can then edit the resulting imported data, if desired. Note that if you update the .S3T file in GlyphWorks, the associated profile in ALTA will not be updated automatically. You must re-import the data to reflect the changes.

Tip: Because stress units (e.g., volts) and time units (e.g., hours) are not defined in the profile, it is important to apply profiles only to folios that are intended to use the same stress and time units. In the Profile window, you may want to use the Comments page as a reminder of which units are applicable to that profile.

Maintenance Groups

Maintenance groups are resources that are available for use throughout the project and can be managed via the Resource Manager. A maintenance group is a set of blocks or system hierarchy items where some event within the group can trigger either maintenance or state changes for one or more blocks or items, either within the group or outside of it. You can use a maintenance group:

- **In BlockSim:** To turn a block on or off. State change triggers are used to activate or deactivate a block when items in one or more specified maintenance groups go down or are restored. The block whose state is being changed may or may not belong to any of the maintenance groups. This allows you to model a cold standby configuration (i.e., one where the component cannot fail when in standby) without using a standby container, which may be useful if you are using a parallel or complex configuration, as blocks can be connected only in series in standby containers.

- **In BlockSim, RCM++ or RBI:** To trigger a scheduled task (i.e., a preventive task, inspection or on condition task). You can set the task to be performed based on events in one or more maintenance groups. Triggering events within the maintenance group can include block/item failure; start of corrective, preventive or inspection tasks; and/or block/items restoration. The block(s)/item(s) affected by the task may or may not belong to any of the maintenance groups. For example, if you want to perform preventive maintenance on Component A every time you perform corrective maintenance on Component B, then you can assign Component B to Maintenance...
Group 1 and then set the preventive task assigned to Component A to be performed upon the start of corrective maintenance within Maintenance Group 1. See Task Scheduling for more information on how tasks can be scheduled.

Note: In BlockSim diagrams, blocks that belong to a maintenance group have a red circle at the upper left corner of the block. You can change the size of the indicator via the relevant Block Corner Indicators page of the Diagram Style window. You can change the color used for each maintenance group via the Maintenance Group Manager.

The Maintenance Group window allows you to create, view and edit maintenance groups. It can be accessed by clicking the Create New or View/Edit icon in the Maintenance Group wizard.

It can also be accessed from the Maintenance Groups page of the Resource Manager by choosing Home > Edit > New, by selecting a maintenance group and choosing Home > Edit > View or by double-clicking a maintenance group.

At the top of the window, you can specify the maintenance group name. You can replace the default name with your own name of up to 150 characters, if desired. To change the default names, choose File > Manage Repository > Default Name Formats. (In a secure database, this is available only to users with the "Manage other repository settings" permission.)

You can also enter comments about the maintenance group in this window.

For existing resources, the link at the bottom of the window indicates how many times the resource is currently being used. If you need more information, click the link or the icon to open the Dependency Viewer.

Maintenance Group Manager

In BlockSim only, the Maintenance Group Manager allows you to add blocks to or remove blocks from a maintenance group without having to go into each block's properties individually. This window can be accessed by choosing Project > Data Management > Maintenance Group Manager or, when you are viewing the Maintenance Groups page of the Resource Manager, by choosing Home > Actions > Maintenance Group Manager.
The **Maintenance Group** area allows you to choose an existing maintenance group from the drop-down list. In addition, you can click the **Select Existing** icon to open the **Select Resource window**. If there is not an existing maintenance group that meets your needs, you can create a new one by clicking the **Create New** icon to open a window that allows you to specify a name for the new maintenance group, as well as any comments. Click the **View** icon to view the characteristics of the selected maintenance group.

You can also click the **Indicator Style** icon to modify the appearance of the corner indicator that will appear on each block that belongs to the maintenance group, including:

- The indicator's background color, fill color and fill style. The background color is the underlying color applied to the indicator; the fill color is applied over the background color in the pattern specified by the fill style.
• The style (e.g., solid, dash, etc.), color and thickness of the indicator border.

You can change the size of the indicator via the relevant Block Corner Indicators page of the Diagram Style window.

The Blocks area displays all of the blocks in the maintenance group, in the format [Diagram Name]\[Block Name].

• To add a block to the maintenance group, you can select the diagram and block in the Add Block area and click the Add to Maintenance Group button. You also can select the block(s) in the diagram, press CTRL+SHIFT and drag the block to the list in the Blocks area of the Maintenance Group Manager.

• To view a block in the maintenance group, select the block in the list and click the Select on Diagram button. The diagram will be displayed with the block selected.

• To remove a block from the maintenance group, select the block in the list and click the Remove from List button.

Mirror Groups

Mirror groups are resources that are available for use throughout the project and can be managed via the Resource Manager. You can use a mirror group:

• In BlockSim: To place the same block in more than one location (i.e., to represent a single component more than once in a diagram or in multiple diagrams within a project). See Mirroring (Using Blocks in Multiple Locations) in the BlockSim documentation.

• In the FMRA in BlockSim, XFMEA, RCM++ or RBI: To place the same cause in more than one location in the FMRA hierarchy, in order to consider common cause failures. See Using Mirror Groups in an FMRA in the XFMEA/RCM++/RBI documentation.

Task Packages

Task packages are resources that can be shared among analyses and can be managed via the Resource Manager. They represent groups of tasks that are performed together at scheduled intervals, for the most efficient allocation of resources and downtime management.
Chapter 26: Resources

The Task Package window allows you to create, view and edit task packages. It can be accessed by clicking the Create New or View/Edit icon in the Task Package wizard, which is accessed from the Task Package field that appears when you select the Override task scheduling properties with a task package option for a preventive, inspection or on-condition task that is scheduled to be performed at fixed intervals.

It can also be accessed from the Task Packages page of the Resource Manager by choosing Home > Edit > Add, by selecting a task package and choosing Home > Edit > View or by double-clicking a task package.

For a new resource, a name will be proposed automatically based on the default naming criteria established for the current database (see Default Name Formats window). You can replace this with your own name of up to 150 characters, if desired. Remember that the name and identifiers are the primary way in which your team will be able to find the resources you need for your analyses.

The following settings are available to configure the task package:

- In the Perform every field, enter the length of the interval at which the task package will be performed. You must specify units for this value.

- The Auto-Packaging Intervals fields allow you to specify a range of scheduled intervals that will automatically be incorporated into the task package if the user clicks the Auto-Packaging Tasks button at the bottom of the Maintenance Task Packaging window in RCM++/RBI. The units for these fields are the same as those specified for the Perform every field. For example, if you enter 150 hours in the Start time field and 200 hours in the End time field, then tasks that are scheduled to be performed at fixed intervals from 150 to 200 hours can automatically be included in the task package to be performed at the scheduled time of the task package rather than at their individually scheduled times.

- Identifiers contains additional identifying information that can be used to search for this resource.

- History provides information about when the record was created and last updated. If the history log has been activated at the project level, you can click the View Item History icon to open the Record History Log for the record.

- Watch allows each individual user to subscribe to receive an alert (via e-mail, SMS text message or portal message) when the resource is changed.
• **Trace Usage.** For existing resources, the link at the bottom of the window indicates how many times the resource is currently being used. If you need more information, click the link or the icon to open the Dependency Viewer.

Actions

Throughout the Synthesis Platform, your team can use actions to track specific assignments that need to be performed. These versatile resources can be used multiple times in different locations, if appropriate. Specifically, actions can be created, displayed and/or managed:

- via **Project Plans** or the **Resource Manager** in all ReliaSoft desktop applications except MPC.
- via **My Portal** or **Actions Explorer** in all ReliaSoft desktop applications.
- via the **SEP web portal** (if it is implemented for your database).
- via FMEAs or test plans in XFMEA/RCM++/RBI.

For specific instructions regarding how to create or edit an action in each location, please consult the documentation for that particular feature. This section focuses on general considerations that will be applicable regardless of where/how the action is being used.

Tip: If an action is used in an FMEA, the properties window will be different depending on the current context. If you’re using XFMEA/RCM++/RBI and you open the action from the FMEA or My Portal, the window includes additional features that provide quick access to associated FMEA records (failures, causes, etc.) and the FMEA change log (if activated). These features are not available if you open the action from another location (e.g., Resource Manager, Project Planner, Actions Explorer) or in another application, because the associated FMEA can’t be opened in those situations.

Actions as Resources

As with any other resource:

- Any changes to the action properties will be reflected in all locations where the resource is used.

- If you remove an action from an FMEA, a test plan or a Project Plan, the resource will remain in the project unless/until an authorized user deletes it from the database (via My Portal, Resource Manager or Actions Explorer).
Chapter 26: Resources

Note: Actions are always local resources. They cannot be made global. Actions in a reference project are local to that project and can't be selected for use in other projects.

Configurable Settings

Some properties for action records can be configured via interface style settings. See Configurable Settings.

Show/Hide Properties for Individual Records

You can also use the following ribbon commands to show/hide certain features for a particular action record.

- **Generic vs. Detailed:** A detailed action contains additional properties for describing a specific test that needs to be performed (Specifications, Requirements and Reports). These properties are not configurable; they may be of interest in test plans in XFMEA/RCM++/RBI. (See Test Plans in the XFMEA/RCM++/RBI documentation.) Most actions, unless they are used in test plans, do not need to display these fields.

- **Show Resources:** The resources fields (Team, Facility, Material and Additional Costs) are used for calculating costs and resource utilization. They are always enabled but you can toggle this command to hide or display them for any particular action record. The **Check Utilization** command provides a summary of the resources that have already been assigned. (See Costs and Man Hours.)

- **Show Review/Approval:** If the Reviewer property is enabled in the configurable settings for the current project, you can toggle this command to hide or display these fields for any given action. The **Review Action** command will be enabled if you are assigned to review the action and it is ready to be reviewed. (See Review and Approve Actions.)

Priority

The color-coded **Priority** command provides a consistent scale for prioritizing actions across all projects in the database. (The same options are also available for gates in the Project Planner.)
This is intended to be used instead of the configurable **Action Priority** field from prior versions, which can be different for different projects. When you convert from a Version 8/9 database, the software will attempt to match any priorities that were assigned with the old configurable drop-down list. For example, if you were using the default "High," "Medium" and "Low" labels that were shipped with Version 8/9 libraries, they will automatically be mapped to the corresponding options in the new ribbon command.

Action Status and Review Status

The action’s status bar displays two complementary status indicators. The first one is based on the actual and expected start date and completion date. It indicates that the action is not started, in progress or complete and whether it is on time or running late. (See **Action Timeline and Status**.)

The second one is based on whether a reviewer has been assigned in the Review/Approval section and, if so, the status of that review.

E-mail and Alerts

The **E-mail** command will be enabled if an authorized user has defined a valid SMTP server. This allows you to manually send an e-mail containing the current action details to any valid e-mail address.

If a valid SMTP server has been defined within the database, your team can also choose to use automated alerts (via e-mail or SMS text message). Each individual user can subscribe to "watch" specific action resources, and the database can also be configured to auto-subscribe users assigned to specific roles for the action. (See **Watches and Alerts**.)
Click **Action Monitors** to specify individual users and/or groups of users who will always receive alerts for the record, regardless of whether they have personally subscribed to a “watch.” (See **Action and Gate Monitors**.)

Add to Outlook Calendar

The **Add to Outlook Calendar** command will be enabled if Microsoft Outlook is installed on your computer.

It launches Outlook’s interface for creating a new calendar event and automatically populates the subject and date. You can modify the details as needed before saving the new event to your calendar.

Note that you may need to give focus to the Outlook application in order to see the window.

Person Responsible and Resources

For each **action resource**, you can assign both an individual database user who is primarily responsible for completing the action and a team of users who are also involved. You also have the option to track the percentage of their available time that is planned to be utilized for the activity.

Tip: If a user is assigned as person responsible and also belongs to the team, the costs and utilization values will be summed. For example, the application assumes that the utilization is X% as person responsible plus an additional Y% as a member of the team.

Person Responsible

The **Person Responsible** field can be enabled or disabled, depending on the configurable settings for the current project. If you want to use personalized alerts, track resource utilization etc., you must select a database user. Alternatively, you can type a text description (up to 150 characters) that will be displayed in the FMEA spreadsheet.
Tip: If you want to change the person responsible for multiple actions simultaneously (e.g., if a user changes roles and his/her actions need to be reassigned), use the Actions Explorer.

If the Set action creator as 'Person Responsible' by default check box is selected in the Repository Settings window, then the person who created the action is automatically shown in the Person Responsible field, but that can be changed.

Resources

The Resources fields are always enabled but you can toggle the Show Resources command to hide or display them for any particular action record.

You can select from the teams, facilities and materials resources that have been predefined within the database (or create them on-the-fly if you have the required permissions). In a secure database, only users with the "Manage project planning resources and working days" permission will be able to create and edit these resources. (See Project Planning Resources.)

<table>
<thead>
<tr>
<th>Resources</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Team</td>
<td>Gizmo Design Team (5%)</td>
</tr>
<tr>
<td>Facility</td>
<td>AES Test Lab (2%)</td>
</tr>
<tr>
<td>Material</td>
<td>N/A</td>
</tr>
<tr>
<td>Additional Costs</td>
<td>1000</td>
</tr>
</tbody>
</table>

Check Utilization

If you need to view the utilizations of users and facilities for the current action, click Check Utilization.

Action Timeline and Status

For all action resources, the status is determined automatically based on the actual and expected start/completion dates. If an action is included in the Project Planner, its expected timeline can automatically shift in response to delays in prior activities. If the action is not included in the plan, the expected dates are always identical to the originally planned dates.
The following status indicators are displayed in the status bar of the action properties window and in other relevant locations. (Note that the status bar now also displays a separate review status to indicate whether a user has been assigned to review/approve the action and, if so, the status of the review. See Review and Approve Actions.)

- **Not Started**: The action hasn’t started, but it can still start on time.
- **Past Start Date**: The action hasn’t started, and it is too late to start on time.
- **In Progress**: The action has started.
- **Past Due**: The action hasn’t completed, and it is too late to complete on time.
- **Completed - On Time**: The action completed on time.
- **Completed - Late**: The action completed late.

Costs and Man Hours

For action resources, you can now track the planned vs. actual usage for both costs and man hours.

The **Planned Cost** and **Actual Cost** fields can be enabled or disabled, depending on the configurable settings for the current project. If the properties are enabled, the planned costs will always be calculated automatically based on the action duration, person responsible and project planning resources. For the actual costs, you can choose to enter manually or use the automatic calculations.

Enter Manually

If you prefer to enter the actual costs/hours instead of using the automatically calculated values, select **Yes** in the **Manually enter costs/ man hours?** field.

<table>
<thead>
<tr>
<th></th>
<th>Manually enter costs/man hours?</th>
<th>Actual Cost</th>
<th>Actual Man Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td>475</td>
<td>5</td>
</tr>
<tr>
<td>No</td>
<td></td>
<td>240.00</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Let the software calculate

Enter the values yourself

Calculate Automatically

The automatic calculations are based on:

- The Duration (the number of working days from the start date to the due/completion date).

http://xfmea.reliasoft.com
• The Person Responsible and/or the Team:
 • The % utilization is set in each action record.
 • The Hours per Day and Cost Category are set in each user account record.
• The Facility (e.g., test lab or other facility needed to complete the action):
 • The % utilization is set in each action record.
 • The Max Hours per Day and Cost Category are set in each facility properties record.
• The Materials (e.g., test samples or other material needed to complete the action):
 • The Quantity and Cost Category are set in the material properties record.
• Any Additional Costs that are defined directly in each action record.

The following simple examples demonstrate how each type of cost is calculated.

Personnel Costs

Action Duration: 5 working days

Joe Engineer: Works 8 hours per day (5 days x 8 hours = 40 hours)

Time is billed at $100 per hour (no "per instance" cost)

Assigned as **Person Responsible** with 5% utilization (40 hours x .05 = 2 hours)

Also belongs to the assigned **Team** with 1% utilization (40 hours x .01 = .4 hours)

The calculated values for Joe’s work on this action are 2.4 man hours and 2.4 x $100 = $240.

Facilities Costs

Action Duration: 5 working days

ABC Test Lab: Is available up to 8 hours per day (5 days x 8 hours = 40 hours)

The utilization for this action is 20% (40 hours x .20 = 8 hours)

Costs $500 "per instance" plus $50 per hour

The calculated cost for using this facility to complete the action is $500 + (8x$50) = $900.
Chapter 26: Resources

Materials Costs

Gizmo Prototype: Costs $5000 to produce the batch of test units (the "per instance" cost)

The test requires 10 samples

Each unit costs $500 (the "direct cost per hour or unit")

The calculated cost for the materials required to complete the action is $5000 + (10x$500) = $10,000.

Action Status Updates

For all action resources, the Progress (Status Updates) area displays any notes that have been added to report progress. The software automatically adds these updates under certain conditions (e.g., upon review/approval), and you can also create updates manually when needed.

To add a new note, click Add Status Update in the action’s ribbon or click the heading and then click the Add icon that becomes visible.

The type that you select in the Add Status Update window can affect the actual start and completion dates of the action, and also update the action status. (See Action Timelines and Status.)

- Not Started allows you to record comments without entering a start date. If an actual start date has already been entered, the update will remove the date and change the action’s status back to Not Started.

- In Progress
 - If an actual start date is not already defined, sets the current date as the Actual Start Date and allows you to specify the % Completed. This will change the action’s status to In Progress.
• If the action is already in progress, allows you to add another note and update the completion percentage.

• **Completed** sets the current date as the **Completion Date**. This will change the action’s status to either **Completed-On Time** or **Completed Late**.

To delete an existing note, click inside the field and then click the **Delete** icon that becomes visible. **There is no undo for delete.**

```
<table>
<thead>
<tr>
<th>Progress [Status Updates]</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Progress</td>
<td>2/3/2015 4:04 PM - Reliability Engineer - 0 %</td>
</tr>
<tr>
<td></td>
<td>This is a short message to record progress for an action that is still in progress.</td>
</tr>
</tbody>
</table>
```

Review and Approve Actions

Action resources can be marked for review and approval. If the Reviewer property is enabled in the **configurable settings for the current project**, you can click **Show Review/Approval** in the action ribbon to hide or display these fields for any given action.

(Note that if an action has been assigned for review or is already reviewed, you can no longer hide the fields.)

Assigning a Reviewer

If an action has not yet been reviewed, any user who is able to edit the record can assign or change the reviewer at any time.

In a secure database, the Reviewer drop-down list contains all of the database users who have the **"Approve actions" permission**.

• If a user has been assigned to review the action but an actual completion date is not entered, the review status will be **Reviewer Assigned**.

• When the completion date is entered and the action is ready for review, the status will be **Pending Approval**.

Tip: If you want to change the assigned reviewer for multiple actions simultaneously (e.g., if a user changes roles and his/her actions need to be reassigned), use the **Actions Explorer**.
Reviewing and Approving the Action

When you are assigned to review/approve an action that has been completed, the record will be highlighted for you in My Portal (and in the SEP web portal if implemented), and you may also receive automated alerts (via e-mail and/or SMS) if applicable.

To record your decision, open the action record and choose Review Action.

In the Review Action window, you can choose one of the following options:

- **Approve action** assigns the review date/time and marks the status **Approved**.
- **Reject and re-open action** removes the completion date and marks the status **Rejected and in progress**. The team can perform any rework that is needed and resubmit the action for another review.
- **Reject and close action** marks the status **Rejected and closed**.

You can enter your comments directly in this window, or enter/update them later in the comments field.

Configurable Settings for Actions and Controls

Some of the properties in action records and in control records are configurable via the interface style settings that have been defined for the current project. The interface style is used in XFMEA/RCM++/RBI to customize a variety of analysis fields to fit the organization’s particular preferences and needs. (See Configurable Settings in the XFMEA/RCM++/RBI documentation.)

You can view/edit the configurable settings for actions and controls from any ReliaSoft desktop application by clicking Configurable Settings of the action properties window or the control properties window. (In secure databases, this is available only if the user is the project owner, or has the "Edit project properties" permission.)
Any changes to these settings will apply to all records of that type in the current project.

Actions Explorer
The Actions Explorer is available in all ReliaSoft desktop applications except MPC. You can use this flexible tool to explore all of the action resources that are stored in the current database.

To access the utility, choose **Home > Synthesis > Actions Explorer**.

To reduce the amount of time required to populate the grid, first use the Project, Status, User and/or Date filters to limit your search, then click **Load Data**.

![Actions Explorer Grid](image)

Add, Edit and Delete Actions
When actions are loaded in the grid, you can use the following ribbon commands to add, edit and delete actions. (In a secure database, the ability to add or edit an action is only available for users with the "Create/edit/delete local resources" or "Create/edit/delete local resources" permission in the relevant project.)

To delete or edit multiple actions at the same time, press **CTRL** or **SHIFT** while clicking rows in the grid. Selected rows will be highlighted.

- **Add Action** creates a new action resource in the project that currently has focus.
- **Edit Action** allows you to view and edit all of the properties of the action that is currently selected.
- **Delete Action** deletes all of the actions that are currently selected. *There is no undo for delete.*

- **Assign Person Responsible** and **Assign Reviewer** allow you to set (or change) the person responsible or reviewer for all of the actions that are currently selected.

Save and Apply Views
Once you have customized the grid to suit a particular purpose (using the built-in filter, column configuration and grouping features described below), you can save the preferences as a view that can be used again whenever you need it. A view is saved in the database and available only to the user who created it.
Chapter 26: Resources

To create a view, first configure the grid to suit your particular needs and then click **Save View**.

To quickly apply these same preferences again at any time, click **Apply View** and select one of the saved views from the list.

Note: The view does not affect filtering that has been applied from the Project, Status, User and/or Date filters, or from the Relevance Panel.

Project, Status, User and Date Filters

The Actions Explorer can utilize the same project filter that is available in many other locations throughout ReliaSoft desktop applications.

You can also filter by status (e.g., In Progress, Completed, etc.), user (e.g., Person Responsible or Reviewer) and date (e.g., Planned Start Date, Actual Start Date, etc.).

After you clear or change these filters, you must click **Load Data** again to update the grid.

Relevance Panel

The relevance panel provides a quick way to filter the actions based on how they are relevant to you (based on your personal username).

- **I am responsible for**
 - You are assigned in the **Person Responsible** field.

- **I am a team member in**
 - You belong to the team assigned in the **Team** field.

- **I need to review/approve**
 - You are assigned in the **Reviewer** field.
• I am monitoring
 • You are assigned in the Action Monitors window, or you have personally subscribed to “watch” the action.

• I am the creator
 • You are listed in the Created By field.

• All actions
 • Displays all actions, regardless of whether they’re relevant to you.

Tip: If an action is relevant to you in more than one way, it will display if any applicable relevance check box is selected. For example, if you are both the person responsible and the creator, the action will display if you have selected “I am responsible for”, “I am the creator” or “All actions.”

Built-in Find/Filter, Configuration and Grouping Tools
The Actions Explorer offers the same filter, column configuration and grouping tools that are built in to other utilities that use a similar grid (e.g., the Resource Manager). For details about how to use each feature, see:

- Finding and Filtering Records
- Configuring Columns
- Grouping Panel

Controls
Controls are resources used in FMEAs that are the methods or actions currently planned or already in place to reduce or eliminate risk. Controls can be managed via the Resource Manager.

As with any other resource:

- Any changes to the control properties will be reflected in all locations where the resource is used.

- If you remove a control from an FMEA, it will remain in the project unless/until an authorized user deletes it from the database.

- If a control resource is not currently used in an FMEA, you can delete it via the Resource Manager. (In a secure database, this is possible only if the user a) is the project owner,
Chapter 26: Resources

b) is the control creator, or c) has the applicable "create/edit/delete resources" permission.

For existing resources, the link at the bottom of the window indicates how many times the resource is currently being used. If you need more information, click the link or the icon to open the Dependency Viewer.

Note: Controls are always local resources. They cannot be made global. Controls in a reference project are local to that project and can't be selected for use in other projects.

For specific instructions on using controls in FMEAs, see the "Controls in FMEAs" topic in the XFMEA/RCM++/RBI documentation.

Configurable Settings
Some properties for controls can be configured via interface style settings. See Configurable Settings.

Resource Manager
The Resource Manager allows you to create, view, edit and delete resources. It also helps you to trace where each resource is used, and to create global resources that are available to all projects in the database.

To open the Resource Manager, choose Home > Synthesis > Resource Manager.

Tip: When you need to create or edit a large number of resources, you can also use ReliaSoft APIs to import the data from an Excel file or other data source. For example, the URDEExample.xlsm file at C:\Users\Public\Documents\ReliaSoft\Examples18\API enables you to quickly create/update multiple URDs with some basic properties (models and corrective tasks). If you have the necessary software coding experience, you can expand this tool or create your own custom applications to meet specific needs.
Resource Filter

The Resource Manager can utilize the same resource filter that is available in many other locations throughout ReliaSoft desktop applications.

![Resource Filter Image]

Built-in Find/Filter, Configuration and Grouping Tools

The Resource Manager offers the same filter, column configuration and grouping tools that are built in to other utilities that use a similar grid (e.g., the Synthesis Explorer, Actions Explorer, etc.). For details about how to use each feature, see:

- Finding and Filtering Records
- Configuring Columns
- Grouping Panel

Creating, Viewing, Editing and Deleting Resources

You can:

- Create a new resource of the selected type by choosing Home > Edit > Add.

 ![Create New Resource Image]

 To add multiple resources at the same time, specify the quantity in the Home > Edit > Number to Add field and then choose Home > Edit > Batch Add. You will specify the properties for one of the new resources, and the additional resources will be duplicates of that. You can then edit each resource individually, or you can go to the Batch Properties Editor to edit them in a spreadsheet format.

- Duplicate an existing resource by selecting the row in the table and choosing Home > Edit > Duplicate. You can choose to duplicate just the selected resource, or choose Cascade Duplicate to duplicate the resource and all resources assigned to it, at all levels (e.g., cascade duplicating a corrective task will also duplicate the task's duration model, the assigned crew and all models assigned to the crew, etc.).
Chapter 26: Resources

- View or edit an existing resource by double-clicking the row in the table or by selecting the row and choosing Home > Edit > View.

- Delete an existing resource by selecting the row in the table and choosing Home > Edit > Delete.

You cannot delete a resource that is currently being used in any other resource or analysis.

Note: A published model cannot be edited or deleted from the Resource Manager. If changes are needed, you must update the original analysis and then republish the model. If you wish to delete the model, you must first remove the association with the original analysis and also make sure the model is not being used. (See Publishing Models.)

Tracing Where Resources Are Used

With a single resource selected, you can choose Home > Selected Resource > Trace Usage to open the Dependency Viewer, which provides information on where the resource is used and any additional resources that the currently selected resource itself uses.

If you need to know which resources are not currently being used (e.g., because you want to delete obsolete records), choose Home > Display > Show Only Unused.

Local and Global and Reference Resources

As explained in Local, Global and Reference Resources, the availability of resources for use is determined by their scope. Local resources are available only in the current project. Reference resources are available for any project within the database, depending on the user's permissions within the reference project. Global resources are available for use in any project in the database.

The far left column in the Resource Manager displays an icon that indicates whether each resource is local, global or a reference resource.

[Local Resource] [Global Resource] [Reference Resource]
You can use the Home > Display > [Show Local/Show Global/Show References] commands to toggle the types of resources shown in the Resource Manager.

Exporting Information from the Resource Manager

To send the contents of the Resource Manager to Excel, or to a built-in Synthesis Workbook or spreadsheet if that's available in the current application, choose Administration > Output > Transfer Report.

You can send either the current item (i.e., the table for the currently displayed page) or the full report (i.e., the tables for all pages in the Resource Manager).

Finding and Filtering Records

This topic describes the find and filter tools that are built in to the Resource Manager and other utilities that use a similar grid. Each of these tools can be used separately, or in conjunction with the others.

Find Panel

The Find panel allows you to search for a word or phrase across all of the available properties. To show or hide this panel, toggle the Show Find Panel command on the ribbon or in the shortcut menu that appears when you right-click a column heading.
When you enter text into the Find panel, it will return only the fields that contain the text you specified, as well as highlight all of the locations where the matching text occurs.

To stop filtering the data, clear the text box.

Auto Filter Row
The Auto Filter Row allows you to filter the grid based on a selected filter operator.

To display or hide this row, toggle the **Show Auto Filter Row** command on the ribbon or in the shortcut menu that appears when you right-click a column heading.

Click the selector icon in the auto filer row and then enter the search text or value against which column will be filtered, as shown below. The set of filter operators available for a column depends on the type of data the column displays.

For example, the following filter shows only the rows in which the model name contains "Component A" and the distribution contains "Weib."
Advanced Filters
The Advanced Filters allow you to choose an automatically generated filter or create a quick custom filter. The automatically generated filters are based on the unique values that currently exist in the column.

For example, the following picture is based on a data set that contains models from three different categories. If you choose one of the automatically generated filters (e.g., "Reliability"), the grid will display only models of that one selected category.

If you want to see models from two of those categories (e.g., either "Reliability" or "Probability of Failure"), you can choose [Custom] and create a quick custom filter like this:

If a filter has been applied for a particular column, select [All] to remove it..

Current Query Criteria
When you are filtering the grid using the Auto Filter Row, Advanced Filters and/or Edit Filter window (described below), the current query criteria will be displayed at the bottom of the window. For example:
Chapter 26: Resources

- Click the X to delete the current set of filter criteria.
- Clear the check box to remove the current set of criteria without deleting it. Select the check box if you want to re-apply it.
- Click to choose from a list of filter criteria that were recently applied.

Edit Filter

The Edit Filter window provides the most flexibility to refine and adjust a filter in either a grid or a Dashboard layout. To access the tool, click the **Edit Filter** button to the right of the current query criteria (if applicable), or choose **Edit Filter** from the shortcut menu.

As an example, the following filter from the Resource Manager will display only cost per unit time models in which the rate equals either $120 per hour or $2 per minute.

- Click a red label if you want to:
 - change the *logical operator* (And, Or, Not And, Not Or)
 - add or remove a *group*
 - add a *condition*
 - clear the entire filter
• Use the □ and □ icons to add or remove conditions within an existing group.

• Click a blue label if you want to change the property (e.g., Model Name, Created By, etc.).

• Click a green label if you want to change the relational operator (e.g., Equals, Contains, Begins with, etc.).

• Click a gray or black label if you want to enter or change the value.

Configuring Columns
This topic describes the capabilities for selecting, reordering, resizing and sorting columns that are built in to the Resource Manager and other utilities that use a similar grid.

Selecting Columns
To specify which columns will be displayed in the grid, click **Select Columns**.

In the utility's window or panel for selecting columns, use the check boxes to choose which columns will be displayed. As an example, the following pictures show the window and panel for model resources in the Resource Manager.
Chapter 26: Resources

Reordering Columns
To change the column order, drag the column heading into the desired position.

Resizing Columns
To resize columns, you can do any of the following:

- Drag the edge of the column heading to the desired position.
- Double-click the edge of the column heading or right-click it and choose **Fit This Column**. This will resize the column to fit its data.
- Right-click any column heading and choose **Fit All Columns**. This will resize all columns to fit their own data.

Sorting Columns
To sort the grid by one column at a time, you can simply click the column heading to sort in ascending order (_ASCENDING_), or click it again to sort in descending order (_DESCENDING_).

To sort the grid by multiple columns, right-click each column in the desired order and choose **Sort Ascending** or **Sort Descending** each time. For example, the following picture shows Synthesis Explorer data sorted first by project (ascending) and then by category (descending).

To stop sorting, right-click any column heading and choose **Clear All Sorting**.
Grouping Panel
This topic describes the grouping panel capability that is built in to the Resource Manager and other utilities that use a similar grid.

When you are working with a large amount of data, it may be convenient to group it based on one or more properties. For example, the following picture shows resources in the Resource Manager grouped first by keyword and then by model category.

To group the data without opening the grouping panel, right-click any column heading and choose **Group By This Column**. Alternatively, you can choose **Show Grouping Panel** to display the panel and then drag column headings into or out of the panel to configure the groups.

When the grouping panel is displayed, you can also:

- Click the column heading to change the sort order between ascending (↑) or descending (↓).
- Drag column headings within the panel to change the grouping order. For example, if you prefer to group first by model category and then by keyword, drag the column headings as shown below.
To stop grouping the data, drag all column headings out of the panel or choose Clear All Grouping.

Removing Unused and Duplicate Resources
The Resource Manager provides several tools to make it easy to delete unused resources and merge duplicate resources.

Finding and Removing Unused Resources
To find unused resources of the selected type, choose Home > Display > Show Only Unused.

Once you have found the unused resources, you can decide which ones to delete.
You can return to viewing all resources of the selected type by choosing the Show All command.

Finding Duplicate Resources
You may sometimes have duplicate resources within a project (i.e., several models that all represent the identical distribution, several tasks that are identical, etc.) within a project. For example, this might happen if you have imported diagrams that all reference the same model, but the imports happened at separate times and therefore the model had to be imported again each time.

To find duplicate resources, choose Home > Display > Show Only Duplicates.

In the window that appears, select the properties that must match in order for the resources to be considered duplicates. For example, if you are looking for duplicate URDs, you might select
to compare the model, corrective task and scheduled tasks, but not the URD name. Once you have selected the columns to compare, click OK to show the duplicate resources.

You can merge multiple resources of the same type into one resource, either automatically or manually. Note that models must be of the same category in order to be merged, and you cannot merge published models. When you merge resources, any folios that you may have open will be closed prior to the merge in order to prevent data inconsistencies.

IMPORTANT: Merging cannot be undone, and only the information from the "target" resource (i.e., the resource that you merge the others into) will be retained.

Automatically Merging Duplicates
To merge resources automatically, choose Administration > Cleanup > Merge All Duplicates.

This will find all sets of duplicates within the selected resource type (e.g., three identical Weibull models and 2 identical lognormal models); and for each set, it will merge the duplicates into the first instance found. After you confirm that this is what you want to do, you will be prompted to select the properties that must match in order for the resources to be considered duplicates. The process begins as soon as you select at least one column and click OK. It cannot be undone.

Selecting Resources to Merge
To merge resources manually, select the resources and choose Administration > Cleanup > Merge & Delete.

The window shows a list of the resources you selected to merge and allows you to choose which one will be retained (i.e., the one that the other selected resources will be merged into). After you click OK, this resource will be used in all places where the other selected resources were previously used.

Select Resource Window
The Select Resource window allows you to choose an existing resource to use at your current location. You will see this window in situations like the following:

- When you click the Select Existing icon in any resource wizard.
Chapter 26: Resources

- When you are adding an existing action in an FMEA or in the Project Planner, or an existing control in an FMEA.

The Select Resource window is similar to the Resource Manager, but it shows only the resource type that you are currently working with. The functionality of the window will vary slightly depending on where you have opened the window from.

- If you can select only one resource (e.g., in a resource wizard), each row in the table will contain a radio button that allows you to select the resource for use. If you can select multiple resources (e.g., adding existing actions or controls in an FMEA), each row will have a check box instead.

- Actions, controls and metrics are always local, so the commands to show global or reference resources will not be available in these cases.

- The ability to apply an item filter is available only for resources that have a full set of identifiers. This excludes actions and controls.

- Some resources may not be available for selection. For example:
 - In an FMEA, you can't select an action or control that is already assigned to the current cause.
 - In the project planner, an action cannot be added if it is already in use in the project plan or if its start date is either before or more than a year after the gate's start date.
 - A metric can't be selected to have a value pushed to it if it's already in use somewhere else, or if it's a type that is not compatible with the current use.

Trace Usage

Dependency Viewer
Because resources can be used multiple times, it is important to know where a given resource is used before making changes to it. The Dependency Viewer, which is accessed by clicking the Trace Usage icon in each resource properties window or in the Resource Manager, provides information on where the resource is used and what additional resources, if any, it uses.

The selected resource is shown in the Current Selection area in the middle of the Dependency Viewer.
The items that use the selected resource, if any, will be displayed in the **This [resource] is used by** area on the left. If it uses any resources, those resources will be displayed in the **This [resource] uses** area on the right. For example, in the picture shown next, the selected resource is a URD. It is **used by** Block 1 in a BlockSim diagram and by SubSystem 1 in an FMEA analysis. The URD **uses** an assigned model and two tasks.

You can edit any resource shown in the Dependency Viewer by right-clicking it and choosing **Edit Item** on the shortcut menu. The resource's properties window will open.

You can double-click an item in either area to make it the current selection in the window. For example, you could double-click a task used by the URD to see the model(s), crew(s) and/or spare part pool(s) that the task uses.

As you change selected items, each previous item that you selected will be added to the "path" of recent selections at the top of the window; click **Back** to go back through the path to the previously selected items. For example, the following picture shows a path in which the user started with the URD, then proceeded to its corrective maintenance task, the crew for that task and the logistic delay for that crew (not shown in the path because it is the current selection). The button now provides a quick way to go back through those same resources in reverse order if needed.

You can click the **Diagram View** button to open the **diagram view** of the Dependency Viewer. The currently selected item will be the main block in the diagram that is created.
Choosing What You See

In the **Current Selection** area, you can choose what is shown in the **This [resource] is used by** area. You have the option to skip the URD and/or the block that the resource is used by. For example, the image below shows the connections among analyses and resources that we have been discussing. If you have selected to show all levels, you can trace from Reliability Model to URD 1 to Block 1 to RBD 1. But if you have selected **Skip Blocks and RBDs**, it just shows that Reliability Model is used by RBD 1.

![Diagram Image]

Note that blocks are always skipped in RENO flowcharts (i.e., only the flowchart will be shown as the precedent for a resource used by any block within the flowchart).

Dependency Viewer - Diagram View

The diagram view of the Dependency Viewer, which is accessed by clicking the **Diagram View** button, offers a diagram-based alternative to help you understand the connections among resources in your project.

To understand how to use this view, consider the same example shown in the **Dependency Viewer** topic. Clicking the **Diagram View** button for that example will yield a diagram view that shows only the main item (in this case, the URD), which is marked with a flag:
To view a graphical representation of the information that was shown in the Dependency Viewer, choose **Add One Level Precedents** and **Add One Level Dependents**. This will show the items that use the resource (i.e., its precedents), and the resources that it uses, if any (i.e., its dependents).
If you want to see all levels, choose **Add All Precedents** and **Add All Dependents**:

![Diagram](http://xfmea.reliasoft.com)

If you want to add or remove one branch at a time, click the green arrows on the sides of the blocks. Alternatively, if you want to remove one branch, select the block and choose **Delete Precedents** or **Delete Dependents**.

To set a different item as the main item in the diagram, select it and choose **Set Block as Main**. This serves the same purpose as changing the selected block in the Dependency Viewer.

Use the commands in the Options group of the ribbon's Home tab to specify how the diagram will be constructed:

- Select **Reuse Items** to show each item only once in the diagram. For example, if you are viewing a URD that is used by two blocks in the same diagram and you choose **Add All Precedents**, the Reuse Items command will affect the display as shown next:
This command must be selected before the diagram is created, or you must clear the current diagram to apply it.

- Use the **Show Blocks in RBDs/FTs** and **Show URDs** commands to determine whether blocks and/or URDs are shown as intermediate steps between resources and the analyses in which they are used.

- Select **Show Item ID** to display the internal ID assigned to each resource, block and/or diagram. These IDs can be used to differentiate among items that share the same name.

The Diagram tab of the ribbon offers zoom options and [printing options](#), as well as the ability to copy the diagram or to export it as a graphics file.

Batch Properties Editor

The Batch Properties Editor is designed to support batch editing of most types of local resources in the current project. In BlockSim, it also allows you to edit the blocks used in the diagrams. It enables you to edit the properties in a convenient grid, rather than opening the properties window for each individual resource/block. This utility is available for all desktop applications except MPC.

To open the Batch Properties Editor, choose **Home > Synthesis > Batch Properties Editor**.

To use the utility, choose the type of resource or diagram that you want to work with in the navigation panel on the left side of the window. The right side of the window shows the
resources or blocks you can edit. For information on configuring the table and limiting the items shown, refer to the Configuring Columns and Finding and Filtering Records topics.

Tip: If you change the information in one column, it may affect the information required in another column. For example, if you are editing a model and you change the Model Type column from "Weibull-2" to "Weibull-3," then the Parameter 3 column will change from "N/A" to requiring a numerical input for the third parameter for the Weibull distribution (i.e., gamma).

The changes you make in the Batch Properties Editor will be saved when you close the window. You can also choose Home > Display > Refresh to commit your changes immediately and refresh the Batch Properties Editor to display the most current information, including recent changes by other users.

Note the following:

- **Gray Background.** If the property does not apply to the corresponding resource or block, "N/A" will appear in the column and the cell will have a gray background. Properties that cannot be edited via the Batch Properties Editor, such as the model category, will also have a gray background.

- **Required Properties.** Depending on the type of item you are editing, certain properties may be required (e.g., if you are editing a model using a 2-parameter distribution, both parameters must be populated). In these cases, you can edit the properties, but you cannot delete them. This also means that the Cut command will function as a Copy command for these cells.

- **Published Models.** Models created by publishing results from an analysis in a ReliaSoft application cannot be edited in the Batch Properties Editor. To edit a model that was published from an analysis, you must return to the original data source, make the necessary changes, recalculate and republish the model.

- **Model Parameters.** Since the required parameters for a model will vary depending on the model type, the way you use the parameter columns in the Batch Properties Editor will vary. The parameter columns in the Batch Properties Editor for each model type are presented in the table shown next.
You can choose the **Spreadsheet Editor** command on the ribbon to open the Spreadsheet Editor, which displays the resources or blocks in a spreadsheet-based view. This enables you to use the capabilities inherent in a spreadsheet (e.g., batch copying, formulas, etc.) to make editing multiple items easier. When you are finished editing, choose **Close > OK** to save your changes and close the Spreadsheet Editor or **Close > Cancel** to close the Spreadsheet Editor without saving your changes.

Exporting Information from the Batch Properties Editor

To print the contents of the Batch Properties Editor, choose **Administration > Output > Print** command on the ribbon.

To send the contents of the Batch Properties Editor to Excel, or to a built-in **Synthesis Workbook** or spreadsheet if that's available in the current application, choose **Administration > Output > Transfer Report**.
Chapter 26: Resources

You can send either the current item (i.e., the table for the currently displayed page) or the full report (i.e., the tables for all pages in the Batch Properties Editor).

Tip: When you need to create or edit a large number of resources, you can also use ReliaSoft APIs to import the data from an Excel file or other data source. For example, the URDExample_V10.xlsm file at C:\Users\Public\Documents\ReliaSoft\Examples10\API enables you to quickly create/update multiple URDs with some basic properties (models and corrective tasks). If you have the necessary software coding experience, you can expand this tool or create your own custom applications to meet specific needs.
Chapter 27: Project Planner

The Project Planner provides extensive project planning and management capabilities, including the ability to create timelines, evaluate progress, track resource usage and estimate costs. Any project in a Synthesis repository can be associated with a project plan.

The Project Planner allows you to create, edit or view the plan in any ReliaSoft desktop application except MPC. If the SEP web portal has been implemented for an enterprise database, you can also access a streamlined view of the plan from any web-enabled device.

Creating a Project Plan

Each project in the database can have a project plan. To view the plan from within an open project, choose Project > Management > Project Planner. (In a secure database, any user with "read" access to the project will be able to view the plan and update any actions that are assigned to them. However, only users with the "Create/edit project plans" permission will be able to create or edit the plan.)

A blank plan will be created automatically the first time you open the Project Planner in a given project. By default, the project plan shows a sample starting gate, which records the date you opened the project plan for the first time. You can edit the sample gate and start building the plan from there.

Importing or Starting Again from a Blank Plan

Alternatively, you can start again from a blank plan or import an existing project plan from another project. In the Project Planner, choose Project Planner > Plan > Create Project Plan. (In a secure database, this command is available only to users with the “Create/edit project plans” permission.)
Then choose one of the following options. In both cases, you will need to enter the date the plan will begin in the **Set Start Date** field at the bottom of the window.

- **Choose Blank** to start again from a blank plan. This will delete all of the current gates (**there is no undo for delete**). It will also remove any actions that are assigned to the plan. The action resources will remain in the database unless/until an authorized user deletes them from the database via [My Portal](http://xfmea.reliasoft.com), [Resource Manager](http://xfmea.reliasoft.com) or [Actions Explorer](http://xfmea.reliasoft.com).

OR

- **Choose Import from another project** to import an existing plan. You can import from another project in the current database or from any other existing standard or enterprise database.

Choose a source repository and source project for the import. The **Plan Preview** area shows the gates and actions (if any) in the project that is currently selected. By default, the import includes both gates and actions. If you want to import gates only, clear the **Include actions** check box at the bottom of the window.

Tip: If you want to use any of the Design for Reliability (DFR) project planning "starter" templates that were installed with XFMEA/RCM+/RBI Version 9, you can either import directly from one of your own projects (converted to Version 2019), or use the "Project_Planner_Templates_Rev1" database (choose **File > Help > Open Examples Folder** then open the file in the "Project Planner" folder). To preserve the integrity of this database, a copy will be created.

Project Plan Hierarchy

In the **Project Planner**, the plan consists of gates arranged in a tree-based hierarchy to represent the different phases of a process. You can also include **action resources** that represent specific assignments that need to be performed. For example, the configuration below shows a plan with five top-level gates (Concept Phase, Design Phase, etc.), where each gate has its own sub-gates and actions.
Certain properties of higher-level gates (e.g., status and dates) are determined by the properties of their dependent gates and actions. For example, the "Concept Phase" above has two direct dependents. If these are marked as complete, then "Concept Phase" is automatically marked complete. (See Gates in the Project Plan for details on how gates inherit their properties.)

In this way, the planner makes it easy for you to monitor how the progress of individual activities relates to the completion of the entire process.

Project Planner Columns

To hide or display Project Planner columns, right-click the column headings then click Customize Columns. (You can also change the column order by dragging and dropping column headings into the desired positions.) These settings are stored per computer/username. Any project that you open on this computer will have the same columns displayed, but other users may have different display preferences.

- **General** columns display graphics/text to summarize the status, as well as the priority level and percent completion.

- **Planned Timeline** columns display information about the original plan, including planned start/due dates and resource usage. You can also display the percentage of the budget that is allocated to different project planning resources (i.e., teams, facilities and materials).

- **Expected Timeline** columns display expected start/completion dates given any delays that may have occurred for prior activities, as well as estimates of the costs/man hours to date. (See Project Planner Timelines.)

- **Actual Timeline** columns display actual start/completion dates, as well as the costs/man hours that were used for completed gates/actions.
• **Delta Values** columns compare two different values, such as the difference between an action's actual and planned costs.

• **Relevant Metrics** display values for up to three selected metrics. (See [Using Metrics in Project Planner Gates](http://xfmea.reliasoft.com).)

• **Notes** display other applicable information, including descriptions, completion notes and whether an attached file exists.

Project Planner Timelines

For gates in the Project Planner, and for any action resource that is included in a project plan, three different timelines are used to track progress:

- The **Planned** timeline consists of the originally planned start/completion dates.
- The **Actual** timeline records when a gate or action has actually started or completed.
- The **Expected** timeline shows the start/completion dates that are now expected given the current situation. For project plans that use precedents, the expected dates for an activity automatically shift in response to delays in prior activities.

All of these timelines can be shown in gate/action properties and in the Project Planner hierarchy columns. The expected dates are used to determine the status (e.g., past start date, past due, etc.) and are also shown on the summary panel.

Planned Dates

For actions and for gates with no specified precedent, the planned start/completion dates are entered directly in the Gate Properties window.

For gates with precedents, the planned start date is automatically set to the working day following the precedent's due date (i.e., planned completion date). By using precedents in your plan, you guarantee that there will be no gaps between one gate's due date and the next one's start date.

In addition, the software uses the following rules to make sure a gate's planned timeline is consistent with that of its dependent gates and actions:

- If a gate's planned start date is changed (e.g., because of changes to a prior gate's planned duration), the planned dates of all dependents will be shifted in the same way.
- You cannot change a dependent's planned start date to precede that of its parent gate.
- If a dependent's due date is changed so that it comes after its parent gate's due date, the parent gate's due date will be changed to match it.
Actual Dates
Actual start/completion dates are entered directly for actions and for gates with no dependents. For gates that have dependents:

- The parent gate's actual start date is automatically set to match the earliest actual start date of its dependents.
- Once all the dependents have completion dates, the latest of those dates is set as the parent gate's actual completion.

Expected Dates
By default, expected start/completion dates are equal to the planned dates. However, if the gate/action is part of a plan that uses precedents, the two timelines can differ.

Specifically, when precedents are used, the expected dates will automatically shift in response to recorded delays in prior gates (while the planned dates remain unchanged). For example, if Gate A is the precedent of Gate B, and Gate A completes two days late, then the expected dates for Gate B will be its planned dates + two days. The same will apply to any other gates with precedents that trace back to Gate A.

As an example, consider the following Gantt chart for a plan that has not yet started. The planned and expected timelines (shown in gray and black, respectively) are identical at first.

![Gantt chart example](image)

However, if Gate A completes late (shown in red), the expected timeline shifts for the remaining gates. (The overall plan bars at the top also indicate that the expected duration for the entire plan has now increased by two days.)

```
Name | 02/01 | 02/02 | 02/03 | 02/04 | 02/05 | 02/06 | 02/07 | 02/08 | 02/09 | 02/10 | 02/11 | 02/12 | 02/13 | 02/14 |
--- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
Project Planner |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
Gate A |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
Gate B |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
Gate C |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
```
Project Planner Gates

Each gate in the Project Planner has its own properties and a status that is determined based on its expected start/completion dates. Additional information about progress and resource usage is available in the summary panel.

To view the properties of a gate, double-click it, or select it and choose Project Planner > Gate > Edit Gate.

Gate Properties

- The Gate fields provide general information about the gate, including its Name, Description and:
 - Deliverables are what will be produced and delivered as a result of completing the gate.
 - Priority is a ranking of the gate's importance ("Low," "High," etc.).
- The Precedent Gate field identifies the gate that must be completed before the current gate can start, if any. If you choose to use precedents in a project plan:
 - The precedent gate must be on the same level in the hierarchy as the current gate. (If the Use Precedence option is selected, the precedent will be suggested automatically for each new gate you create but you can change it manually if desired.)
 - When a gate has a precedent, its planned start date will be automatically set to the working day after the precedent's due date. In addition, delays in the precedent will automatically shift the expected timeline for future gates.
- The Planned Timeline consists of the originally planned start/completion dates.
- The Expected Timeline shows the start/completion dates that are now expected given the current situation. For project plans that use precedents, the expected dates for an activity automatically shift in response to delays in prior activities. (See Project Planner Timelines.)
- The Actual Timeline records when a gate or action has actually started or completed. If the gate has dependents, these dates are automatically inherited in the following way:
 - The actual start date is the earliest actual start date from the dependents.
• The actual completion date is the latest actual completion date from the dependents.

• The Relevant Metrics fields let you display up to three relevant metrics in the gate. The Push to Metrics fields let you "push" the gate's percent completed and actual vs. planned resource usage to metrics so they can be tracked and displayed in other locations. (See Using Metrics in Project Planner Gates.)

• The History fields display information about when the gate was created and last modified. If the history log has been activated at the project level, you can click the View Item History icon to open the Record History Log for the item.

• Watch allows each individual user to subscribe to receive an alert (via e-mail, SMS text message or portal message) when the gate is changed. (See Subscribing to a Watch.)

• Gate Monitors allows you to specify individual users and/or groups of users who will receive alerts for the gate, regardless of whether they have personally subscribed to a watch. (See Action and Gate Monitors.)

Gate Status
The gate status (which is displayed in the summary panel and in the status bar) is determined based on the same logic used for action statuses, which takes into account the expected start/completion date and any actual dates. For example, a gate's status is "Past Start Date" if it hasn't started and it's too late to start by the expected date, while "Past Due" means it is too late to complete on time.

Actions in Project Plans
You can add actions to gates in the Project Planner in order to track specific assignments that need to be performed as part of specific phases of the plan. These are the same action resources that can be included in My Portal and SEP web portal, as well as FMEAs or Test Plans in XFMEA/RCM++/RBI.

When you add an action to a gate in the Project Planner, the software will:

• Use timelines in the action that automatically shift in response to delays in prior activities, which will affect how the action's status is determined.

• Display the action's plan summary in the Action properties window.
• Use the action’s status, percent complete and resources to "roll up" to the gate it is assigned to.

Adding Actions to the Plan
With a gate selected in the Project Planner, choose Project Planner > Action > Add Action. (In a secure database, this is only available to users with the "Create/edit project plans" permission.)

• Add Action creates a new action resource.

• Reuse Action Resources allows you to select existing action(s) from the project that a) are not already used in the current plan and b) have dates that fit within the current gate. Specifically, the action’s start date can’t be before or more than a year after the gate’s start date. (See Select Resource window.)

• Reuse FMEA Actions allows you to select one or more XFMEA/RCM++/RBI system hierarchy items from the current project that have FMEAs. You can then select to use existing action(s) from those particular FMEAs in the project plan.

Project Plan Summary Panel
The project plan summary panel displays information about start/completion dates, status, progress and resource usage for an entire project plan, and for individual gates and actions.

The summary panel is accessible from multiple locations across the Synthesis Platform:

• From the Project Planner, you can select a gate or action in the hierarchy to view its summary, or you can select the project at the top of the hierarchy to view a summary of the entire plan.

• The gate/action properties window shows the summary for that gate/action.

• The Plan Summary Page in My Portal displays a summary of the entire plan for the project that currently has focus.

• These summaries are also displayed in the SEP web portal, if it is implemented for an enterprise database.
In most cases, this shows the current date. If you are working in the Project Planner and you want to see what the statuses would be on a different date, click the green "play" arrow (▶️) and then select a different date from the calendar. When you’re ready to return to the current date, click the green "pause" bars (⏸️).

This bar displays the name of the project, gate or action that the summary applies to, followed by:

- The EXPECTED start date and completion date. (This will be the same as the planned dates unless a prior delay has caused the expected dates to shift.)
- The ACTUAL start date and completion date (if the action is in progress or complete).
- The current status. (See Action Timeline and Status.)

For actions, the progress bar shows the percentage entered by the user. For gates, it shows the percentage of the total duration of dependent actions/gates that is complete. For example, if Action 1 (duration = 3 days) is complete and Action 2 (duration = 1 day) is incomplete, the progress is 75%.
For resource usage, the black bars show the planned man hours and costs. The colored bars show either the expected usage to date (estimated based on the number of days in progress), or the actual usage if complete. (See Costs and Man Hours.)

- Yellow = In progress and usage to date is still within plan
- Orange = In progress and usage to date has exceeded plan
- Green = Complete and actual usage was within plan
- Red = Complete and actual usage exceeded plan

The pie chart will be visible only for projects or gates that have at least one action assigned (either directly or via dependent gates).

- Not Started = Actions that have not started and can complete on time
- In Progress = Actions that are in progress and can complete on time
- Completed = Actions that have a completion date
- Past Due = Actions that can no longer complete on time
Check Utilization

The Check Utilization window lets you examine the utilizations for individual users and facilities across one or more actions. It displays the total utilization for each resource on each specific date, so you can easily identify dates when the resource is over-utilized and make any adjustments that may be needed.

- To view utilizations for a specific action, open the action and choose Tools > Check Utilization.
- To view utilizations across multiple actions, open the Project Planner and choose Project Planner > Tools > Check Utilization.

If you open the utility from the Project Planner ribbon, there are two options. By default, it shows Only actions in this plan. Alternatively, you can choose to see utilizations from All actions in the project (even if they are not used in the plan).

Regardless of whether you’re checking a single action or the entire project plan, the utility shows All resource utilizations by default. Alternatively, you can choose to see Only utilizations over 100%.

Over-utilized resources (i.e., those with a utilization that exceeds 100%) are shown in red.

Double-click a resource to view its total utilization for each specific date, as well as the action(s) that use the resource on each date. For example, according to the window shown next, Joe Reliability's highest utilization for a single day exceeds 100%. By double-clicking his name, you can see that he is assigned to two actions that overlap on 1/6/2016, and as a result his combined utilization for that day is 105%.
Project Planner Gantt View

The Project Planner also includes a Gantt chart that makes it easy to visualize the timelines in your project and examine how different planning resources are utilized over time.

To access this view, click Gantt at the bottom of the Project Planner.

- Use the Gantt Type drop-down list on the control panel to specify what to display:
 - Project Plan shows timelines for gates and actions.
 - Personnel Utilization and Facility Utilization show the utilizations for the person responsible, team and/or facilities. (See Project Planning Resources.)

- In the Gantt Display area, select the part of the plan you want to view in the Filter drop-down list. For example you could view a specific gate (and its dependents) or a specific user (and all their utilizations). If you want to change the widths of columns that contain dates, use the Fit Mode.

- In the Date Selections area:
 - Select to view the entire plan or focus only on a specific date range.
 - Specify whether each column represents a specific number of Days, or Other increments such as weeks, months, quarters, etc.

- In the Date Display area:
 - If each column represents a single day, select whether to display Non-Working Days. If displayed, those columns will have a gray background. (See Working Days/Holidays.)
 - Use Show Planned, Show Expected and Show Actual to specify which timeline bars will be displayed.
 - To specify the colors that will be used in both the project plan Gantt chart and the timeline plot, choose View > Settings > Set Colors. (See Set Colors for Project Planner.)
 - For the planned and actual timeline bars in the project plan chart, you can also choose whether to Show Percent Completed.
• If you are using one of the utilization charts and the date columns each represent more than a single day, use the **Calculate Utilization As** area to specify how to calculate the utilization. This can be:

 • The **Max** (highest) daily utilization among all days in the interval. For example, if the interval is 3 days and the utilizations were 15%, 0% and 10%, the max will be 15%.

 • The **Average** across only the days in the interval that have utilizations. For example, if the interval is 5 days but the resource was only utilized on 3 of those days, the average will be the total utilization/3 days.

 • The **Overall Average** across all working days in the interval. For example, if the interval is 5 working days, the overall average will be the total utilization/5 days even if the resource was not utilized every day.

Project Planner Plot View

The **Project Planner** includes a plot view that makes it easy to visualize the timelines in your project.

To access this view, click **Plot** at the bottom of the Project Planner.

• Use the **Filter Options** area to select whether to filter the data by **Gate** or by using a **Date** range. You can also choose to view data for **Top Level Gates** only.

• In the Display Options area:

 • **Show Planned**, **Show Expected** and **Show Actual** determine which timelines will be shown in the plot.

 • To specify the colors that will be used in both the project plan Gantt chart and the plot, choose **View > Settings > Set Colors**. (See **Set Colors for Project Planner**.)

 • **Display Actions** shows the dependent actions for each gate.

 • **Show Project Item** shows the “project” gate at the top of the hierarchy.

 • **Show First Gate on Top** determines whether the gate with the earliest start date will show at the top or bottom of the chart.
Chapter 27: Project Planner

- **Auto Refresh** refreshes the plot automatically whenever changes have been made. If this option is cleared, you can click the **Redraw Plot** icon (מרחפת) to refresh the display.

- **Keep Aspect Ratio** maintains the proportional relationship between the width and height of the plot image.

Set Colors
To open the Set Colors window for the Project Planner, choose View > Settings > Set Colors.

- The **Gate and Action Options** apply to the Gantt chart (if viewing the plan), plan hierarchy and plot.

![Gate and Action Options](image)

- **Date Display** options apply only to the Gantt chart and plot.

![Date Display](image)

- The **Utilization Threshold Colors** apply only when using the Gantt chart to view team or facility utilization.
Project Planner Dashboards

You can use the flexible Synthesis Dashboard utility for presenting data from any Project Planner in the database.

To access this feature, open the planner and choose Project Planner > Tools > Dashboard.

As with any other Synthesis dashboard, you can use the Dashboard Viewer to select any of the layouts that have been predefined for this type of data. In a secure database, only users with the "Manage dashboard layouts" permission can use the Dashboard Manager to create or edit layouts.

Data Source Drop-Down List

When you are creating a dashboard layout based on project plan data, the drop-down list at the top of the Data Source Panel gives the following options:

- **Actions** returns data only from actions in the current plan.
- **Gates** returns data only from gates in the current plan.
- **Gates/Actions** returns data from both actions and gates.
• **Facilities** returns data from the facilities assigned to actions.

• **Personnel** returns data from the person responsible and/or team assigned to actions.

Each data source allows you to choose relevant fields from the record properties, summary panel and/or project plan hierarchy.

Note that all of the data fields used within a particular dashboard item must come from the same source. For example, you can’t combine fields from the “Actions” data source and the "Gates" data source in the same chart. If you want to create a chart that includes both actions and gates, use the fields from the "Gates/Actions" data source instead.

Examples for Different Field Types

The icon for each field indicates the data type: text, number or date. There are many possible ways to use these fields in your own customized dashboard layouts. The following simple examples demonstrate basic applications for each data type.

Example Using Counts

This pie chart uses the **Count** value for a text field to show the actions in the current project plan broken down by status. The argument determines the slices shown in the pie.

Tip: If you want to see both the quantity and the percentage, choose **Design > Data Labels > Argument, Value And Percent**.
Example Using Numbers
This bar chart uses the **Sum** values for two number fields to show the top 5 most costly actions in the current project plan, with comparison to the planned cost. The arguments determine how the bars are labeled, grouped and sorted.

![Example of a bar chart showing top 5 most costly actions](image)

Example Using Dates
This grid uses the **Exact Date** for two date fields to show a list of all actions in the current plan that are due in the current month. (To set the criteria that filters the records shown in the grid, right-click inside the chart and choose **Edit Filter**.)
Project Planner Ribbon

Project Planner Tab
The Project Planner tab in the Project Planner ribbon contains the following commands.

Project Planner

herited updates the Project Planner hierarchy, if necessary. For example, if multiple users are accessing the same plan simultaneously, this will update the plan to reflect any changes made by other users.

Create Project Plan opens the Create Project Plan window so you can start again from a blank plan, or import an existing plan from another project.

Delete Entire Plan deletes every gate and removes every action from the plan.
Item Properties allows you to view or edit the Identifiers defined for the current plan. These identifiers can be used in the Synthesis Explorer to explore all of the different types of analyses (including project plans) in the current database.

Clipboard

Paste pastes the contents of the Clipboard into the level below the selected gate (or on the same level of the selected action). If you want to paste gates only (without sub-gates and actions), use the Paste Without Actions command.

Cut cuts the selected gate/action and any dependents to the Clipboard. You can paste this information into another Project Planner within the same database.

Copy copies the selected gate/action and any dependents to the Clipboard. To copy everything, use the Copy Entire Plan command. You can paste this information into another Project Planner within the same database.

Delete deletes the selected gate/action and any dependents.

Gate

Add Gate

- Add Same Level Gate adds a gate on the same level as the selected gate.
- Add Next Level Gate adds a gate one level below the selected gate.
- Add Gate adds a top-level gate to the end of the plan.
- Insert Gate inserts a gate at the selected location.

Use Precedence, when selected, automatically sets a new gate's precedent to the prior gate, which allows you to take advantage of expected timelines and ensure that there are no gaps between gates. If you clear this option, the default precedent will be "None."

Edit Gate opens the Gate Properties window.

Promote and Demote moves the selected gate to the next higher or lower level in the plan. An item can be demoted only if there is another item on the same level and above the selected item that it can be demoted under.
Chapter 27: Project Planner

Action

- **Add Action** creates a new action resource.
- **Reuse Action Resources** allows you to select existing action(s) from the project that a) are not already used in the current plan and b) have dates that fit within the current gate. Specifically, the action’s start date can’t be before or more than a year after the gate’s start date. (See Select Resource window.)
- **Reuse FMEA Actions** allows you to select one or more XFMEA/RCM++/RBI system hierarchy items from the current project that have FMEAs. You can then select to use existing action(s) from those particular FMEAs in the project plan.

Edit Action opens action properties window. (See Actions in the Project Planner.)

Tools

- **Remove Gaps in Dates** automatically assigns precedents to every applicable gate. This ensures that there will be no gaps in the planned or expected timelines, and it allows the expected dates for an activity to automatically shift in response to delays in prior activities. (See Project Planner Timelines.) You can choose to remove gaps in the Entire Plan or just for the gates that fall under the selected Branch.
- **Check Utilization** opens the Check Utilization window so you can examine the utilizations for individual users and facilities across multiple actions (e.g., is a particular user assigned to too many actions at the same time, or is a particular test facility already booked for a particular timeframe).
- **Expand All** and **Collapse All** expands or collapses the gates in the project plan hierarchy.

Dashboard

- **Dashboard Viewer** opens the Dashboard Viewer so you can view dashboards based on predefined layouts.
- **Dashboard Manager** opens the Dashboard Layout Manager so you can create, edit and delete the predefined layouts that will be available for any user to view for any project plan in the database.
Excel Import/Export

- **Export View to Excel** exports the entire hierarchy and all displayed columns to an Excel sheet in a format that's suitable for presentation.

- **Import Hierarchy** and **Export Hierarchy** use an Excel format that's suitable for recreating the plan hierarchy in another project plan using information about precedents, outline level, etc.

Copy Current View copies the currently visible contents of the plan hierarchy or Gantt chart to the Clipboard as a graphic that can be pasted to other applications.

View Tab
The View tab in the **Project Planner** ribbon contains the following commands.

View

- **Color Code Deltas** applies highlight colors to any "Delta Values" columns for dates or durations that are displayed in the project plan hierarchy (e.g., the difference between the planned duration and the actual duration, or between the expected completion date and the actual completion date). Highlights are applied on a gradient from blue (ahead of schedule) to red (significant delay).

- **Fit All Columns** automatically resizes all columns to fit their own data.

Settings

- **Customize Columns** allows you to hide or display specific columns in the plan hierarchy.

- **Save View** and **Apply View** create or apply a view that stores your preferences for which columns to display in the plan hierarchy and which colors to use for gates, actions, timelines and utilizations. Each view is saved per computer/username.

- **Set Colors** allows you to select the colors to use for gates, actions, timelines and utilizations.

Zoom

- **Normal Zoom** sets the degree of magnification to 100%
Chapter 27: Project Planner

Zoom In and Zoom Out increase or decrease the font size by 25% increments.

Custom Zoom allows you to specify the zoom percentage.
Chapter 28: ReliaSoft Plot Utilities

ReliaSoft applications offer a variety of plotting utilities for visual presentation of your analysis results. The following topics provide general information about built-in utilities, where the types of plots/charts available are predefined based on the analysis method and type of data you are working with. For more information about specific plot types, please consult the documentation for the relevant analysis.

Tip: In addition to the built-in plotting utilities described here, you can also create your own custom plots/charts in the Synthesis Workbooks and Synthesis Dashboards.

Basic Plot Features
This topic describes some basic features and capabilities that are available in most built-in plot utilities in ReliaSoft desktop applications (i.e., utilities where the types of plots available are predefined based on the analysis method and type of data you are working with). For information about creating your own custom charts in Synthesis Workbooks or Synthesis Dashboards, see Custom Charts or Dashboard Layout Designer.

Redraw Plots
A plot needs to be refreshed whenever its data source has been recalculated or when its inputs or settings have been modified. This ensures that the plot reflects the most current results. In most plot sheets, the control panel displays a status light that indicates whether the plot needs to be refreshed. A green light indicates that the data and the plot are in sync, while a red light indicates that the plot is out of sync with the latest analysis.

You can manually update a plot to reflect any changes by clicking the Redraw Plot icon in the plot’s control panel.

Alternatively, a plot can be refreshed automatically whenever changes have been made by selecting the Auto Refresh check box on the plot’s control panel.
Identify a Plot’s Source Analysis

For most plots, the control panel displays a blue link that displays the plot’s source analysis, as shown in the following example for a Weibull++ plot. You can click the link to open the folio and view the data set.

In some specialty plots (side-by-side plot, life comparison tool, etc.), you can select the source analysis for the plot by clicking the icon on the plot’s control panel or ribbon.

If the plot contains results from more than one analysis (e.g., overlay plots), the control panel includes a button that allows you to add or remove analyses from the plot, as shown in the example below for Weibull++ data sheets. In addition, you can click and drag the data sheets to the desired order.

Show or Hide Plot Items

When applicable, a plot may provide options for showing or hiding certain plot items such as data points, lines, probability scales, etc. The available options depend on the plot type and analysis. To view the options for the plot you are working with, choose Plot > Actions > Show/Hide Plot Items or right-click the plot and choose Show/Hide Items on the shortcut menu.

Select the check box for each item you want to appear in the plot, or clear the item’s check box to hide the item from view.

Scaling

When applicable, the plot control panel may display X and Y scaling boxes that show the minimum and maximum values for the x- and y-axes. You can clear the check boxes and click inside the fields to manually edit the values, or select the check boxes to have the application choose the appropriate values for the range, based on the data.
Zoom
The zoom function is available for plots that allow both X and Y scales to be adjusted. To zoom in or out of a plot, click inside the plot, point the mouse pointer over the area of interest, and then rotate the mouse wheel. Press ESC to return to the original scale.

For non-3D plots, you can also select a specific area to zoom in by holding the CTRL + SHIFT keys while clicking and dragging the mouse over the desired area. You can customize the color and line style of the zoom rectangle via the Zoom page of the Plot Setup.

Aspect Ratio
Plots are automatically resized whenever you resize the plot sheets. To maintain the proportional relationship between the width and height of the plot image, select the Keep Aspect Ratio check box on the plot’s control panel (as shown in the first example below). Clear the check box if you wish to stretch the dimensions of the plot graphic to fill the plot sheet (as shown in the second example below).
Show Coordinates
To show the coordinates for a location on a plot, press **SHIFT** and click the plot (no need to hold down the mouse button). To stop showing the coordinates and return the pointer to its normal mode, click the plot again.

To track the coordinates on a plot line, click the line. A crosshair shows the current location on the line. The crosshair will stay on the line and track the coordinates as you move the pointer.

When applicable, you can add a label that displays the coordinates of a location by pressing **CTRL + ALT** and then clicking the location you want labeled.
Add Custom Labels
When applicable, you can add a custom label to a plot by pressing **CTRL** and then clicking the plot. A label named "Default" will appear in the plot. Select the label to edit the text directly in the plot or double-click it to open the Edit Label window, which gives you the option to select a font style or format.

You can then move the label by clicking it and dragging its yellow handle to the desired location on the plot. (For more extensive annotations, see ReliaSoft Draw.)

Move Plot Items
If your plot has lines or points that are obscuring one or the other, you can move an item by pressing **ALT** and clicking the item. The Move Plot Item window will appear, giving you the option to move the selected item either to the front or back of the obscuring graphic.

Export or Copy Plot Graphics
You can save a plot graphic as a *.wmf, *.png, *.gif, or *.jpg file for use in other applications by clicking the **Export Plot Graphic** icon on the plot's control panel, or by choosing **[Plot/3D Plot] > Actions > Export Plot Graphic** if applicable.
Chapter 28: ReliaSoft Plot Utilities

In addition, you can save a plot graphic to the Clipboard by clicking the **Copy Plot Graphic** icon on the plot's control panel or by choosing [Plot/3D Plot] > **Actions > Copy Plot Graphic** if applicable.

When saving a 3D plot graphic to the Clipboard, the image will be in *.bmp* format. For all other types of plots there are three choices: If you will be pasting copied plots into any one of the spreadsheets built in to ReliaSoft desktop applications (e.g., Synthesis Workbooks or General Spreadsheets), choose **Metafile Optimized for Synthesis Spreadsheet**. If you will be pasting them into external applications, choose **Bitmap** or **Metafile Optimized for External Use**.

Export or Copy Plot Data
You can export the data from a plot to the Clipboard so that you can paste it into another application. The information depends on the plot type and on the application you are using.

- In Weibull++, ALTA, RGA, BlockSim or RENO, choose **Plot > Actions > Copy Plot Data**.

- In XFMEA, RCM++, RBI or Lambda Predict, click the **Copy Plot Data** icon on the plot's control panel.

Setting Confidence Bounds
If your analysis includes calculations for confidence bounds, you can display the bounds in the associated plot by clicking the **Confidence Bounds** link on the plot control panel or by choosing **Plot > Confidence Bounds > Confidence Bounds**.

Depending on the type of data you are working with, you may be presented with different options for setting up the confidence bounds on the plot. (The ReliaWiki resource portal provides information on the background theory of confidence bounds at: http://www.reliawiki.org/index.php/Confidence_Bounds.)

In the Confidence Bounds Setup window, you will need to:

1. Select which lines to show on the plot (e.g., two-sided, bottom one-sided, etc.)
2. Select which type of bounds to show on the plot. This may be the bounds on the time estimate (Type I), bounds on the reliability/unreliability estimate (Type II: Reliability); or
when applicable, bounds on functions such as number of failures, growth potential, etc. (Type II: Function).

3. Enter the percent confidence level.

To change the level of detail at which the bounds are plotted, adjust the Resolution slider. You can click and drag the slider or, for fine adjustments, click the slider and then use the arrow keys. The number of points plotted to create the lines is displayed next to the field name. Note that higher resolutions will take longer to plot.

To hide the confidence bounds, choose Plot > Confidence Bounds > Hide Confidence Bounds.
Setting Target Markers

When applicable, the plot control panel may display the **Target Reliability** link or the **Target MTBF/FI** link. Both give you the option to display markers for target values on the plot.

You can select to show a specified target value (displayed as a horizontal line), target time value (displayed as a vertical line), and/or insert a marker at the point where the two target values intersect. Below is an example for a plot that shows the target reliability.

Click the **Add** or **Remove** icon to manage the list of target values to be displayed. You can add up to 5 sets of target values/markers to a plot.
Chapter 28: ReliaSoft Plot Utilities

Plot Setup

The Plot Setup utility provides advanced settings for customizing the look of a plot to meet your needs and preferences. It allows you to: a) make changes and apply them to the current plot; b) save the changes and use them as default settings for all new plots; c) restore previously saved default values; or c) reset all settings to the shipped defaults.

Tip: You can quickly set some basic default settings for all new plots created in the current ReliaSoft desktop application via the Plots page of the Application Setup (File > Application Setup). The Application Setup also allows you to set some default analysis settings that may affect the appearance of plots (varies depending on the ReliaSoft desktop application).

To open the Plot Setup, click the **Plot Setup** icon on the plot’s control panel.

Alternatively, you can double-click the item on the plot you wish to edit (e.g., points, lines, etc.) and the Plot Setup will open and display automatically the options associated with that item.

To apply your changes to the current plot, click **OK**. To save your changes as the new defaults, or restore previously saved defaults, or reset to shipped defaults, click the **Defaults** button. (See **Plot Defaults Window** for more information.)

What’s Changed? Starting in Version 2019, many plot options that had also been available from the Application Setup window are now available only with the Plot Setup utility.

Importing and Exporting Plot Settings

Starting in Version 2019, you have the option to import and export plot settings to an XML file. This allows you to define the settings for one plot and then use them in other plots.

- To export the current settings, click **Export**.

- To import settings from an XML file, click **Import**.

Plot Elements

The Plot Setup is divided into pages that contain related settings for particular plot elements. The available pages/elements will depend on the type of plot you are working with.
As an example, the following picture identifies some of the basic plot elements that can be configured via the Plot Setup.

![Plot Diagram]

Plot Setup: Plot Titles Page

The Plot Titles page allows you to define the main, header and footer titles used in the plot and to change the text font and color.

Select or clear the **Show** check box to determine whether the title will be shown on the plot. Click the **Set Font** button next to the corresponding input box to open the Font window, which allows you to set the font type, style, size, color and text orientation.

Each asterisk (*) represents the default title text. For the main title, this is defined on the Titles Text page of the **Plot Defaults** window. If you type new text in an input box, either alone or in addition to the asterisk, the text you type will be displayed on the plot. For example, if you add **(Helicopter)** to the **Main Title** field, the default main title will be displayed, followed by "(Helicopter)." The changes you make will be applied regardless of plot type, so the main title of a Failure Rate vs Time plot would then be "Failure Rate vs Time (Helicopter)" and the main title of a System Failures plot would be "System Failures (Helicopter)." (This assumes that you have not changed the default main titles from the ones shipped with the application.)

You can use the **ENTER** key to add additional lines to the header title and the footer title.
To add an image file to the header title or footer title, click **Set Image** then browse for the file you want to include. Click **Open**. (You can select an image that uses one of the following formats: *.bmp, *.gif, *.jpg, *.jpeg, or *.ico.) The selected image appears next to the **Set Image** button. The image will also appear at the left side of the header or footer text. To remove the image, click **Clear Image**.

Plot Setup: Axis Titles/Labels Page

The Axis Titles/Labels page allows you to define the information used with the x-axis and y-axis, including the titles, axis labels and the numbers displayed in the axis labels. This page is not available when you are working with a pie chart.

The options on this page will vary depending on the plot style you are working with.

- **Axis Titles**
 - Select or clear the **Show** check box to determine whether the title will be shown on the plot. Click the **Set Font** button next to the corresponding input box to open the Font window, which allows you to set the font type, style, size, color and orientation of the text.

 Each asterisk (*) represents the default title text. If you type new text in an input box, either alone or in addition to the asterisk, the text you type will be displayed on the plot. For example, if you add **(Hours)** to the **Y-Axis Title** field, the default y-Axis title will be displayed, followed by "(Hours)." The changes you make will be applied regardless of plot type, so the y-axis title of a Static Reliability Importance plot would then be "Static Reliability Importance (Hours)" and the y-axis title of a Throughput vs. Time plot would be "Throughput(t) (Hours)." (This assumes that you have not changed the default axis titles from the ones shipped with the application.)

- **Axis Labels**
 - **Axis Labels** options, when selected, displays the numerical labels for the x-axis and/or the y-axis in the plot.

 If available for the plot type, click the **Custom Labels** button next to the corresponding option to open the Custom Axis Labels window, which allows you to add user-defined numerical labels to the x-axis or y-axis of the plot. Note that values outside the plot's display range are accepted but will not be shown.

 Click the **Set Font** button next to the corresponding option to open the Font window, which allows you to set the font type, style, size, color and orientation of the text.
Numbers in Axis Labels

Use the options in this area to configure the display of numerical values shown on the axes. The available options depend on the setting of the **Use Significant Figure Formatting** check box.

If selected:

Use the significant figures fields to set the maximum number of digits that are displayed (e.g., the number 1.23456789 displays as 1 with 1 significant figure while it displays as 1.23457 with 6 significant figures). If the value is large and contains more significant figures than the set value, then the number is simply rounded to the nearest whole number.

If not selected:

The mathematical precision sets the number of decimal places that a number will display. The scientific tolerance sets the point at which the numbers will be converted to normalized scientific notation. For example, setting the scientific tolerance to 3 means that all numbers with a value greater than 1,000 will be converted to normalized scientific notation (e.g., 1.0E+3).

Note: When you are working with a bar chart, the Numbers in Axis Labels area will contain settings for only the axis representing the dependent variable. This is affected by the orientation of your bar chart; if you are using vertical bars, this area will contain settings for the y-axis, and if you are using horizontal bars, it will contain settings for the x-axis. It is important to be aware that the settings for one axis will not transfer to the other axis when you change the bar orientation. You will need to return to this page and reenter the settings.

Plot Setup: Plot Labels Page

The Plot Labels page allows you to customize the labels for items (e.g., bars, slices, points) shown in the plot as well as for custom labels used in the plot.

The options on this page will vary depending on the plot style you are working with. All available options are presented below.

- **Bar Labels** (available only for bar charts)
 - To display the y-axis value of each bar with the bar, select the **Show Bar Labels** check box. (You can set the bar style using the **Bar Orientation** field on the **Bars page** of the Plot Setup.)
• **Show Bar Labels Even if Zero** if selected, bars with a y-axis value of 0 will be shown with a label of "0." The number of decimal places in the label will conform to the y-axis math precision value specified on the [Axis Titles/Labels page](#).

• **Point Labels** (available only for line plots)

 • To display the coordinates for each point at the lower right of the point, select the **Show Point Coordinates** check box. If this option is not selected, you can still display the coordinates for each point in a pop-up box by pointing to the point.

 • To display the point label in the same color as the border of the point itself, select the **Use Point Border Color** check box.

 • If there are overlapping points, select the **Show Point Multiplier** check box to display the number of points to the right of the point.

• **Slice Labels** (available only for pie charts)

 • To label the slices of the pie chart according to the components they represent, select the **Show Slice Labels** check box.

 • To label the slices of the pie chart with the percentage of the whole that they represent, select the **Show Slice Size** check box.

• **Custom Plot Labels** allows you to control the appearance of custom plot labels. You can add custom labels to your plot by pressing **CTRL** and clicking the plot.

 • **Delete Labels** deletes all custom labels on the plot.

 • **Reset Labels** immediately resets all custom labels on the plot to use the settings specified via the **Set Font** button. This allows you to apply the settings to existing custom labels rather than just new labels created after changing the settings.

• **Bar Label Position** (available only for bar charts) allows you to specify whether you want the bar labels located within the bars or outside of the bars.

For all labels, you can click the **Set Font** button in the section to open the Font window, which allows you to set the font type, style, size and color for labels of that type.
Plot Setup: Legend Page
The Legend page allows you to customize the display of the legend on the current plot.

The options on this page will vary depending on the plot style you are working with. All available options are presented below.

- To display the legend on the plot, select the Show Legend check box.
 - To include on the legend a color definition for each point/line/bar/slice shown in the plot, select the Show Plot Items check box.
 - To include lines above and below the legend and the user information, select the Show Legend Border check box. Use the options to the right to modify the appearance of the border. To change the color of the border, click the Color box to the left of the Thickness box. Adjust the thickness of the border by entering a positive integer in the input box. Change the style of the line (e.g., solid, dashed, etc.) by clicking the Line Style box to the right of the Color box.
 - To display the text of the legend in the same color as the lines, points, bars and/or slices on the plot, select the Use Item Color check box. If not selected, the text will be red.
 - Show Analysis Information if selected, the legend will display information about the analysis shown on the plot, including the data source and/or the settings used in the calculation, if applicable.
 - To display the plot description (including the plot type) on the plot, select the Show Plot Description check box.
 - To show the user display name, company and the date and time the plot was generated on the plot, select the Show User Information check box. (You set the display name and company using the User Login and Contact Information Window.)

- The legend area allows you to specify the amount of space used for the legend.
 - Fixed Legend Width if selected, the legend will remain the same size regardless of the information it contains. You can set the percentage of the canvas width that the legend will occupy.
 - Maximum Legend Width if selected, the legend will automatically recalculate its width based on the information it contains. You can set the maximum percentage of the canvas area that the legend will occupy.
Click the **Set Font** button next to the corresponding option to open the Font window, which allows you to set the font type, style, size and color of the text.

- For bar and pie charts in BlockSim and RENO only, **Color Spectrum** allows you to set the color limits for the plot.

 - You can set both lower and upper color limits by dragging the markers on the scale between 0% and 100%.

 - **Show all values (0-100%) in legend** if selected, the legend will show the full range of values; if not selected, the legend will show only the values between the upper and lower limits that you have specified.

- The preview shows how the specified settings will appear in the legend.

Plot Setup: Canvas Page
The Canvas page allows you to customize the color, style and thickness of the plot borders and title lines, along with the appearance of the rest of the plot sheet.

- **Plot Canvas and Area**

 - **Canvas Back Color** allows you to choose the color for the area outside the plot (i.e., the area containing the titles, labels, legend, etc.).

 - **Canvas Border** allows you to determine if the border around the plot field will be displayed and, if so, to set the color.

 - **Plot Area Back Color** allows you to choose the color for the plot background.

- **Plot Area Border Lines** allows you to hide or show each of the specified lines, as well as to choose a color, a thickness and a style for each. The borders referred to in this area are the borders of the plot area itself (i.e., the bottom border is the x-axis, etc.).

 - To show or hide a line, select or clear the associated check box.

 - To change the color of any of the lines, click the **Color** field. The drop-down list that appears allows you to choose from custom colors, web-safe colors or the colors used in the current Windows system settings. You can add colors to the Custom page by right-clicking one of the color boxes in the bottom two rows.

 - You can adjust the thickness of a line by entering a positive integer in the input box. A value of 1 will draw the thinnest possible line and other values such as 2, 3, etc. will draw thicker lines. Note that the size of the thinnest possible line is dependent upon your screen resolution.
In addition, you can change the style of each line by clicking the Line Style box to the right of the Thickness box. A list providing line style options (e.g., solid, dashed, etc.) will appear. Choose the line style you want and it will appear in the Line Style box.

To highlight each object (i.e., point, line, bar or slice) on the plot as you point to it, select the Highlight Selected Plot Item check box. When an object is active, you can click it to open the Plot Setup window and edit the properties specific to that object. The remaining options in this area are available only if this option is selected.

- **Fill Color** allows you to specify a foreground color to be used on the highlighted active object.
- **Back Color** allows you to specify a background color to be used on the highlighted active object. This color is not used if the selected fill style does not use a background color (i.e., solid or transparent fill style).
- **Fill Style** allows you to select a style of hatching to be used on the highlighted active object.

Plot Setup: Grid Page

The Grid page allows you to customize the color, style and thickness of the grid lines and to set the number of axis divisions used. This page is not available when you are working with a pie chart.

The options on this page will vary depending on the plot style you are working with. All available options are presented below.

- **Axis Division Lines** allows you to hide or show each of the axis division lines, as well as to choose a color, a thickness and a style for each.

 - To show or hide a line, select or clear the associated check box.

 - To change the color of any of the grid lines, click the **Color** box. The drop-down that appears allows you to choose from custom colors, web-safe colors or the colors used in the current Windows system settings. You can add colors to the Custom page by right-clicking one of the color boxes in the bottom two rows.

 - You can adjust the thickness of a grid line by entering a positive integer in the input box. A value of 1 will draw the thinnest possible line and other values such as 2, 3, etc. will draw thicker lines. Note that the size of the thinnest possible line is dependent upon your screen resolution.
• In addition, you can change the style of each line by clicking the **Line Style** box to the right of the thickness box. A list providing line style options (e.g., solid, dashed, etc.) will appear. Choose the line style you want and it will appear in the **Line Style** box.

• **Number of Axis Divisions** allows you to set the number of major and minor divisions for each axis.

Note: When you are working with a bar chart, the Grid page will contain settings for only the axis representing the dependent variable. This is affected by the orientation of your bar chart; if you are using vertical bars, this area will contain settings for the y-axis, and if you are using horizontal bars, it will contain settings for the x-axis. It is important to be aware that the settings for one axis will not transfer to the other axis when you change the bar orientation. You will need to return to this page and reenter the settings.

Plot Setup: Bars Page

The Bars page allows you to customize the appearance of the bars in the plot. This page is available only when you are working with a bar chart.

• **Bar Border Lines** allows you to hide or show the border line for the bars, as well as to select a color, a thickness and a style for the border.

• **Bar Orientation** allows you to select how you want the plot laid out. You can choose to use vertical bars or horizontal bars.

Plot Setup: Slices Page

The Slices page allows you to customize the appearance of the slices in the plot. This page is available only when you are working with a pie chart or tableau plot.

• **Pie Settings**

 • **Rank** if selected, you can specify the ranking of the slices that you want to view. For example, entering 5 will cause only the five largest slices to be shown in the plot.

 • **Threshold** if selected, you can specify a minimum size (in percentage of the whole) for the slices that you want to view. For example, entering 0.1 will cause only slices accounting for ten percent or more of the whole to be shown in the plot.
Chapter 28: ReliaSoft Plot Utilities

- **Show Remaining Slices as Other** if selected, all remaining slices that do not meet the rank or threshold criterion specified will be shown in the plot as "other." This option is available only if you have specified a rank, a threshold or both.

- **Other Slice Color** allows you to choose the color used to represent "other" slices. This option is available only if you have selected the **Show Remaining Slices as Other** option.

- **Slice Border Lines** allows you to hide or show the border line for the slices, as well as to select a color, a thickness and a style for the border.

- **Chart Type** allows you to select how you want the plot laid out. You can choose to use an area chart (blocks), cake chart (layers) or pie chart (wedges).

Plot Setup: Plot Items Page

The Plot Items page allows you to specify details of the appearance of the points, lines, bars and/or slices on the plot.

The options available on this page will vary depending on the plot style that you are currently working with.

The following options are available for all plot styles:

- **Choose an Item to Configure** allows you to choose which plot element the settings on this page apply to.

- **Show** allows you to select whether or not the plot element you currently chose to configure will be shown on the plot. Depending on the plot style that you are currently working with, you may select to show the bars, slice, line and/or points. This option is not available for all plots.

For bar charts and pie charts, the following option applies.

- **Area Fill Color and Style** allows you to specify the appearance of the bar or slice representing the selected item. To change the color of the bar or slice, click the **Color** box. You can select a fill style from the drop-down list.

For line plots, the following options apply:

- **Line Settings** allows you to specify the appearance of the line representing the selected item. To change the color of the line, click the **Color** box. You can adjust the thickness of a grid line by entering a positive integer in the input box. Adjust the thickness of the line by entering a positive integer in the input box. Change the style of each line such as solid, dashed, etc., by clicking the **Line Style** box.
• **Point Settings**

 • **Color, Shape, Size and Fill** allows you to specify the appearance of the point body. To change the color of the point, click the **Color** box. You can select a point shape from the drop-down list, select the size of the point (with 1 being the smallest point) and select a fill style from the drop-down list.

 • **Border Color, Thickness and Style** allows you to modify the appearance of the border of the points. To change the color of the border, click the **Color** box. Adjust the thickness of the border by entering a positive integer in the input box. Change the style of each line such as solid, dashed, etc., by clicking the **Line Style** box.

 Certain point shapes are drawn using only the border color. These include minus, pike, plus and x-cross.

Plot Setup: Offsets Page

The Offsets page allows you to specify the distance of various components from the edge of the plot area.

Automatically calculate positions from edges of plot sheet if selected, automatically calculates the offsets for maximum plot display and readability. If not selected, you can manually specify the offsets of the plot's left, right, top and bottom edges; the offset of the legend from the right edge of the plot area; and the offset of the main, x-axis, y-axis, header and footer titles. The offset values are set as a percentage of the canvas area.

For your reference, the following picture shows which plot elements are affected by each of the offset settings. (Note that the plot is generated from BlockSim, but the settings are the same for all ReliaSoft desktop applications.)
Plot Setup: Zoom Page

The Zoom page allows you to customize the options used when zooming in on a plot by using the mouse wheel. Zooming works only for plots with scales. For more information, see Basic Plot Features.

Allow Zoom if selected, allows the plot zoom feature to be used.

- **Factor** use this option to set the amount of the magnification each time you use the mouse wheel on the plot. The lower the number, the greater the increase in the magnification.

- Use the **Border Color, Thickness and Style** option to set the appearance of the zoom box. To change the color of the border, click the **Color** box to the left of the **Thickness** box. Adjust the thickness of the border by entering a positive integer in the input box. Change the style of the line (e.g., solid, dashed, etc.) by clicking the **Line Style** box to the right of the **Color** box.

- **Fill Style** allows you to select a style of hatching to be used on the zoom box.
• **Fill Color** allows you to specify a foreground color to be used on the zoom box. This color is not used if the selected fill style does not use a background color (i.e., solid or transparent fill style).

• **Background color** allows you to specify a background color to be used on the zoom box. This color is not used if the selected fill style does not use a background color (i.e., solid or transparent fill style).

Plot Defaults Window

Each time you open the Plot Setup window, the changes that you make will apply only to the current plot unless you specify otherwise. To specify settings to be used as defaults for all subsequent plots or to re-apply default settings to the current plot, click the **Defaults** button to open the Plot Defaults window.

The Plot Defaults window gives you the flexibility to set the default settings for the three main areas of a plot: the plot titles, the plot item settings and the general display areas. You can choose to separately save, load or restore the default settings of each main area or you can set the default settings for all areas at once.

The Plot Defaults window consists of nine pages:

• **All Defaults page.** This page controls the settings for all the other plot setup pages. When you click a button on this page, the effects apply to all pages. This allows you to quickly make changes without having to individually change each of the other pages.

• **Titles Text page.** This page allows you to customize default plot titles for each plot type without having to view a plot of that type. For example, you can display a Failure Rate vs. Time plot while changing the titles for a System Failures plot.

• **Plot Items Display page.** This page allows you to customize the details of the default appearance of the lines, points, bars and/or slices of every plot type without having to individually change each plot.

• **General page.** This page controls the settings for the five section pages below it. When you click a button on this page, the effects apply to the Titles Display, Labels, Legend, Canvas and Grid and Offsets pages.

• The Titles Display, Labels, Legend, Canvas and Grid and Offsets pages control the settings of their individual sections. When you click a button on one of these pages, the effects apply only to that specific section.
Three Defaults buttons appear on every page of the Plot Defaults window. The scope of their effects differs slightly depending on the page you are working with.

- **Save Defaults** saves settings for use as the default settings for all subsequent plots. This will overwrite the previous default settings.

- **Load Defaults** enters the saved default values for the settings. You can then click OK in the Plot Setup window to apply the default settings to the current plot. This is an easy way to undo changes you have made in the Plot Setup window and re-apply default settings.

- **Restore Defaults** clears the saved default settings and restores the default values that are shipped with the application.

The scope of the Defaults buttons' effects changes as follows:

- For the Titles and Plot Item Display pages, these buttons save/load/restore the settings specified on the current page.

- For the Titles Display, Labels, Legend, Canvas and Grid and Offsets pages, these buttons save/load/restore all current settings on the corresponding page(s) of the Plot Setup window (e.g., clicking **Save Defaults** on the Canvas and grid page of the Plot Defaults window will save the settings from the Canvas, Grid, Bars and Slices pages).

 Note: The settings affected by the Defaults buttons on the Titles Display, Labels, Legend, Canvas and Grid and Offsets pages include all settings relevant to the section, regardless of whether they are currently available or not. For example, if you have previously specified settings for a pie chart and are now specifying settings for a bar chart, the settings that you created for the pie chart will be saved as defaults when you click **Save Defaults** and will be applied to subsequent pie charts.

- For the All Defaults and General pages, clicking these buttons is equivalent to clicking them on all of the subordinate pages.

Plot Defaults Window: Titles Text Page

The Titles Text page of the Plot Defaults window allows you to customize default plot titles for each plot type.

- **Titles** allows you to select the plot type that you are changing the default titles for.
- **Main** allows you to type the default main title for the plot.
- **X-Axis** allows you to type the default title for the x-axis for the plot.
- **Y-Axis** allows you to type the default title for the y-axis for the plot.
Plot Defaults Window: Plot Items Display Page

Plot Item Type allows you to select the style of plot that you want to specify default settings for. The settings you specify are retained in the background when you choose a new item in this list, so you can specify settings for each type and save all of them, if desired.

The options on this page are identical to those on the Plot Items page of the Plot Setup window for the corresponding plot style.

ReliaSoft Draw

ReliaSoft Draw (RS Draw) is a metafile graphics editor that allows you to annotate and customize your plots. With RS Draw, you can insert text, draw an object, mark the coordinates of a particular point or paste another picture into your plot. You can also re-arrange the objects in your plot by selecting and moving them to the positions you desire. In addition, you can save the annotated plot in one of the following formats: *.rdc, *.jpg, *.gif, *.png or *.wmf.

RS Draw is available by clicking the icon on the plot control panel.

See ReliaSoft Draw Help for information on the features available in ReliaSoft Draw. If you do not currently have Internet access, this link will not work, but you can browse to the local copy of the help file by opening the Help\RSDraw\rsdraw.htm file in your ReliaSoft application directory.

Overlay Plots

Available in Weibull++, ALTA, BlockSim and RGA, overlay plots give you the ability to display results from multiple analyses in a single plot. This allows you to easily compare different data sets, analysis methods or distributions. For example, you may wish to show the reliability plots of two product designs in the same plot or compare a simulation-based data set with actual data obtained from fielded products.

Creating an Overlay Plot

Before using an overlay plot, you must first analyze the data sets (or simulate the diagrams) you wish to include in the plot. Then to add an overlay plot to the project, choose Home > Insert > Overlay Plot.
In the window that appears, select the data sheets/diagrams you want to include in the plot (up to a maximum of 20) and click OK to create the plot sheet. The plot sheet will be saved automatically under the Multiplots heading in the current project explorer.

Tip: In Weibull++, ALTA and RGA, you can add additional plot sheets to a folio by choosing [Life Data/Life-Stress Data/Growth Data] > Folio Sheets > Insert Additional Plot. The additional sheets can function as overlay plots to display results from multiple data sheets in the current folio on a single plot.

Adding or Removing Analyses
To add or remove analyses from an overlay plot, click the button on the control panel, as shown in the example below for data sheets.

![Select Data Sheets]

If you later delete an analysis that is referenced by the plot, the plot will remain available and will continue to show the results of the analysis until you redraw the plot (by clicking the Redraw Plot icon on the control panel).

Note that importing or exporting an overlay plot will automatically import/export the associated source analyses. (See Importing/Exporting Project Items or Resources.)

Available Plot Types for Overlay Plots
The available plots depend on the analysis or type of data you are working with.

For Weibull++/ALTA

Probability plots, contour plots and ALTA stress plots are available only if the data sets have been calculated with the same distribution. This is because the scales or axes in those types of plots vary for different types of distributions.

In DOE design folios, plots that are intended to be viewed as singular plots will not be available for inclusion in overlay plots. These include the comparison chart, Pareto chart, interaction matrix, term effect plot, cube plot, residual histogram, residual autocorrelation plot, and Box-Cox transformation plot. In addition, only plots that are common to the type(s) of design you have selected will be available in the overlay plot. If a plot type is unavailable for any of the included design types, it will be unavailable in the overlay plot.
For BlockSim

You can compare data from analytical and simulation diagrams in the same plot, but keep in mind that analytical diagrams always show the reliability over time (does not account for repairs) while simulation diagrams always show the point reliability over time (may include repairs).

For RGA

Only plots that are common to the analyses you have selected will be available in the overlay plot. If a plot type is unavailable for any of the included analyses, it will be unavailable in the overlay plot. It is possible for the selected analyses to not have any common plot types.

Side-By-Side Plots

Available in Weibull++, ALTA and RGA, side-by-side plots give you the ability to display different plots for a single data set all in a single window for easy comparison.

To add a side-by-side plot to a project, choose Home > Insert > Side-by-Side Plot.

In the window that appears, select the analysis/data sheet you want to plot and click OK to create the plot sheet.

To view a single plot in greater detail, double-click the plot. You can double-click the plot again to return to the side-by-side view.

Choosing Plots to Display

The control panel provides options for selecting the type of plots to display. For most analyses, the Vary area will be available, which contains two options:

- The vary Plot Types option allows you to create different plots for the same data set. For example, you might wish to display both the Reliability vs. Time plot and the Failure Rate vs. Time plot of the data set.

- The vary Distributions or Models option allows you to compare how different distributions or models fit a particular data set. For example, you might wish to display a reliability plot for different life distributions, as shown next.
3D Plots

Available in Weibull++, ALTA and for two-way sensitivity analysis in RENO, 3D plots give you the ability to graph functions with three variables, such as the reliability at a given time and stress level. In addition, Weibull++ and ALTA offer the option to create 3D overlay plots, which are similar to regular overlay plots but displayed in 3D space.

Creating 3D Plots

Before creating a plot, you must first analyze the data sets (or in RENO, you must first run the simulation for the two-way sensitivity analysis).

To add 3D plots to a project, right-click the Multiplots folder in the current project explorer and choose the type of plot:

- 3D Plot
- 3D Overlay Plot (Weibull++ and ALTA only)

In both cases, the plots are automatically saved and stored in the Multiplots heading in the current project explorer.
Defining the X, Y and Z Axes

The control panel in the 3D plot folio contains basic settings for defining the X, Y and Z axes. (For advanced customization options, see 3D Plot Setup.)

The **Begin** and **End** fields, as shown next, display the minimum and maximum values for the axes. You can click inside these fields to manually edit the values, or select the **Autoscale** check box to have the application automatically choose the appropriate values for the range.

Whenever applicable, the **Parameter** fields will be displayed, as shown in the example above. Click these fields to change which parameter lies on which axis. The name of the parameter associated with the axis will be displayed next to that axis’s label.

Rotating 3D Plots

The XYZ indicator shown at the lower-left of a 3D plot represents the plot’s horizontal rotation (**azimuth**) and vertical rotation (**elevation**) in 3D space. Any changes to a plot’s rotation are reflected in the XYZ indicator, helping you to visualize the plot’s orientation on the screen.

There are several ways to rotate or manipulate a 3D plot, using the mouse, keyboard shortcuts or the view cube.
Using a Mouse and Keyboard Shortcuts

<table>
<thead>
<tr>
<th>If you want to</th>
<th>Use a mouse</th>
<th>Use keyboard shortcuts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotate the plot or change the viewing angle</td>
<td>Click anywhere in the plot area, and then press and hold the left mouse button while moving the pointer.</td>
<td>Press the Up, Down, Left or Right arrow keys.</td>
</tr>
<tr>
<td>Move the plot without changing its rotation</td>
<td>Click anywhere in the plot area, and then press and hold the right mouse button while moving the pointer.</td>
<td>Hold the SHIFT key while pressing the Up, Down, Left, or Right arrow keys.</td>
</tr>
<tr>
<td>Zoom in or out</td>
<td>Rotate the mouse wheel. Alternatively, you can choose 3D Plot > Display > Zoom In or Zoom out.</td>
<td>Press the W or S keys.</td>
</tr>
<tr>
<td>Automatically center the plot on canvas</td>
<td>Choose 3D Plot > Display > Center on Canvas.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Using the View Cube

The View Cube helps you to easily orient a 3D plot using predefined viewpoints. The cube is located at the lower-right of the 3D plot.

The letters on the cube represent a particular viewpoint. For instance, clicking the "F" side of the cube orients the plot such that you are looking directly at the plot’s front side (e.g., Y and Z plane).

- Front
You can rotate the cube in the same way you would rotate any 3D plot (i.e., press and hold the left mouse button while moving the pointer anywhere on the screen; or press the Up, Down, Left or Right arrow keys on your keyboard).

3D Plot Setup

The 3D Plot Setup allows you to customize the look of 3D plots to meet your needs. It gives you full control over the settings used for individual 3D plots and the default settings for all new 3D plots.

To access the 3D Plot Setup, choose **3D Plot > Actions > Plot Setup**.

Alternatively, you can double-click the item on the plot you wish to edit. This will automatically open the 3D Plot Setup and display the options associated with that item. The available options in the 3D Plot Setup will vary, depending on the plot type. You can move the mouse pointer over an option to display its definition.
To apply your changes to the current plot only, click OK.

To save your changes and use them as the default setting for all new 3D plots, click the Save as Default button. This will overwrite the previous default settings.

To restore the previously saved defaults, click the Load Defaults button. This is an easy way to undo changes you have made in the 3D Plot Setup and re-apply default settings.

To reset all settings to the default values that were shipped with the application, click the Reset button.
Chapter 29: Synthesis Workbooks

The Synthesis Workbook is a custom reporting tool that is built directly into many ReliaSoft applications, including Weibull++/ALTA, RGA and BlockSim. It combines two reporting modules – Spreadsheets and Word Processing – into the same flexible interface, thereby replacing the Analysis Workbook and Word Report Template functionality from prior versions.

Tip: If you convert a project from Version 10 or earlier, any Analysis Workbooks and Word Report Templates will be automatically converted to Synthesis Workbooks.

If your organization has implemented an SEP web portal for an enterprise database, you can choose to publish selected Synthesis Workbook reports to be accessed from any web-enabled device. See Publishing to SEP.

Synthesis Workbook Wizard

To add a new Synthesis Workbook in an existing project, choose **Home > Insert > Synthesis Workbook**.

![Synthesis Workbook Wizard](image)

This launches the wizard, which gives you the opportunity to assign the first associated data source and/or select a saved template, if desired. (Note that the examples shown here are from Weibull++ but similar functionality is available in ALTA, RGA and BlockSim.)

If you prefer to start with a blank report:
Simply click **OK** and then click **Yes** when prompted to confirm that you want to create the report without associating a data source. (You will be able to associate data source(s) later if you wish.)

If you want to assign the first data source:
Click **Select** and choose one of the available analyses (i.e., a data sheet in Weibull++/ALTA and RGA, or a diagram in BlockSim). When you return to the wizard, click **OK** to create the report.

Note that you will be able to associate more data sources after the report is created, and change any of those assignments at any time. (See Associated Data Sources.)
If you want to use a saved template:

Click **Spreadsheet** or **Word Processing**. Select the **Based on Existing Template** check box and then choose a template from either the Standard tab (templates that are installed with the software) or the User tab (templates you have saved). Then click **OK** to create the report. (See [*Synthesis Workbook Templates*](http://xfmea.reliasoft.com)).

Associated Data Sources

In [*Synthesis Workbooks*](http://xfmea.reliasoft.com) in Weibull++/ALTA, RGA and BlockSim, you have the option to associate multiple data sources that can be used for any function that obtains data or results from an existing analysis. (To obtain results from a DOE analysis in Weibull++/ALTA, see [*DOE Analysis Report*](http://xfmea.reliasoft.com).)

When you create this type of function, you will have the option to use an index to specify which of the currently assigned default data sources will be used. For example, if you want to compare the reliability values calculated from two different analyses, you can use

\[
\text{=RELIABILITY(Default1,1000)}
\]

and

\[
\text{=RELIABILITY(Default2,1000)}
\]

to get the result from the first default data source, and the result from the second default data source.

Although you will be prompted to associate the first data source when you create the report, you can add or change associated data sources for an existing report at any time.

Associating Data Sources

For Synthesis Workbooks, the Information panel (located on the right side of the window) shows which analyses are currently assigned as default data sources. To have the panel always display, click the pushpin icon into the vertical position.
To add or remove analyses, choose **Home > Report > Associate Data Sources** or click the icon in the Information panel.

The following picture shows the windows for Weibull++. Similar functionality is available in ALTA, RGA and BlockSim.

Note that:

- In **Weibull++/ALTA**, you can select any data sheet from a folio that contains a life data analysis:
 - Life data folio
 - Life-stress data folio
Chapter 29: Synthesis Workbooks

- Non-parametric LDA folio
- Warranty analysis folio
- Degradation analysis folios (the results shown in the report will be based on the analysis of the extrapolated failure/suspension times)

- In **RGA**, you can select any data sheet in a growth data folio.
- In **BlockSim**, you can select any analytical diagram, simulation diagram or phase diagram. The function results can either be based directly on the analyzed/simulated diagram, or based on a model that has been fitted to the diagram. You specify this preference on the diagram’s control panel, using the **Report folio model** drop-down list on the Analysis Settings page.

Linking Multiple Data Sources with Different Time Units

In BlockSim, function results that are time-based (e.g., downtime, time to event, etc.) will be returned in terms of the **System Base Unit (SBU)** for the repository. However, in Weibull++/ALTA or RGA, each function result is returned in the units used by its data source. If you wish to compare the results from multiple data sources that use different time units, there are two possible scenarios:

- Convert the data in the original data source. For example, if one data set is in "hours" and another is in "days," you could use the **Change Units** feature to automatically convert the data in the first analysis from "hours" to "days."

 Tip: If you want to keep the original analysis unchanged, you could create a copy of the data sheet, then convert the duplicate data sheet to use the new units.

- Manually adjust the functions so they return results in the same units. For example, if the data set is in "days" and you want the results to display the B10 life in "hours," you could adjust the function by adding a conversion ratio. For example, if 1 day is equivalent to 24 hours, you could edit the function as follows:

 \[(\text{TIMEATPF("Weibull!Week!Data1",0.1)}) \times 24\].

Synthesis Workbook Templates

In Synthesis Workbooks, saved templates make it easy to reuse the same report multiple times — in different analysis projects and with different data sets.
Note: For DOE analyses, instead of saved templates for the entire workbook, you can use saved profiles in the DOE Report Generator.

In addition to the Standard templates that are installed with the software, you can also create your own User templates that are saved from any existing report. Note that the templates are module-specific (i.e., compatible with either the spreadsheet module or the word processing module).

Saving Your Own Templates

It is easy to create a template from any Synthesis Workbook that is currently open.

Select either the spreadsheet or the word processing module, then choose Document > Document > Save Template.

You can name and store the custom templates however you wish. To share a template with other users, you can simply send them a copy of the file, or you can save the file in a shared network location that multiple users can access.

Using a Template

You can select a template when you create a new Synthesis Workbook. (See Synthesis Workbook Wizard.)

Alternatively, you can use the steps below to apply or change the template for an existing workbook at any time.

IMPORTANT: This will replace any existing content in the current module, and the change can’t be undone.

1. Select either the spreadsheet or word processing module and then choose Document > Document > Open Template.

2. Select a template from either tab then click OK to apply the template to the new or existing report.
 - The Standard tab displays the templates that are installed with the software and stored in the applicable sub-folder under C:\Users\Public\Documents\ReliaSoft\Templates.
The User tab displays custom templates that were saved from an existing report. These can be stored in any location that is convenient for you. If the custom template you need is not displayed, click the Open icon to browse for the desired template and add it to the list.

Spreadsheet Module
The spreadsheet module in Synthesis Workbooks provides functionality similar to Microsoft Excel (with built-in functions and complete in-cell formula support), and it can be used to integrate data and/or results from multiple analyses at the same time.

Send to Excel
To export all sheets in the spreadsheet module to a Microsoft Excel file, choose Home > Report > Send to Excel.

Inserting Functions
- To build and insert functions that utilize a referenced analysis (data source), see Function Wizard - Data Sources.
- To add math, date, logic and other functions, see Function Wizard - Formulas.

Showing Formulas
To display the formulas instead of the calculated results in the worksheet cells, choose Formulas > Formula Auditing > Show Formulas.
You can toggle the formula display on and off.

Recalculate Formulas
By default, the spreadsheet automatically recalculates all formulas whenever you open the workbook or when the cells that a formula depends on have changed. However, if your spreadsheet contains a large number of formulas, the recalculation process may take more time and every change may require you to wait several seconds or minutes for the application to recalculate all values. In this case, you can control when calculation occurs by changing the setting to manual calculations.

To use manual calculations, choose Formulas > Calculation > Calculation Options, and then choose the Manual option. To change the settings back to automatic calculations, choose the Automatic option.

To recalculate all formulas when in Manual mode, choose Formulas > Calculate > Calculate Now.

The Calculate Now command can also be used to refresh the spreadsheet. A spreadsheet needs to be refreshed whenever its referenced data source(s) has been recalculated. This ensures that the spreadsheet reflects the most current results.

Adding Custom Charts
To create your own custom chart, first select the cells that contain the relevant data, then go to Document > Charts and choose a chart type and style. (See Custom Charts in Synthesis Workbooks.)

Defining Names
To create variable names that reference specific spreadsheet cells, see Defined Names.
Word Processing Module

The word processing module in Synthesis Workbooks offers custom reporting functionality that is similar to a Microsoft Word document. You may prefer to use this tool if you want to have a more polished, professional looking report.

This module has two tabs located at the bottom of the window: Design and Review. Use the Design tab to add text, functions and plot holders. Use the Review tab to see the results before you generate the final report.

To export the report to Microsoft Word, choose Send to Word.

Using the Function Wizard

To use the Function Wizard to build and insert functions that utilize a referenced analysis (data source), choose Home > Report > Function Wizard. (See Function Wizard - Data Sources.)

Using the Plot Wizard

To use the Plot Wizard to generate a variety of plots based on a referenced analysis, choose Home > Report > Plot Wizard. These are the same types of plots that are generated in an analysis folio or diagram plot sheets. (See Plot Wizard.)

Using Spreadsheet References

To reference cells from the spreadsheet module (within the same workbook), choose Home > Report > Spreadsheet Reference and select the desired cells. The link between the word processing and spreadsheet modules is dynamic; when data in the spreadsheet is changed, the word processing module is automatically updated. (See Spreadsheet References.)

Formulas and Functions

Function Wizard - Data Sources

In both the spreadsheet module and word processing module for Synthesis Workbooks in Weibull++/ALTA, RGA and BlockSim, you can build functions that return results based on an analyzed folio or diagram.

Note: To insert math, date, logic and other functions into the spreadsheet module of a Synthesis Workbook, see Function Wizard - Formulas.
Using the Function Wizard

To open the Function Wizard in Synthesis Workbooks, choose Home > Report > Function Wizard.

Select a function from the navigation panel and enter any required inputs. The following picture shows the most complex configuration as an example. After entering the inputs, click Insert to place the function into the report at the current cursor location. You can move and/or modify the function expression after it has been inserted.

For spreadsheet functions:

- The bracketed parameters indicate that the input is optional. In the example above, the Add Time and Confidence Level parameters are optional.

- You can use cell references as inputs. For example, instead of entering 1000 for a time input, you could specify to use whatever time is currently entered into cell A10, using either the relative reference (A10) or the absolute reference (A10). (See Cell References.)

- You can use variable names as inputs. (See Defined Names.)

- You can type the function expressions directly in the cell once you are familiar with the syntax. For more information, see Data Entry Tips for Functions.

For the word processing module:

- The brackets are part of the function field and are not optional.
• The functions will not return any results until you either switch to the **Review** tab or **generate the report in Microsoft Word**.

Selecting a Data Source (if Applicable)

There are two ways to specify the data source:

• **Use the Data Source Name** (spreadsheets module only): This approach will return results based on a specific data sheet or diagram.

In the Function Wizard, clear the **Use Default** check box and click the **Select** button to choose the data source, as shown next. In this example, the function will return results based on the data sheet called "Data1" in the Weibull++ life data folio called "Folio1."

![Data Source](image)

• **Use a Data Source Index** (spreadsheet and word processing modules): This approach allows you to use the report as a template and return results based on a given data set.

First, you must add data sources to the Synthesis Workbook (see **Associated Data Sources**). Then, in the Function Wizard, click the **Data Source Index** drop-down list and choose the index number of the desired data source. (In spreadsheets, select the **Use Default** check box to access the **Data Source Index** drop-down list.)

![Data Sources](image)
Function Wizard - Formulas

In the spreadsheet module for Synthesis Workbooks in Weibull++/ALTA, RGA and BlockSim, you can insert functions that perform math, date, logic and other operations.

Using the Function Library

The quickest way to add a function is to select it from the appropriate function category drop-down list, then select the cells of interest (hold down the CTRL key to select nonconsecutive cells) and press ENTER. You can move and/or modify the function expression after it has been inserted.

For example, to calculate the average reliability for the following units, you would choose Formulas > Function Library > AutoSum > Average. Select cells B3 through B9 and press ENTER. Note that the cell references can be relative (B3:B9) or absolute (B3:B9). (See Referencing a Cell.)

![Spreadsheet Image]

Using the Function Wizard

To use the Function Wizard, choose Formulas > Function Library > Insert Function. Select a function from the drop-down list and click OK. Then in the Function Argument window, enter the input by either selecting the cells in the sheet or typing them directly into the appropriate field. For information relating to entering text as an input, cell references, and working with date and time functions, see Data Entry Tips for Functions.
For example, to exclude the value from unit 4 (failure due to operator error) from the average, you would select cells B3 through B5 for **Number 1**, and B7 through B9 for **Number 2**.

Data Entry Tips for Functions

This topic provides some data entry tips for using spreadsheet functions in Synthesis Workbooks and general spreadsheets. If you create the function using the Function Wizard, most of the syntax and formatting issues will be handled automatically. However, you have the option to create or modify function expressions directly in spreadsheet cells.

Note: For DOE design folios, you can disregard any tips related to **data source functions** (i.e., functions that obtain data or results from a specific data sheet or diagram). For that type of analysis, you can use the **DOE Analysis Reports** feature to obtain results from a design, multiple linear regression or one-way ANOVA folio, or any of the measurement systems analysis folios.

Case Sensitivity

The functions are not case sensitive.

Entering Text as an Input

When entering text as an input to a function, you must enclose it in quotation marks. This includes situations where you need to specify the data source — DISTR("Weibull!Folio1!Data1") — and situations where you need enter a time or date value in one of the accepted text formats — DAY("22-Aug-2019").
Regional Settings
If your regional settings use a comma as the decimal separator, you must use a semicolon to separate function arguments (e.g., =RELIABILITY("Weibull!Folio1!Data1";A4)).

Referencing a Cell in the Same Sheet
If you want to use another cell in the same sheet, enter the cell reference with a letter to identify the column and a number to identify the row. The cell references can be relative (e.g., B2) or absolute (e.g., B2).

- A relative reference points to a cell based on its relative position to the current cell (e.g., B2). When the cell containing the reference is copied, the reference is adjusted to point to a new cell with the same relative offset as the original cell.
- An absolute reference points to a cell at an exact location. Absolute references are designated by placing a dollar sign ($) in front of the row and/or column that is to be absolute. For instance, B2 is an absolute reference that points to the cell located in Column B, Row 2 regardless of the position of the cell containing the reference.

For example, if you want to obtain the probability of failure for the time that has been entered in cell B2, the function could be either =PROBFAIL(B2) or =PROBFAIL(B2). You can type the cell location directly into the field or click the Function Wizard’s Insert Workbook Reference icon to insert the reference to the cell currently selected in the sheet. If you want to insert an absolute reference, press CTRL while you click the icon.

Another option is to use the Defined Names tool to assign a name to the cell and use the name in all of the function expressions that require that input. (See Defined Names.)

Referencing a Cell in a Different Sheet
To reference a cell in a different sheet from the one in which the formula is entered, use an exclamation mark (!) after the sheet name. For instance, =Sheet1!B2 is a reference to the cell located in Column B, Row 2 in Sheet 1. When referencing a cell in a different sheet from the one in which the formula is entered, the reference must be absolute. If the reference is not absolute, the calculations will not be carried out properly.

You can only reference sheets in the same workbook.

Referencing a Cell in a Data Source
Some functions (e.g., DATAENTRY and FMATRIX) require you to reference a particular cell in a data source. This must be defined differently than references to a cell in a spreadsheet. For data source cell references, you must identify first the row and then the column, and use a
number rather than a letter to represent the column (e.g., A=1, B=2, C=3 and so on). For example:

- \(\text{=DATAENTRY(Default1,2,1)} \) returns the value that was entered into cell A2 in the Weibull++, ALTA or RGA folio that is the data source for this function.
- \(\text{=FMATRIX(Default1,2,1)} \) returns the value from the second row in the first column of the Fisher variance/covariance matrix that was calculated for that data source.

Creating Composite Functions
It is possible to combine different types of data sources and/or functions to create a composite function. For example, in the following formula, two different data sources are used to return the difference between the reliability at 100 hours calculated from the specific Weibull++ life data folio data sheet called "Weibull!Target!Data1" and the reliability at 100 hours calculated from any given Weibull++ data sheet that is currently first in the list of associated data sources for the workbook or General Spreadsheet.

\[
\text{=RELIABILITY("Weibull!Target!Data1",100)} - \text{RELIABILITY(Default1,100)}
\]

In the next example, nested functions are used to round up the returned reliability result to the nearest two decimals.

\[
\text{=ROUNDUP(RELIABILITY(Default1,1000),2)}
\]

Omitting Optional Inputs in the Middle of a Function
If you do not use an optional input in the middle of the function, the function expression must specifically indicate that the input is being omitted. For example, when using the Weibull++ reliability function \(\text{RELIABILITY(Data_Src, Age, [Add Time], [Confidence Level])} \), if you want to get the confidence bound on the reliability, you must use two commas (,,) to indicate that the [Add Time] input is intentionally blank, before entering the [Confidence Level] in its usual fourth position (e.g., \(\text{=RELIABILITY(Default1,1000,,0.95)} \)).

Note that this is handled automatically if you use the Function Wizard to build and insert the function expression.

Working with Date Functions
When using one of the spreadsheet date functions (\(\text{DAY, DAYS360, MONTH, WEEKDAY and YEAR} \)) to enter a date, you can use one of the following accepted text formats:

- Month/Day/Year ("8/22/2014"). For example, \(\text{=DAY("8/22/2014")} \) returns 22.
- Day-Month-Year ("22-Aug-2014"). For example, \(\text{=MONTH("22-Aug-2014")} \) returns 8 (because August is the 8th month).
If you do not include the year (e.g., “8/22” or “22-Aug”), the current year is assumed.

Alternatively, you can use the date’s serial number (which is the number of elapsed days since January 1, 1900). For example, =YEAR(41873) returns 2014.

- You can obtain a date's serial number using either of the following two functions. This may be helpful in cases where you want to filter, sort or use the date(s) in calculations.
 - The DATE function uses the inputs of other cells to obtain the serial number. For example, if you have dates specified in three cells where A2=Year, B2=Month and C2=Day, =DATE(A2, B2, C2) returns the serial number for that date.

<table>
<thead>
<tr>
<th></th>
<th>DATE(A2,B2,C2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Year Month Day</td>
</tr>
<tr>
<td>2</td>
<td>2014 8 22</td>
</tr>
</tbody>
</table>

- The DATEVALUE function requires you to enter the date in an accepted text format. For example, =DATEVALUE("8/22/2014") returns 41873.

Finally, you can also use the results of other functions within a date function. For example:

- To return the month from today’s current date, use: =MONTH(TODAY())
- To return the day of the week for a date that is specified in three separate cells (A2=Year, B2=Month and C2=Day), use: =WEEKDAY(DATE(A2, B2, C2))

<table>
<thead>
<tr>
<th></th>
<th>WEEKDAY(DATE(A2, B2, C2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Year Month Day Weekday</td>
</tr>
<tr>
<td>2</td>
<td>2014 8 22 6</td>
</tr>
</tbody>
</table>

Working with Time Functions

When using one of the spreadsheet time functions (HOUR, MINUTE and SECOND) to enter a time, you can use one of the following valid text formats:

- Hour:Minute:Second [AM/PM]. For example, =HOUR("4:48:10 PM") returns 16 (the hour using the 24 hour system).
- Month/Day/Year Hour:Minute:Second [AM/PM]. For example, =MINUTE("8/22/2019 4:48:10 PM") returns 48.
Alternatively, you can use the hour, minute or second’s serial number (which is the fractional portion of a 24 hour day). For example, =MINUTE(0.70011574) returns 48 (as the specified serial number represents 4:48 PM).

- You can calculate a time’s serial number using either of the following two functions. This may be helpful in cases where you want to filter, sort or use the time(s) in calculations:
 - The `TIME` function uses the inputs of other cells to obtain the serial number. For example, if you have dates specified in three cells where A2=Hour, B2=Minute and C2=Second, =TIME(A2,B2,C2) returns the serial number for that time.

<table>
<thead>
<tr>
<th></th>
<th>=TIME(A2,B2,C2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Hour</td>
</tr>
<tr>
<td>B</td>
<td>Minute</td>
</tr>
<tr>
<td>C</td>
<td>Second</td>
</tr>
<tr>
<td>D</td>
<td>Serial #</td>
</tr>
<tr>
<td>1</td>
<td>16 48 10</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

- The `TIMEVALUE` function requires you to enter the time as text in one of the accepted text formats. For example, =TIMEVALUE("4:48:10 PM") returns 0.70011574.

Finally, you can also use the results of other functions within a time function. For example:

- To generate current values, you can use the `NOW` function. If the current time is 4:48 PM, then =HOUR(NOW()) returns 16.

Returning Confidence Bounds

For functions that return confidence bounds, note that the Function Wizard for data sources only inserts one-sided bounds. If you want to show two-sided bounds, you can insert the same function twice — once at the lower confidence bound and once at the upper confidence bound. For example, for a 90% confidence level, you would set the lower confidence bound at 5% and the upper confidence bound at 95%.
In a spreadsheet, you can use the same function (with different input parameters) to obtain any of the three values. For example, in Weibull++:

\[\text{RELIABILITY}(\text{Default1},1000) \text{ returns the estimated value} \]

\[\text{RELIABILITY}(\text{Default1},1000,,0.05) \text{ returns the lower one-sided bound at 5\%} \]

\[\text{RELIABILITY}(\text{Default1},1000,,0.95) \text{ returns the upper one-sided bound at 95\%} \]

Note that the above function expressions for the confidence bounds uses two commas (,,) to indicate that another optional input ([Add Time]) was intentionally left blank. For more information about the syntax for functions containing multiple optional inputs, see Data Entry Tips for Functions.

In a word processing module for Synthesis Workbooks, the wizard provides separate functions for confidence bounds. For example, use the Reliability function to get the estimated value and use the Bound on Reliability function to get each one-sided confidence bound.

Plot Wizard

In the word processing module for Synthesis Workbooks in Weibull++/ALTA, RGA and BlockSim, you can use the Plot Wizard to generate a variety of plots based on a referenced analysis. These are the same types of plots that are generated in folio or diagram plot sheets. Although you also have the option to copy/paste a static plot graphic from any folio or diagram plot sheet into the report, using the Plot Wizard makes it easy to change the associated data source when you reuse the template and ensures that the plot in the generated report will always show the latest analysis. (For DOE design folios, you can use the DOE Analysis Reports feature to insert plots from a design, multiple linear regression or one-way ANOVA folio, or any of the measurement systems analysis folios.)

To open the Plot Wizard, choose Home > Report > Plot Wizard.
Chapter 29: Synthesis Workbooks

The following picture shows the plot wizard in Weibull++. Similar functionality is available for RGA and BlockSim.

There are three steps to use this tool:

1. Select the plot type (and enter the inputs, if applicable)
2. Select the data source
3. Insert the plot holder

Select the Plot Type
First, select one of the available plot types from the panel on the left side. The right side of the wizard displays some information about the plot that is currently selected.

If applicable, this area also allows you to make relevant inputs (e.g., for ALTA plots that require you to select a specific stress column).

Select the Data Source
To specify the data source that the plot will be based on, choose a number from the Data Source Index drop-down list, as shown next. Using the index makes it easy to reuse the same template with a variety of different data sets.
Insert the Plot Holder

When the plot is fully defined, click **Insert** to place it at the current cursor location. You can move and/or resize the plot holder after it has been inserted. The plot holder shown next will return the reliability vs. time plot for whatever data source is currently second in the list of associated data sources.

Plot holders will not return any results until you view it in the Review tab or generate the report (**Home > Report > Send to Word**).
Custom Charts
In the spreadsheet module for Synthesis Workbooks, you can use the Document > Chart commands to insert your own custom charts. The charts can be placed anywhere in the spreadsheet, and are dynamic (automatically update when the data used to create the chart is changed).

Adding a Chart
1. Select the cells that contain the data of interest. In the example data below, the headings are included in the selection and will be used as the legend labels.

2. Choose Document > Charts. Choose the chart type, and then click a chart subtype that you want to use.
3. To move the chart, click and drag the chart to the desired location.

4. To resize the chart, click the chart and then drag the sizing handles to the desired size.

Changing the Data Displayed on an Axis
To change the way the data series is displayed on the axes, click the chart, then choose Design > Data > Switch Row/Column.

Changing the Chart Type and/or Data Set
You can change the type of chart and/or the data that is used in a chart at any time. To do this, click the chart and then:

- To change the chart type, choose Design > Type > Change Chart Type. Select the desired type.
To change the data set, choose Design > Data > Select Data. Select the cells that contain the data of interest.

Applying a Chart Layout and/or Chart Style

- To apply a predefined chart layout, choose Design > Chart Layouts. As an example, the following picture shows some of the options for 2-dimensional bar charts. To see the rest, click the arrow in the bottom-right corner.

If none of the predefined options are suitable for your chart, choose Layout > Labels, then select the option you want to customize. The following picture shows the options for the vertical axis.

- To apply a predefined chart style, choose Design > Chart Styles.

Renaming Chart and Axes Titles

When displaying chart and/or axes titles, you can rename the titles by right-clicking the chart and selecting the appropriate title option from the shortcut menu. For example, choosing Change Chart Title opens the following window:
Modifying the Axes and Gridlines

To hide or display axes and/or gridlines, choose Layout > Axes > Axes or Gridlines.

- When displaying axes, you can change direction of the x-axis and/or change the scale of the y-axis.
- When displaying gridlines, you can increase or decrease the number of gridlines for both the axes.

Defined Names

In the spreadsheet module for Synthesis Workbooks and general spreadsheets in Weibull++/ALTA and RGA folios, you can create variable names that reference specific spreadsheet cells. The names can then be used in any formula or function within the same workbook.

For example, say you want to obtain the reliability of a Weibull++ data set. The operating time is stored in cell B5 of the spreadsheet:

=RELIABILITY("Weibull!Bulb!Data1!"B5))

You can create a defined name for the operating time to make the formula easier to understand and maintain. In this case, the formula might be rewritten as:

=RELIABILITY("Weibull!Bulb!Data1!"OpTime)

You can then use the defined name OpTime in any other formula in the workbook that requires the operating time.

Syntax Rules for Names

- The first character of a name must be a letter or an underscore. The remaining characters can be letters, numbers, periods and underscores. Names are not case sensitive.
Chapter 29: Synthesis Workbooks

- Spaces are not allowed as part of a name. An underscore (_), or period (.), can be used as a word separator.
- Symbols, except for underscores (_), periods (.), and backslashes (\), aren't allowed.

Managing Names
To view and manage defined names:

- In Synthesis Workbooks, choose Formula > Defined Names > Name Manager.
- In general spreadsheets, choose Sheet > Format and View > Defined Names.

You can then use the New, Edit, or Delete commands in the window to create or modify the names.

Defining Names
There are several ways to define a name.

Define a Name via the Name Manager
This method applies to both Synthesis Workbooks and general spreadsheets.

1. Select a cell or range of cells.
2. Create a new name:
 - In Synthesis Workbooks choose Formulas > Defined Names > Define Name (or choose Formulas > Defined Names > Name Manager, then click the New button in the window).
 - In general spreadsheets, choose Sheet > Format and View > Defined Names. Then in the window, click the New button.
3. Type a name into the Name field. In the Scope drop-down list, choose whether this name will be used for the entire workbook or a specific sheet. The Comment field is optional.

The selected cell/range will already be defined in the Refers to field, but you can click into the spreadsheet and select different cells, if desired.
Define a Name via the Name Box (Synthesis Workbook Only)
This method applies only to the spreadsheet module of Synthesis Workbooks. Select the cell or range of cells, click the Name box and type a name. Press Enter to create the name.

![New Name dialog box](image)

Define a Name via the Selection Command (Synthesis Workbook Only)
If the fields are already labeled in the spreadsheet, you can use them to create names.

1. Select the cells of interest (including the row or column labels), then choose Formulas > Defined Names > Create from Selection.

2. In the window, select the location of the labels. Click OK.
Spreadsheet References

In Synthesis Workbooks, the *spreadsheet reference* feature provides integration between the spreadsheet and word processing modules in the same workbook. You can insert a reference from any cell, or consecutive range of cells, from the spreadsheet into a desired location in the word processing document. If the referenced cells in the spreadsheet are changed, the word processing module is automatically updated. The changes are visible when you use the Review tab to see a preview or generate the Word report.

To insert a spreadsheet reference, place the cursor at the desired location in the word processing document and choose **Home > Report > Spreadsheet Reference**.

Note that you can also use the Spreadshee **Spreadsheet Reference** function in the word processing module’s **Function Wizard**.

The Select Cells window shows the contents of the spreadsheet module in the current workbook. Select a cell or range of consecutive cells and click **OK**.
For the example data shown above, the entry would look like this:

```excel
[TBLSSREF(Sheet1!B2:D10)]
```

DOE Analysis Reports

The DOE Analysis Reports feature allows you to insert selected analysis results and plots into a Synthesis Workbook.

This feature is available for any analyzed response in a design, multiple linear regression, one-way ANOVA or measurement systems analysis folio. The report can display any result that's available in the folio's Analysis Summary window for the selected response, as well as any applicable plot.

This topic describes how to build and insert a DOE analysis report, and how to use saved profiles for reports that you need to generate frequently. Note that you can insert multiple reports into the same spreadsheet or word processing document, if desired. Each additional report will be appended to the end.
Inserting a DOE Analysis Report

1. Select either the spreadsheet or word processing module in a Synthesis Workbook and choose Home > Report > DOE Analysis Report.

2. In the Select Response window, choose an analyzed response to copy the results from and click OK.

3. In the DOE Analysis Report window, the Available Report Items area (left) shows all of the available results and plots for the selected response. The Selected Report Items area (middle) shows the selected results/plots, in the order in which they will appear. You can:
 a. Choose Profiles > Open Profile to apply all of the relevant selections from a saved report profile. (See Using DOE Report Profiles.)
 b. Build/modify the list using double-click, drag and drop or the Add/Remove and Up/Down buttons.

 Note that you can include multiple instances of the same report item, if desired.

4. When you click each selected report item, the Item Properties area (right) allows you to view/change the name (heading) that will be used in the report, if desired.

 For plots, you can also click the Preview Plot button to see what the plot will look like in the report. Any plot settings you change in the plot preview will be used in the generated report but will not affect the folio the report is based on.

Using DOE Report Profiles

When the DOE Analysis Report window is open, you can save the current settings (i.e., report item selections), or load settings that were previously saved.

- To save all your current report settings for use in future reports, choose Profiles > Save Profile.

Then specify the name and location of the DOE report file (*.drt) that will store the settings.
• To overwrite all the settings in the DOE Analysis Report window and use the settings from a DOE report file instead, choose **Profiles > Open Profile.**

Then select the *.drt file that has all the desired settings.

Note: When you load report items from a DOE report file, only the items that apply to the selected folio/response will be included in the report.
Chapter 30: Synthesis Dashboards

The dashboard is a flexible tool for graphical presentation of data. This can include bar and pie charts, gauges, maps, etc.

All users can view dashboards based on predefined layouts (see Dashboard Viewer). The viewer is available in the following locations in ReliaSoft desktop applications:

- **Project Planner**
- **Synthesis Explorer**
- Simulation diagram results in BlockSim (see Simulation Diagram Dashboards in the BlockSim/RENO documentation)
- FMEA and FMRA data in XFMEA/RCM++ (see FMEA Dashboards in the XFMEA/RCM++/RBI documentation)
- **Synthesis Data Warehouse** (SDW) data in Weibull++ and RGA

In a secure database, only users with the "Manage dashboard layouts" permission can manage and create predefined layouts (see Dashboard Layout Manager and Dashboard Layout Designer).

If your organization chooses to implement an SEP web portal for an enterprise database, you can also share selected dashboards to be accessed from any web-enabled device!
Dashboard Viewer

Any user can access the Dashboard Viewer in a variety of locations throughout ReliaSoft desktop applications for graphical presentation of the latest analysis data.

When dashboard functionality is available for the data you’re working with (e.g., Project Planner, Synthesis Explorer, simulation diagrams in BlockSim, etc.), choose Dashboard > Dashboard Viewer to open the viewer.

Select any of the predefined dashboard layouts from the drop-down list to see the latest charts for the current data set.

Resizing Panels
To resize the dashboard items vertically and/or horizontally, click between two items and drag the resize cursor (↕) to the height and/or width you want. This option is available when a dashboard contains multiple items.
Showing Details in Charts and Pies
To see more details about the underlying data, move the mouse pointer over a bar or slice. For example, when the pointer is over a bar in a chart, the values for the x and y axes will be displayed in the tooltip.

Drill Downs and Master Filters
For information about how to use charts that have been configured for a drill down, see Viewing Drill Downs. For information about how to use charts that have been configured with master filters, see Using Master Filters.

Sorting and Filtering Data in a Grid
- To sort the data in ascending or descending order, click the column heading.
- To filter the data, click the Advanced Filter icon to see a drop-down list of filters that you can apply. The dashboard uses the same advanced filters functionality that is built in to other utilities (e.g., Resource Manager, Synthesis Explorer, etc.). (See Finding and Filtering Records.)
Chapter 30: Synthesis Dashboards

Printing or Exporting the Dashboard
To print the entire dashboard, or export it as a *.pdf file, an image or an Excel file, click the Export To icon.

Viewing Drill Downs
An easy way to determine if the dashboard was configured for drill down is to look for the arrow in the caption bar, if the bar is visible.

To drill down, double-click an area of interest.

To drill up, click the arrow (↑) until you have reached the desired level or right-click the chart, then choose Drill Up.
Using Master Filters

When a dashboard with master filters is created, it can be configured for single or multiple filtering. If you see either of the following, then filtering is enabled:

- For **single** filtering, the dashboard title is followed by light gray text.

 ![Dashboard Server 1](image)

- For **multiple** filtering, the **Clear Master Filter** icon displays in the caption bar, if the bar is visible.

 ![Component](image)
Chapter 30: Synthesis Dashboards

Note that if you see both the icon and light gray text, this means that multiple filtering is enabled, but only one item in the filter is selected.

Single Filtering
For single filtering, you can only select one item at a time. You will not be able to clear the view, only select a different item.

Multiple Filtering
For multiple filtering, you can select as many filter items as you want to view. Hold down \texttt{SHIFT} while clicking to select consecutive elements or hold down \texttt{CTRL} while clicking for nonconsecutive items.

In the example shown next, the grid was set up as the master multiple filter. The chart and pie charts display the data for the four parts selected in the grid.

To reset the view, click the \texttt{Clear Master Filter} icon or right-click, then choose \texttt{Clear Master Filter}.

Dashboard Layout Manager
You can use the Dashboard Layout Manager to create, edit and delete the predefined dashboard layouts that will be available for any user to view for a particular data set. (In a
secure database, this is available only for users with the "Manage dashboard layouts" permission.

To open the Dashboard Layout Manager, choose the command from any interface that supports dashboard functionality (e.g., Project Planner, Synthesis Explorer, simulation diagrams in BlockSim, etc.). It will display only the layouts for that particular data type.

You can also open the Dashboard Layout Manager from the Backstage view (File > Manage Repository > Dashboard Layout Manager). It will display all of the layouts for any data type. If you want to see only the layouts specific to the application you are using, select the check box.

Show in Viewer

Use the check boxes in the Show in Viewer column to select which of the predefined layouts will be available to all database users via the Dashboard Viewer. If you clear a check box, the layout will not show in the viewer’s drop-down list but will remain in the manager’s list.

Use the up/down arrows to change the order of the layouts that are shown in the viewer’s drop-down list.

Layout Properties

For all dashboard layouts that are selected to show in the Dashboard Viewer, the name that will be visible in the list is set from the Layout Properties window. To view or change these properties, select a row in the table and click the Properties button (or right-click and choose Properties).

<table>
<thead>
<tr>
<th>Name</th>
<th>Show in Viewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Dashboard</td>
<td>✔️</td>
</tr>
<tr>
<td>BlockDashboard</td>
<td>✔️</td>
</tr>
<tr>
<td>Crew Dashboard</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 30: Synthesis Dashboards

The description and update history are available to help you manage the layouts; that information is not visible to all database users.

Importing Layouts

It is easy to reuse dashboard layouts that were created in other databases. Click the **Import** button and then select the database you want to import from. If you are using the Dashboard Layout Manager in the Backstage view, you can import layouts of any type. If you’re using a manager from one of the locations where dashboards are used, you can only import layouts of the current type.

Dashboard Layout Designer

You can use the Dashboard Layout Designer to create or edit each predefined dashboard layout. (In a secure database, this is available only for users with the "Manage dashboard layouts" permissions.)

To access this window, first open the Dashboard Layout Manager and then choose to either create a new layout or edit an existing one.

Separate Layouts for Each Data Type

Each dashboard layout is designed to be used with a specific data type, which determines which fields are available and where the dashboard can be viewed. For information about creating dashboards for each particular type of data, see:

- **Project Planner Dashboards**
- **Synthesis Explorer Dashboards**
- **Simulation Diagram Dashboards** (in the BlockSim/RENO documentation)
- **FMEA Dashboards** (in the XFMEA/RCM++/RBI documentation)
- **Synthesis Data Warehouse (SDW) Dashboards** (available in Weibull++/ALTA and RGA)

Tip: For dashboards that are intended to be viewed in both desktop applications and the SEP web portal, it is recommended to use the **Local Colors** option on the Design tab of the Dashboard Layout Designer to save your preferred colors with the layout. The global colors definition may not be the same in both web and desktop.
Configuring a Dashboard Item

This topic demonstrates some of the basic steps for configuring a dashboard item (bar chart, pie chart, gauges, etc.) in the Dashboard Layout Designer. The simple bar chart in this example is based on block-level simulation results from a reliability block diagram in BlockSim. The data source options will be different for other locations where dashboards are available, see Project Planner, Synthesis Explorer, Simulation Diagram Dashboards (BlockSim/RENO), FMEA Dashboards (XFMEA/RCM++/RBI) or SDW Dashboards (Weibull++/ALTA and RGA).

In a secure database, only users with the "Manage dashboard layouts" permissions can create layouts.

Add the Chart

Add a chart to the Layout panel by choosing Home > Insert > Chart.

Define the Chart Data

1. Select a data source from the drop-down list in the Data Source panel, if applicable.

2. Choose the data field (or fields) that will be displayed in the y-axis of the bar chart, then drag each field into the Values area in the DATA ITEMS panel. For this example, the chart will display total operating cost, cost from preventive maintenance and cost from corrective maintenance.

Note that when different data sources are available, all of the data fields used within a chart must come from the same source.
Tip: To replace a data item, drag a new field on top of the current one. To remove a field, drag it anywhere outside of the data item; and to completely clear the DATA ITEMS panel, right-click the chart and select Remove Data Items.

3. Use the drop-down list to see which values are available for this data field (e.g., count, sum, average, etc.) and choose one to display in the chart. Note that the same option must be selected for all values in the same chart.

Because we want the total cost from all blocks that meet the given criteria, we use the default Sum for this example.
4. If appropriate, use the **Rename** command to change the name that will be displayed in the chart legend, tooltip, etc.

![Rename Data Item](image)

New name: Total Operating Costs

5. Choose the data field that will be displayed in the x-axis, then drag it to the **Argument** bar.

![Chart](image)

Values:
- Total Operating Costs
- Preventive Costs
- Corrective Costs
Filter the Data
To filter the data displayed in the chart, choose Data > Filtering > Edit Filter.

Use the Filter Editor to define the criteria. For this example, we’re using the "Not And" operator to exclude any blocks with a name that contains "Hub."

Tip: You can use hidden data items to filter based on fields that are not displayed in the chart.

Sort by “Top N”
To configure the chart to show only the top 5, bottom 10, etc., use the Top N command in the Argument data item’s drop-down list.

For this example, we’re showing only the Top 5 blocks, based on total operating cost. The results are displayed from highest to lowest and the order cannot be changed.
Tip: Alternatively, you could use the **Sort by** command to sort by the argument data item — which is labeled (Value) in this menu — or by any of the value data items. Click the Argument bar to toggle the sort between ascending and descending order.

Other Design Options

Click the **Design** tab on the ribbon to access other configurable options for this type of chart. For example:

1. To hide or display the caption bar above the chart, choose **Show Caption**.

 We will keep it displayed for this example.

2. To change the title in the caption bar to something more meaningful, choose **Edit Names**.

 For this example, we will set the Dashboard item name to “Top 5 Blocks by Total Operating Cost” and clear all of the **Series** fields to make sure the latest data item name (set via the **Rename** command in the data item’s drop-down list) will always be used in the chart legend and tooltip.
3. To change the y-axis title to a more meaningful name, choose **Y-Axis Settings**.
Available Dashboard Items
The following dashboard items can be added to any layout. You can add the same type of item more than once, if desired. To insert an item, choose Home > Insert, then click one of the following options.

- Pivot
- Chart
- Gauges
- Choropleth Map
- Range Filter
- Scatter Chart
- Grid
- Pies
- Cards
- Geo Point Map
- Text Box
- Image

Data Types
There are two types of data that can be used in a dashboard item: measure or dimension.

- **Measure** data is calculated (sum, count, average, etc.). For example, the values on the y-axis of a chart, the size of a slice in a pie or a target value in a card or gauge. Values and targets are forms of measure data.

- **Dimension** data can be sorted but is not calculated. For example, the bars in chart, slices in a pie or text in a grid column. Arguments and series are forms of dimension data.

Data Shaping
You can use the Dimensions and/or Measures bars in the HIDDEN DATA ITEMS panel when you want to perform data shaping (filtering, sorting or Top N) but do not want the data to be displayed in the dashboard item. Data shaping is available for any dashboard item, except text boxes and images.

- The data fields contained in the **Dimensions** bar can be used in Filter Editor window to create filter conditions based on their values. Dimensions in this area have the same sorting functionality that is available in the argument, attribute or series DATA ITEMS area.

- The data fields contained in the **Measures** bar can be used in the Sort by submenu and in the Top N Values window for data sorting. Measures in this area have the same calculation functionality that is available in the values and target DATA ITEMS area.
Configuring a Drill Down

Drill down can be enabled for the following dashboard items:

- Grids: Specify two or more columns
- Charts and pies: Specify two or more arguments and/or series
- Gauges: Specify two or more series
- Cards: Specify two or more series

Configuring a Drill Down Sequence

1. In the Dashboard Layout Designer window, select the chart or grid you want to drill down.
2. Drag the additional data fields into the Arguments area in the appropriate order for the desired drill down sequence.

For example, you can use the following sequence to configure a pie chart in a Synthesis Explorer dashboard to first show analyses by application source, then drill down to analysis type.

![Arguments]

3. Choose Data > Filtering > Drill Down. This command is a toggle; choose the command again to disable the drill down.

When any user views this layout in the Dashboard Viewer, he/she will be able to double-click inside the chart to drill down, and use the arrow (↑) to drill back up. (See Viewing Drill Downs.)

Tip: To make it easy to identify a drill down in the Dashboard Viewer, display the dashboard item’s caption bar (Design > Common > Show Caption).
Filtering

Using the Filter Editor
You can use the Filter Editor to incorporate filters into dashboard items that contain dimension data. Arguments and series are forms of dimension data.

This type of filtering only applies to the dashboard item you have selected. To filter the data across the entire dashboard, see Configuring a Master Filter.

Tip: While you cannot use the Filter Editor to sort non-dimension data, users can apply filters to such data fields within dashboard grids. See Sorting and Filtering Data in a Grid.

Dimension Data Locations
Dimension data can be used in any or all of the following areas:

- Dimension bar in the HIDDEN DATA ITEMS panel.
- Dimension, argument and/or series bars in the DATA ITEMS panel.

An easy way to determine if a data field is a dimension, argument or series, is to look for the sort arrow to the left of the data field name.

Configuring a Filter
1. In the Dashboard Layout Designer widow, select a dashboard item, then choose Data > Filtering > Edit Filter. This command is also available in the shortcut menu when you right-click the dashboard item.
2. In the Filter Editor window, define the criteria. The dashboard uses the same Edit Filter functionality that is built into other utilities (e.g., Resource Manager, Synthesis Explorer, etc.). (See Finding and Filtering Records.)

In the following example, a chart was created for data that was extracted from XFRACAS into the Synthesis Data Warehouse (SDW) in Weibull++.

Because we are interested in only the chandelier parts (not the whole unit) and data from 2010 and later, we can apply the following filter to remove the unwanted data:
Configuring a Master Filter

A master filter can be used to filter data across the entire dashboard. Grids, pies, charts, gauges, cards and maps dashboard items can be used as master filters.

There are two types of master filters that can be configured:

- **A Single** filter allows you to select one item at a time. You will not be able to clear the filter, only select a different item.

- **A Multiple** filter allows you to select one or more items at a time. You can also clear the filter to view all items at any time. This is the most flexible option.

For example, suppose your layout contains a grid, a chart and a pie, and the grid is configured as the multiple master filter. When you select items in the grid, only the data for those items will display in the chart and pie.

Configuring a Master Filter

In the **Dashboard Layout Designer window**, select the dashboard item, then enable the master filtering by choosing **Data > Interactivity > [Single Master Filter/Multiple Master Filter]**. This command is a toggle; choose the command again to disable it.

When any user views this layout in the **Dashboard Viewer**, he/she can use the filter to view only the data of interest. (See **Using Master Filters**.)

Note that you can prevent a specific dashboard item from being affected by master filters, by selecting it in the Layout panel and then choosing **Data > Interactivity settings > Ignore Master Filters**. This command is a toggle; choose the command again to disable it.

Tip: To make it easy to identify that a dashboard item is configured for filtering in the Dashboard Viewer, display the item's caption bar (**Design > Common > Show Caption**).
Chapter 31: Synthesis Data Warehouse

Available in Weibull++, ALTA and RGA, the Synthesis Data Warehouse (formerly called "Reliability Data Warehouse") enables you to access data from an XFRACAS failure reporting system for the purpose of life data analysis (in Weibull++/ALTA) or repairable system/reliability growth analysis (in RGA). You can also set up custom connections to obtain reliability-related data from external data sources (including Access, Oracle and SQL Server). You can also get data directly from custom reports created in XFRACAS.

You can then transfer the data to an analysis folio in Weibull++, ALTA or RGA, or use the flexible Synthesis Dashboard utility to explore and present the data in a variety of graphical charts and grids. (See Transferring from the SDW to an Analysis Folio or SDW Dashboards.) In addition, if an SEP web portal has been implemented for an enterprise database, users can also access SDW dashboards from any web-enabled device.

To open the SDW in Weibull++, ALTA or RGA, choose Home > Synthesis > Synthesis Data Warehouse.

Managing Data Sources

The available data sources are listed in the data source manager on the left side of the window. They may include:

- Static data collections that were extracted from XFRACAS at a particular point in time (and will not change if incidents are later added or updated). These can be either Weibull++/ALTA data or RGA data. (See Extracting Data from XFRACAS.)

- Custom connections that have a live link to a specified external database or to a predefined report created in XFRACAS. (See Custom Connections in the SDW.)

- Static data collections that were extracted from a custom connection at a particular point in time (and will not change if the original data source changes). (See Import to a Static Data Collection.)

If you are working with a long list of available data sources, this panel can utilize the same categories, identifiers and item filters that are available in many other locations throughout ReliaSoft desktop applications.

To create, delete, rename or edit the properties for these data sources, use the Manage Data Sources commands, or right-click inside the panel.
Chapter 31: Synthesis Data Warehouse

The Properties window allows you to enter identifiers for each data source, and to view its history.

Built-in Find/Filter, Configuration and Grouping Tools

Double-click any data source to display the data in a grid on the right side of the window. The SDW offers the same filter, column configuration and grouping tools that are built in to other utilities that use a similar grid (e.g., the Synthesis Explorer, Actions Explorer, etc.). For details about how to use each feature, see:

- Finding and Filtering Records
- Configuring Columns
- Grouping Panel

Building the Data Set

The "Include in Analysis?" column shows whether each row will be included in the data set when it is transferred to Weibull++, ALTA or RGA.

- **Include**: Data points that will be included in the analysis are shown in green.

- **Invalid**: In XFRACAS data collections, incidents with a State Time of less than 0 are automatically set to invalid and will not be included in the analysis. These rows are shown in red.

- **Ignore**: In XFRACAS data collections, incidents with a State Time of 0 that are marked as suspensions in the State FS column are automatically set to ignore and will not be included in the analysis. These rows are shown in gray.

- **Exclude**: Data points that have been manually set to exclude from the analysis are shown in blue.

To view only those rows that will be transferred to a folio, choose **View > Show Only Included**. You can toggle this command off to show all records.
To change the status for a specific data point before transferring data to a folio, select the row and choose **Build Data Set > Include** or **Build Data Set > Exclude**.

![Include](image1)

![Exclude](image2)

Note: Changes to the "Include in Analysis?" indicator will not be saved with the data source. If you close the data source and open it again later, and if you view a dashboard in the SEP web portal, the data will not reflect changes that were applied manually.

In XFRACAS data collections, and only if you have permission to view incidents in the XFRACAS entity that the data were extracted from, you can select a row and choose **Build Data Set > View XFRACAS Incident** to open the incident in your web browser.

Extracting Data from XFRACAS

When you are working with an enterprise database that contains XFRACAS data, or a standard database that has a connection to external XFRACAS tables, you can use the Synthesis Data Warehouse to extract static data collections. These can be either Weibull++/ALTA data or RGA data, and the collections will not change if incidents are later added or updated in XFRACAS. (Alternatively, if you need a live link to a predefined report that has already been created in XFRACAS, see **Connect to XFRACAS Report**.)

To extract a static data collection from XFRACAS, first open the SDW in Weibull++, ALTA or RGA and then choose **Manage Data Sources > Get XFRACAS Data**.

(Alternatively, if you need a live link to a predefined report that has already been created in XFRACAS, see **Connect to XFRACAS Report**.)

In the XFRACAS to SDW window, choose an **Entity** to import from, then select the check box for each part that you want to extract the incident (i.e., failure) data. If needed, you can use the Auto Filter Row to filter the grid by matching text in one or more columns. (For extremely large data sets, this row will be hidden and a Filter window will be available instead.)
Click Next, then specify other settings or fields to import:

- **Time Metric** allows you to choose which metric to use with the data. The options are based on the metrics that your system administrator has enabled for the XFRACAS entity.

- **Incident Detail Fields** allow you to map customized detail fields from the XFRACAS incident to one of the user-defined field columns in the SDW collection. The following field types can be mapped:

 - **StringUDF1-3**: Alphanumeric Input Box, Check Box, Company, Contacts, Currency, Date, Numeric Input Box, Users, Yes/No Button, or the Select List, Administrative Controlled field type

 - **NumberUDF1-3**: Currency or Numeric Input Box

 - **DateUDF1-3**: Date

 - In RGA, additional options are available:

 - **Include non-chargeable** extracts incidents that are marked as either chargeable or non-chargeable in XFRACAS. If you clear the check box, it will extract only chargeable incidents.

 - **Only system down events** extracts only those incidents that brought the system down.

 - **Filter by date commissioned** extracts only incidents for systems that were commissioned between the specified dates.

Click **Next**, then enter a name for the data collection and any identifiers that you want to use.

When you click **OK**, the extraction process will begin. Depending on the amount of data that you are extracting, this may take some time.
You can then use the data collection to transfer data to an analysis folio or explore/present in the dashboard utility. For information about the fields that will be available either in the Build Data Set tab or in the Dashboard Designer, see Data Fields for XFRACAS Data Collections.

Data Fields for XFRACAS Data Collections

The following fields are available for use in dashboard layouts for XFRACAS data collections and for data sets created via the Synthesis API. These are the same columns available in the Build Data Set tab. The fields in custom connections will depend on the data source itself.

- **Address Location**: the location of the owner of the system. This corresponds to the Location field in the XFRACAS contact.

- **Category**: the incident category. This corresponds to the Category field in the XFRACAS incident and, in conjunction with the failure type assigned during part repair/replacement, determines whether the data row is chargeable (i.e., is considered a failure for reliability calculations) or non-chargeable (i.e., is considered a suspension). For more information, see the “Incident Disposition Area” topic in the XFRACAS documentation.

- **Chargeable**: the chargeable code value (where 0 = non-chargeable, 1 = chargeable): equivalent to the Category Chargeable and Category Non-Chargeable lists in the XFRACAS Admin List page. This is to be used to calculate the failure state (StateFS). XFRACAS categories can also be viewed within an XFRACAS incident.

- **CompanyOwner**: the owner of the system. This corresponds to the Company field in the XFRACAS contact.

- **DataID**: the database ID of the row.

- **DataSetID**: the ID of the data set that the row belongs to. This is useful if you are viewing multiple data sets at the same time.

- **DateUDF1-3**: user-defined fields for dates. You can choose up to 3 detail fields in XFRACAS incidents to import to these columns.

- **ExtractedBy, ExtractedDate** and **ExtractedName**: identify the user who extracted the data from XFRACAS, the date of extraction and the name of the SDW data collection.

- **FailureMode**: the failure mode associated with the incident. This is chosen or created in the Failure Mode field in the XFRACAS incident.

- **IncidentAction**: the action taken to address the incident (whether a part was removed or installed). This is not related to XFRACAS actions. In XFRACAS data sets, repaired and
replaced parts will be represented using two rows of data—one will be for removing the part, and one for installing it.

- **IncidentEntityDisplayID**: the incident number assigned by XFRACAS, which includes the prefix for the entity that it is associated with (e.g., E1-201).
- **IncidentID**: the database ID of the incident.
- **IncidentOccurrenceDate**: the date when the incident happened. This corresponds to the Occurrence Date field in the XFRACAS incident.
- **IncidentRepairDate**: the date that part repair or replacement was completed. This corresponds to the Completed Date field that applies to the XFRACAS incident resolution.
- **IncidentResolution**: notes regarding the resolution of the incident. This corresponds to the Incident Resolution field in the XFRACAS incident.
- **IsLRU**: indicates whether the item is a line replaceable unit (LRU). This does not correspond to an XFRACAS field; it can be used when creating data sets via the Synthesis API.
- **LastInspectedTime**: the last inspected time. For exporting XFRACAS data sets to Weibull++, this is equal to the state time for the data row. For exporting XFRACAS data sets to RGA, it is the amount of time the system has accrued at the last reported incident.
- **NumberInState**: equivalent to the Number in State column in a Weibull++ life data folio for grouped data. In data sets from XFRACAS, this value will always be 1.
- **NumberUDF1-3**: user-defined fields for numbers. You can choose up to 3 detail fields in XFRACAS incidents to import to these columns.
- **ParentPartID, ParentPartName, ParentPartNumber, ParentPartVersion** and **ParentPartSerialNumber**: identifiers for the "parent" of the part that the incident pertains to. If the part doesn't have a parent (i.e., it is a top level part), this information will be identical to the information for the part itself.
- **PartHID** and **PartID**: the part’s hierarchy identification number and database identification number. In XFRACAS, these are assigned by the system and shown in the HID and Part ID fields that are displayed for the generic part on the Template page.
- **PartName, PartNumber** and **PartVersion**: identifiers for the part that the incident pertains to. In XFRACAS, this information is specified for the generic part, and serialized parts based on the generic part will use the same information.
Chapter 31: Synthesis Data Warehouse

- **PartOrder**: the order in which the part was replaced. This corresponds to the order in the repair/replace table in the XFRACAS incident.

- **PartSerialHID, PartSerialMfgCode and PartSerialNumber**: relevant only if the incident was assigned to a part in a serialized system. They represent the part’s serial hierarchy identification number, manufacturing code and serial number. In XFRACAS, the PartSerialHID is assigned by the system and shown in the Serial HID field that is displayed for the serialized part on the Serialized page.

- **ReportType**: how the incident was reported. This corresponds to the type chosen in the Report Type field in the XFRACAS incident.

- **RootCause**: the root cause of the failure mode. This is chosen or created in the Root Cause field in the XFRACAS incident.

- **StateFS**: This allows the user to understand if a data row is considered a failure (F) or a suspension (S) for the purposes of reliability calculations. In XFRACAS data sets, this is based on the incident category assigned in the XFRACAS incident, in conjunction with the failure type assigned during part repair/replacement. For more information, see the “Incident Disposition Area” topic in the XFRACAS documentation.

- **StateTime**: the amount of time accrued on the part. This is based on the run hours calculated by XFRACAS.

- **StateTimeRestore**: the amount of time required for the repair. This corresponds to the Repair Duration field in the XFRACAS incident.

- **StringUDF1-3**: user-defined fields for strings. You can choose up to 3 detail fields in XFRACAS incidents to import to these columns.

- **TimeMetric**: the time metric to use for the data. The options are based on the metrics that have been enabled for the XFRACAS entity.

- **TopLevelCommissionDate**: the commission date of the top level part in the system. This corresponds to the commission date of the associated CSI in XFRACAS.

- **TopLevelPartID, TopLevelPartName, TopLevelPartNumber and TopLevelPartVersion**: identifiers for the top level part in the system that the incident pertains to.

- **TopLevelSerialHID and TopLevelSerialNumber**: relevant only if the incident was assigned to a part in a serialized system. They represent the serial hierarchy identification number and serial number of the top level part in the serialized system. This information is used by RGA and Weibull++ to distinguish the system in which the failure occurred.
Transferring from the SDW to an Analysis Folio

Follow the steps below to transfer a data set from the Synthesis Data Warehouse (SDW) to a Weibull++, ALTA or RGA analysis folio.

1. In Weibull++, ALTA or RGA, choose Home > Synthesis > Synthesis Data Warehouse.

2. In the SDW, double-click the data you want to transfer to an analysis folio.

3. In the data table, use the Include in Analysis? column to mark any data points that need to be excluded from the transfer. You can double-click the cell to toggle the options, or select the row and choose Build Data Set > Include or Exclude.

In data collections imported from XFRACAS:

- Incidents with StateTime = 0 and StateFS = S (suspension) are automatically marked Ignore.
- Incidents with StateTime < 0 are automatically marked Invalid.

4. Choose Transfer > Transfer to New Folio.
Follow the on-screen prompts to select the data type and map the SDW fields to columns in the new analysis folio.

Tips for Mapping the Columns

- **State F or S** (in Weibull++/ALTA) indicates whether a data point represents a failure (F) or suspension (S). If the data source field does not use the F and S codes, use the **Define Values as Failures/Suspension** area to specify which value(s) represents each state.

- **Event** (in RGA) indicates whether the data point represents a failure (F) that will be transferred for analysis, or some other event that will not be analyzed as a failure. When a data point is marked as a suspension (S) for transfer to RGA, it will be considered only if it affects the recorded system end time. For example, if the System End Time column indicates that the system was last inspected at 1,000 hours but there is a suspension for that system at 1,100 hours, the later time will be used in the folio.

- Time and quantity columns, such as **State End Time** and **Number in State**, can only be mapped to fields with a numeric data type (e.g., number, currency, etc.).

- **Classification** and **Mode** columns (in RGA) can be mapped to any SDW user-defined field that contains the data. (See [Extracting Data from XFRACAS](#).)
• **Subset ID** columns (in Weibull++/ALTA) or **Comment** columns (in RGA) allow you to choose multiple SDW fields to display in the same folio column. The data from the fields will be concatenated and separated by dashes (e.g., "Report Type – Category"). Use the check boxes to select the fields and then use the arrows to specify the order.

![Set Subset ID Column 1](image)

SDW Dashboards

This topic describes how to use the Synthesis Dashboard utility for exploring and presenting data from the Synthesis Data Warehouse. If an SEP web portal has been implemented for an enterprise database, users can also access SDW dashboards from any web-enabled device.

For static data collections, a variety of dashboard layouts can be predefined. For custom connections, there can be only one layout for each connection.

1. In Weibull++, ALTA or RGA, choose **Home > Synthesis > Synthesis Data Warehouse**.

2. Double-click the static data collection or custom connection that contains, or links to, the data you want to view in the dashboard.

3. On the Build Data Set tab, select which rows to include or exclude. (See Building the Data Set.)

4. If an appropriate dashboard layout has already been predefined, switch to the Dashboard Viewer tab or choose **Dashboard > Dashboard Viewer**. If multiple layouts are available, use the drop-down list at the top of the viewer to choose what to display.

5. If you need to create a new layout, choose **Dashboard > Dashboard Manager** (for a static data collection) or **Dashboard Designer** (for a custom connection).
(In a secure database, the Dashboard Layout Manager and the Dashboard Layout Designer are available only for users with the "Manage dashboard layouts" permission.)

For information on the data fields available for use in dashboard layouts for SDW data collections, see Data Fields for XFRACAS Data Collections.

Tip: For dashboards that are intended to be viewed in both desktop applications and the SEP web portal, it is recommended to use the Local Colors option on the Design tab of the Dashboard Layout Designer to save your preferred colors with the layout. The global colors definition may not be the same in both web and desktop.

Custom Connections in the SDW

The Custom Connections feature in the Synthesis Data Warehouse allows you to create a live link to an external data source (Access, Oracle or SQL Server). This enables you to get data from your own custom and third-party databases for transferring to an analysis folio in Weibull++, ALTA or RGA, or for viewing in the SDW dashboards.

You can also get data directly from your own custom reports created in XFRACAS.

A custom connection data source always shows the latest information from the original database or report and you can only create one dashboard layout per connection. You can also use these connections to import data into a static Weibull++/ALTA or RGA data collection, if desired.

Connect to an External Database

To create a live link to an external database:

1. Choose Manage Data Sources > Add Custom Connection > To External Database.

2. In the Add Custom Connection window:
 a. Enter the Display Name that will identify this custom connection in the SDW data source list.
b. Enter the connection settings for a Microsoft SQL Server, Oracle or Access database. (See Connection Issues below for more information about the Use impersonation option for SQL Server.)

c. After you have specified the database, the Table Name field shows a list of the available tables. Select the main one that contains the data you want to use in the SDW.

d. If you want to create aliases for column names, build a query that combines data from multiple tables or enter your own SQL, select the Open Query Editor/Builder check box.

e. If you want to create the dashboard layout for this data source immediately after defining the connection/query, select the Open Dashboard Designer check box.

f. Click OK to proceed.

3. If you selected to customize the query, you can use the Query Editor to type or paste your own query, or select a stored procedure. If you need further tools, click the Run Query Builder button. The Query Builder can serve three purposes:

 a. The bottom-center panel shows the fields that will be included in the data set. If desired, you can use the Alias column to change the names that will be displayed in the SDW grid and dashboard layouts.

 b. If the tables are linked by foreign keys, you can use the tool to build a query that combines fields from multiple tables.

 c. You can also enter your own SQL in this tool; select the Allow SQL Editing check box and type or paste your own query.

When you are finished in the Query Builder, click OK to return to the Query Editor, where you can click Finish to save your changes.

4. If you selected to open the Dashboard Designer, you can use it to create a single dashboard layout for this data source.

 If you want to change the query or create/modify the dashboard layout at a later time, select the custom connection in the data source manager and choose Dashboard > Dashboard Designer.

 From within the Dashboard Designer window, choose Home > Query > Edit to customize the query.
Connection Issues
There will be a "connection failed" message if the database is not found at the specified name/location or if you don’t have permission to access it.

If your organization has implemented an SEP web portal, the administrator may need to take additional steps to make the dashboards visible to all users via the portal. For details, consult the print-ready implementation guide (*.pdf).

- **Oracle** - the password is stored with the custom connection; therefore, both the desktop applications and SEP web portal will attempt to connect in the same way for all users.

- **SQL Server** - the Use impersonation option in the custom connection allows you to enter a login for a one-time extraction to an SDW data collection, but this login is not saved in SDW.

 For subsequent attempts, the desktop applications will connect with the current user’s Windows login, whereas SEP will use the login that it uses to connect with the Synthesis repository (if the Synthesis repository is SQL Server) or with the IIS "application pool identity" (if the Synthesis repository is Oracle).

- **Access** - the SDW must have access to the folder where the database is stored. It is recommended to use the UNC pathname (e.g., \servername\foldername rather than P:\foldername) when you create the custom connection.

 The desktop applications will attempt to access the file with the current user’s Windows login, whereas SEP can only access files stored directly on the web server or in a network folder that can be accessed by its IIS "application pool identity."

 Tip: For Access databases with the *.accdb file type, the dashboard can only be displayed if the database was created with the same version of Microsoft Office (32-bit vs. 64-bit) that is installed on each individual user’s computer (for ReliaSoft desktop applications) or on the web server (for SEP).

 To ensure that the dashboard will display regardless of which version of Microsoft Office is installed, use the *.mdb file type instead of *.accdb.

Connect to XFRACAS Report
Creating a custom connection to a predefined XFRACAS report enables you to use the SDW to view any type of XFRACAS data (not just data collections extracted for life data or repairable systems analysis). If an SEP web portal has been implemented for an enterprise database, users can also access the dashboards created for these reports from any web-enabled device.
Tip: For information about creating SDW reports in XFRACAS, see the "Report Builder" topic in the XFRACAS documentation.

To create a live link to an SDW report that has already been created in XFRACAS:

1. Choose Manage Data Sources > Add Custom Connection > To XFRACAS Report.
2. In the Select Report window, select any of the XFRACAS SDW reports that have been predefined in the database.
3. Click OK to load the data.

Import to a Static Data Collection

In the Synthesis Data Warehouse, a custom connection provides a live link to an external database or XFRACAS report, while a static data collection stores Weibull++/ALTA or RGA data that was extracted at a particular point in time.

A static data collection can contain data extracted directly from XFRACAS. If desired, you can also create a static Weibull++/ALTA or RGA data collection by importing data from a custom connection. To do this:

1. Right-click the custom connection in the data source manager and choose Import.
2. In the Import Data from Custom Connection window:
 a. The Map Data Source Fields to Columns section specifies which field from the custom connection will be mapped to a column that’s available in a Weibull++/ALTA or RGA data collection.
 b. The Define Values as Failures/Suspensions section displays all of the unique values from the field that is currently mapped to the State FS column. Specify whether each value should be considered a failure or a suspension.
 c. The Preview tab allows you to see what the data collection will look like based on your selections.
3. Click OK to create the static data collection.
Chapter 32: SEP Web Portal

If your organization implements an SEP web portal for an enterprise database, the entire team — including managers and colleagues who don't have ReliaSoft desktop applications installed — can access key analysis and project details from any web-enabled device.

SEP Dashboards
The personalized home page provides an intuitive, at-a-glance overview of the information you’re tracking via SEP, such as FMEA stats, actions, recent messages, reports, metrics and more. You can choose which tiles appear on your dashboard and change their order and settings. (See SEP Dashboards.)

Actions and Portal Messages
You can use SEP to create, view and edit the same actions and portal messages that are visible to you from the desktop applications. SEP also allows colleagues who don't use the desktop applications to stay up-to-date on assignments and team communication. (See Actions and Messages in SEP.)

Project Summary, Analysis Summaries and Project Plan
For each analysis project that you have permission to view, SEP provides a summary that includes metrics, assigned actions, attachments and other project details. It also displays summaries, plots and reports for selected analyses published to SEP from Weibull++/ALTA, BlockSim/RENO, RGA and Lambda Predict.

If your team is using the Project Planner in desktop applications, SEP shows a streamlined view of the project plan. Users can access this plan in SEP and update their progress for assigned actions. (See Projects in SEP.)

System Hierarchies and FMEAs
SEP enables users throughout your organization to view FMEAs, queries and reports that were created in XFMEA, RCM++ or RBI. This provides managers and others throughout your organization with convenient web-based access to the wealth of lessons learned and troubleshooting recommendations from your investment in these analyses. (See FMEAs in SEP.)
Metrics (Key Performance Indicators)
SEP shows all of the KPIs (metric resources) that have been created in desktop applications for the projects you have permission to view; no publishing is required. Quick visual indicators help you monitor performance and support decision making.

Monitored Reports
SEP can display a variety of custom reports and dashboards created in desktop applications. The "Watch" feature makes it easy to manage the specific reports you want to access quickly. (See Monitored Reports in SEP.)

SEP also shows all of the Synthesis Explorer or Synthesis Data Warehouse (SDW) dashboards that have been predefined in the desktop applications.

SEP Dashboards
The SEP home page features a dashboard that consists of a flexible layout of customizable “tiles.” These tiles provide convenient, personalized access to key information that you’re tracking in a variety of graphical and tabular formats.

New in Version 2019, the SEP dashboard offers many new types of tiles — and even more customization options.

Default Dashboard
The first time you open SEP, you'll see a dashboard that has been preconfigured with a default layout and tile settings — either the dashboard that ships with SEP or one that has been customized specifically for your organization. This becomes your own personal dashboard, which you can customize for your needs. After you open SEP the first time, you'll no longer have access to your organization's default.

Note: SEP Admin Page outlines the procedure that admin users can follow to create a custom dashboard for their organization.

To customize your dashboard, you can add, delete, move or resize tiles (see below) and/or change their settings (see Tile Settings).
Add, Delete, Move or Resize a Tile
Any changes you make are saved automatically.

Add a Tile
To add a tile to your dashboard:

1. Click the Add Tile button to open a popup window showing the available tile types.
2. Select one or more tile types.
3. Click Add.

You can filter the available tile types by category or use the search tool to find a tile based on its title or description.

Delete a Tile
To delete a tile from your dashboard, click the Delete icon.

Move or Resize a Tile
When you move or resize a tile, it “snaps” to the underlying grid, displacing other tiles as needed.

- To move a tile, drag and drop it onto a different position using the title bar.
- To resize a tile, click and drag one of its bottom corners.

Tile Settings
Each tile features a title bar that includes a set of icons:

- The Settings icon, opens a dialog box where you can configure the settings that apply to the tile.

- The Maximize icon, opens a popup window that contains an enlarged version of the tile.

- The Delete icon, removes a tile from the dashboard.

- The Open Page icon, is available for many types of tiles (e.g., My Actions and Recent Messages). Click this icon to open related SEP pages (e.g., My Actions and Messages).

The title bar also shows the tile's title (e.g., "My Actions"), which you can configure using the Settings dialog box.
Data Sources

Depending on its type, a tile may display:

- Data that's relevant to you and independent of any project (e.g., Recent Messages, My Projects).
- Data that originates from one or more specified desktop projects or XFRACAS entities.

Tip: My Projects includes all of the projects you have currently selected. (See [Projects in SEP](#).)

For the following cases, the data source(s) will appear in parentheses in the tile's title bar:

- If the tile has a single data source (project or entity), it shows the name of this source.
- If the tile has multiple data sources that you have selected, it displays the number of sources (e.g., "3 projects").

Tip: To see a list of these sources, toggle a popup box by moving your cursor over the title bar.

- If the tile includes data from multiple sources that are relevant only to you, it displays "All projects," "All my entities," "My metrics," etc.

The title bar does not include a data source if it is not applicable for the tile type (e.g., Recent Messages, My Reports, My Projects).

Active and Selected Projects

Many tiles give you the option to display data for “active” or “selected” projects.

- The active project is the one that is currently selected on the Project Summary, Project Plan and FMEAs pages. Use the Change Project button on one of these pages to activate a project (see [Projects in SEP](#)). You can also "activate" a project by clicking its link in the My Projects tile, if this tile is included in your dashboard (see [Projects Tiles](#)).

- To display data for “selected” projects:

 1. Open the Settings dialog box and choose the Selected option from the Project drop-down list.
b. Click the Add button to display a list of projects that you have permission to view.

c. Select the desired project(s) and click OK.

To find projects more easily, you can use the search tool or apply any project filters that you have created in the desktop applications (see Project and Item Filters).

Grid Tile Columns

Use the Columns button to add or remove columns from grid tiles.

![Columns button](image)

See [Working with Grid Tile Columns](#) to learn how to move, resize, sort, filter and group columns.

Selecting a Date Range

Some tiles allow you to display data for a specified date range. For these tiles, the Settings dialog box provides options for selecting "custom" and "preset" date ranges.

Custom Date Ranges

The Custom option allows you to use the calendar tool to select start (From) and end (To) dates. Alternatively, you can type dates into these fields in the month/day/year format — e.g., 1/2/2019.

![Custom date range](image)

This option will display the data that is available for all dates within the selected range, including the start and end dates.

Preset Date Ranges

The Preset option allows you to display data for a specified number of past (Last) or future (Next) “calendar” periods — days, weeks, months, quarters and years. You can also select to display data for the current (This) calendar period.

- Weeks start on Sunday.
- Months start on the first and end on the last day — e.g., May 1–31.
- Quarters run from January 1 – March 31, April 1 – June 30, July 1 – September 30 and October 1 – December 31.
Chapter 32: SEP Web Portal

- Years cover the period from January 1 through December 31. For the number of periods, you must specify an integer ranging from 1 to 10000.

This displays data that is available for the current calendar period. For example, if today’s date is February 14:

- Selecting This and Month will show results for February; in this case, the results will cover the period from February 1–14 and include the current day.

- Selecting This and Year will show results for January and part of February. Note that selecting This automatically forces the number field to 1.

Last allows you to specify a past time interval. Choose the Last + Current option to include the current day, week, month, etc., in your results. For example, if today’s date is February 14:

- Selecting Last 2 Months will return results for the previous December and January.

- Selecting Last + Current 2 Months will return results for January and February.

- Selecting Last 3 Weeks will return results for the last full 3 weeks preceding the 14th.

- Selecting Last + Current 3 Weeks will return results for the last full 2 weeks preceding the 14th, plus the week that contains the 14th.

Next allows you to specify a future time interval and follows the same logic as the Last option. Choose the Next + Current option to include the current day, week, month, etc., in your results.

Tip: The tile will show the actual date(s) corresponding to your selection (e.g., "01-Jan-2019 to 31-Jan-2019," "From 01-Jan-2019," etc.).

Working with Grid Tile Columns
Starting in Version 19.0.2, SEP provides additional ways to sort, filter, and group columns in grid tiles.

Move or Resize Columns
- To move a column, drag and drop it into position using its heading.

- To resize a column, click and drag the right border of its heading.
Sort Columns

- To sort by a column, right-click its heading and select **Sort Ascending** or **Sort Descending** in the pop-up box that appears. Alternatively, you can click the column heading to sort in the descending direction. To reverse the sort order, click again.

![Sort Columns Pop-up](image)

- To sort by additional columns, press SHIFT and click the column headings in the order you wish to sort.

- To clear a sort, right-click the column heading and select **Clear** in the pop-up box.

Filter by Columns

1. Click the **Filter** icon, ☰️, in the column heading. This opens a pop-up box with a list of all entries in the column.

2. Select one or more entries from the list by clicking the appropriate check box(es). You can also choose **Select All** or use the search tool to find items.

3. Click **OK**. The **Filter** icon, ☰️, will now change to a darker gray to indicate that one or more filters have been applied for that column.

Group by Columns

- Right-click the column header and select **Group by This Column** in the pop-up box.

- To undo the grouping, click the heading row within the grid and select either **Ungroup** or **Ungroup All** in the pop-up box. Alternatively, you can right-click any other column heading and select **Ungroup All**.
View Cell Content
Content that is too long to fit into a grid cell will be truncated, as indicated by an ellipsis. To view this content in its entirety, move your mouse over the cell to reveal a tooltip.

Tiles

Actions and Messages Tiles

Actions Tiles

My Actions Tile

The My Actions tile displays actions that are relevant to you and that are pending within the next 7 days, past due or ready for review. (See Action and Messages in SEP for a list of relevance categories.) These actions are grouped under headings that you can collapse or expand:

- Pending Approval
- Past Due
- Due Next 7 Days
- In Progress
- Past Start Date
• Start Today
• Start Tomorrow
• Start in Next 7 Days

To open the Edit Action page from the tile, click the description (blue link).

To specify which relevance categories to show and whether to display actions for active, selected or all projects, use the Settings dialog box.

To open the My Actions page, click the Open Page icon, 🔄.

Actions Grid Tile
New in Version 2019, the Actions Grid tile displays a list of actions for one or more projects. You can apply various filters to these actions:

• **Project** - Options include All, Active or Selected. (See Tile Settings).

• **Person Responsible** - By default, this is set to Any, but you can click the text box to display a menu that allows you to select any or all of the people in the list, including yourself (Me). The Unassigned option is for actions that have not been assigned to anyone (the Person Responsible field was left empty in the desktop application or the Create Actions page in SEP).

• **Analysis** - By default, all options are selected, but you can choose None, Project Plan and/or FMEA. Select None for analyses that were created via SEP, My Portal or Resource Manager and have not been used in a project plan or an FMEA.

• **Planned Completion** - Select starting and ending dates to show only actions within that range. If you do not specify a date range, the grid will include actions for all dates.

• **Status** - Choose from Past Due, In Progress, Not Started and/or Completed.

You can also choose which columns to include in the grid and you can sort, move or resize them if desired. (See Grid Tile Columns.)

The project (if displayed) and action description appear in the tile grid as blue links; these links open the Project Summary and Edit Action pages.

Note: The Actions Grid and Actions Pie tiles can display a maximum of 50,000 records (the same number as the ReliaSoft desktop applications). If you are experiencing exceptionally long load times or time-outs, we recommend using the filters in the Settings dialog box to limit the number of results.
Chapter 32: SEP Web Portal

Actions Pie Tile

New in Version 2019, the Action Pie tile is a chart that displays the number and relative percentage of actions by:

- Status
- Person Responsible
- Project

Tip: To highlight a pie "slice," move your pointer over a label in the legend.

Recent Messages Tile

This tile shows a specified quantity of the most recent messages from your Messages page. It includes the subject of the message, its author and the date created.

To view the message contents, move your cursor over the message to display a popup box. (See Actions and Messages in SEP.)

To open the Messages page, click the **Open Page** icon, 📝.

FMEA Tiles

Starting in Version 19.0.2, the SEP dashboard now offers convenient tiles for viewing FMEA data. They help you monitor the potential failure causes identified in your FMEAs and track the progress of actions that are being taken to reduce risk. These tiles include:

- **Failure Causes Grid tile**
- **FMEA Stats tile**
- **FMEA Stats Grid tile**
Choose FMEAs to Display
You can configure tiles to show data from all FMEAs in a given project, or you can show data from one or more selected FMEAs.

1. Open the Settings dialog box and select a project:
 a. Choose Active or Selected from the Project drop-down list.
 b. If you choose the Selected option, click the Add icon, +, to select a project. (See Tile Settings.)

2. Select one or more FMEAs:
 a. Choose Selected from the FMEA drop-down list.
 b. Click the Add icon, +.
 c. In the Add FMEA dialog box, select the FMEAs you wish to display from the hierarchy.

 Note: Only parts or processes with FMEAs will have check boxes.

3. Click OK and OK again to save your configuration.

Choose Stats to Display
For some FMEA tiles, you must select which stats to display and specify their order.

1. Open the Settings dialog box.

2. In the Stats to show area, click the Add icon, +.

 Stats to show

 Failure Causes X
 % Analyzed X
 Controls / Actions X

 Cancel OK

3. Select the stats you wish to display.
 o If applicable, enable the Show trend option and specify a date range. (See Selecting a Date Range.)
To change the order of the stats, drag them to the desired position using the handle, \.

4. Click OK to close the Add Stat dialog box. The stats should now appear in the Settings dialog box.

5. Click OK to save all your changes and close the Settings dialog box.

Failure Causes Grid Tile

This tile allows you to view a prioritized list of potential failure causes, along with the controls and actions that will mitigate the risks associated with these causes.

By default, the Failure Causes Grid tile displays data for all FMEAs in the active project. You can change the project and/or select one or more FMEAs via the Settings dialog box. (See Choose FMEAs to Display.)

Choose Columns to Display

This tile provides options for displaying ratings and/or metrics that have been enabled for the project.

To specify which fields to display, click the Columns button in the Settings dialog box to open the Column Chooser. If you choose to display the Cause, Actions or Project columns, the tile will include links that provide access to the following pages in SEP:

- **Cause** - opens the full FMEA, with that cause highlighted. Clicking the link in the FMEA opens a page showing the details of the cause. (See FMEAs in SEP.)

- **Action** - opens the Edit Action page. (See Actions and Messages in SEP.)

- **Project** - opens the Project Summary page. (See Projects in SEP.)

The Column Chooser also allows you to select which ratings and/or metrics to display — for example, initial or revised RPN (RPNi, RPNr), severity (Si, Sr), occurrence (Oi, Or), detection (Di, Dr), etc. (See RPNs and Related Metrics in the XFMEA/RCM++/RBI help to learn more about ratings and metrics.)

Tip: Only the ratings / metrics that have been enabled for the project will be "selectable"; all others will be grayed out.

Show or Hide Priority Highlights

To display the priority highlight colors that have been defined for the project, enable the Show priority highlights option in the Settings dialog box. (See Viewing FMEAs in SEP to learn more about priority highlights.)
The example below shows RPNs (initial and revised) with priority highlights.

FMEA Stats Tile
This tile provides at-a-glance metrics for a single FMEA or a combined group of FMEAs. These metrics may include record counts and % analyzed, risk profiles and % reduction in RPN and new risks and actions incurred within a specified time period, among others.

- To change the project and/or select different FMEAs, use the Settings dialog box. (See Choose FMEAs to Display.)

- To open the FMEA page for the selected project, click the Open Page icon.

Note: All stats are calculated based on unique records within the given data set. If the same control, action and/or task resource appears multiple times in the selected FMEA(s), each unique record is counted only once. This also applies to records from linked FMEAs. (See Resources and Linked FMEAs in the XFMEA/RCM++/RBI help.)

Failure Causes
This stat is a count of the unique failure causes in the selected FMEA(s).
% Analyzed

This stat is the percentage of unique failure causes in the selected FMEA(s) that have been "analyzed." A cause is considered analyzed if it meets these conditions:

- It can be assigned to a risk priority level.
- Values have been assigned to all O and/or D ratings that have been enabled.
- All enabled risk metrics (RPN, SxO, SOD and/or SD) have been calculated. (See Interface Styles in the XFMEA/RCM++/RBI documentation.)
- If the FMEA structure is “causes before effects,” its effect has been defined and analyzed.

The percentage is calculated by summing all of the failure causes that meet these criteria and then dividing by the sum of all failure causes. (See FMEA Stats (Web Summary) for more information.)

Controls / Actions

This stat lists the number of unique controls and actions in the selected FMEA(s).

All Records

This stat is a simple count of the numbers of each type of record in the selected FMEA(s).

% Reduction in Total RPN

This stat indicates how much the risk priority number (RPN) for all failure causes in the selected FMEAs has decreased. Because the percentage will increase as you mitigate the risks in your design, the % reduction in the total RPN allows you to track the progress and effectiveness of your team’s actions.

It will only display if both the initial and revised RPN have been enabled for the project.
The % reduction in the total RPN is calculated as follows:

\[
\frac{\text{Sum of initial RPNs for all causes} - \text{Sum of current RPNs for all causes}}{\text{Sum of initial RPNs for all causes}} \times 100
\]

Note: "Current" always represents the most recently calculated metric for the failure cause. If a revised RPN is not calculated, the initial RPN is used to represent the "current" risk.

For example, if your selected FMEA contains three failure causes with the following RPNs, the % reduction would be calculated as follows: \((792 - 520) / 792 \times 100 = 34.3\%\)

<table>
<thead>
<tr>
<th>Cause</th>
<th>Initial RPN</th>
<th>Current RPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cause 1</td>
<td>512</td>
<td>240</td>
</tr>
<tr>
<td>Cause 2</td>
<td>216</td>
<td>216</td>
</tr>
<tr>
<td>Cause 3</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Total</td>
<td>792</td>
<td>520</td>
</tr>
</tbody>
</table>

Risk Profiles — Initial and Revised / Current

These two stats — Risk Profile (Initial) and Risk Profile (Revised / Current) — provide a quick overview of how many failure causes have been assigned to each risk priority level.
Causes are assigned to risk levels according to the "Highlight Priority Based On" setting in the project’s interface style. A priority of "unknown" indicates that a relevant risk ranking, rating or metric has not been defined for the cause. See Viewing FMEAs in SEP and RPNs and Related Metrics in the XFMEA/RCM++/RBI help.

To see the change between the initial and the revised / current values, enable the **Show trend** option.

Risk Profile with Action Status

This matrix provides an alternative to the Risk Profile stats.

* Causes (Initial) - the number of causes with an initial risk that falls within each risk priority level.

* At Least 1 Action - the percentage of causes in each risk level with at least one assigned action.

* Actions Closed - the percentage of actions assigned to causes in each risk level that are closed (completed and not pending approval). If this is not 100%, the tile also displays the planned completion date for the last open action.

* Causes (Revised/Current) - the number of causes where the revised / current risk falls within each risk priority level, along with the percent change from the initial risk. The arrow indicates whether this change represents an increase or decrease.

Risks and Actions by Period

This stat allows you to monitor risks and actions for a specified date range.
Chapter 32: SEP Web Portal

The FMEA Stats Grid allows you to monitor selected stats for multiple FMEAs in a project within a single tile. It offers the same stats that are available in the FMEA Stats tile (except for "Risk Profile with Actions") but breaks them down by individual FMEA.

All FMEAs Combined

The row at the bottom of the grid shows the stats for All FMEAs Combined. Note that these combined stats consider unique records (see FMEA Stats tile). If the same resources and/or linked FMEAs appear multiple times within the combined data set, the values in this row will differ from the sum of the stats for the individual FMEAs. For example, in the grid shown below, “Assembly A” and “Assembly B” each include three causes from the same linked FMEA. Since these causes are counted only once, the value shown for the combined data set is 12, not 15.
Chapter 32: SEP Web Portal

To select a different project and/or FMEAs, see Choose FMEAs to Display.

To select stats, see Choose Stats to Display.

Note: For this tile, you must specify the order of the columns in the Settings dialog box.

% Reduction in RPN

If you choose to display % Reduction in RPN, the tile will include three columns — Total Initial RPN, Total Current RPN and % Reduction in RPN — assuming both the initial and revised RPN options have been enabled for the project. Dashes appear in grid cells in cases where no value has been assigned or when the % reduction cannot be calculated. See % Reduction in Total RPN in the FMEA Stats tile topic for more information about this stat.
Risk Profile

If you choose to display Risk Profile (Revised / Current), you can enable the Show trend option to show the changes from the initial risk rankings in the All FMEAs Combined row. (See Risk Profiles — Initial and Revised / Current in the FMEA Stats Tile topic for more information.)

Metrics and Reports Tiles

Metrics Tile
The Metrics tile allows you to monitor metrics that have been created in ReliaSoft desktop applications. (See Metrics.)

Use the Settings dialog box to specify one or more data sources:

- **My metrics** displays the metrics that you have selected to appear on your My Metrics page.
- **Active project** displays the metrics for the project that is currently active in SEP.
- **Selected projects** displays the metrics for one or more projects that you select.

You can also use the Settings dialog box to specify how many metrics to display in the tile.

To open a popup window that shows additional details such as a plot, calculated values and identifiers, click the name of the metric (blue hyperlink).

To open the My Metrics page, click the Open Page icon, in the title bar.

My Reports Tile
The My Reports tile displays links to reports that you are “watching” in SEP (via the My Reports page) and XFRACAS. For each report, the tile shows the name of the watch, a short description and, if applicable, the project and application names.

Use the Settings dialog box to specify one or more data sources:

- **My reports** displays all of your watched reports in SEP and XFRACAS.
- **Active project** displays your watched reports for the currently active project in SEP.
- **Selected projects** displays your watched reports for one or more projects that you select.

Choose from any or all of the following report types:

- **Dashboards**, which include FMEA, BlockSim simulation, project plan, Synthesis Explorer and Data Warehouse dashboards.
Chapter 32: SEP Web Portal

- **Spreadsheets**, which may be published from a Synthesis Workbook or from Lambda Predict or which may be the summary of an analysis published from Weibull++, ALTA or RGA.

- **Documents**, which are published from a Synthesis Workbook.

- **XFRACAS Reports and Charts**, if your XFRACAS and SEP sites are linked. (See SEP and XFRACAS to learn how these applications work together.)

You can also use the **Settings** dialog box to specify the how many reports to display in the tile.

To open the report in a new browser tab, click the name of the watch (blue link).

To open the My Reports page, click the **Open Page** icon, in title bar.

FRACAS Tiles
If you use ReliaSoft XFRACAS, the SEP dashboard offers a convenient way to access information that's relevant to you. (See SEP and XFRACAS.)

FRACAS Actions Grid Tile
XFRACAS actions are managed separately from those originating from ReliaSoft desktop applications.

The FRACAS Actions grid lists open XFRACAS actions that you own.

New in Version 2019, you can now configure FRACAS Actions tile to display data for all of the entities that you have permission to view. You can also choose which columns to include in the grid (**Entity**, **ID**, **Description**, **Due Date**) and sort, move or resize them if necessary. (See **Grid Tile Columns**.)

To open an action in XFRACAS, click its description (blue link).

FRACAS Incidents Grid Tile
The FRACAS Incidents tile shows open XFRACAS incidents that you own.

You can choose to display incidents for just your default entity or for all of the entities that you have permission to view. You can also choose which columns to include in the grid (**Entity**, **ID**, **Title**, **Description**, **Occurrence Date**) and sort, move or resize them if necessary.

To open an incident in XFRACAS, click its description (blue link).
Projects Tiles

My Projects Tile
The My Projects tile displays a list of projects that you have selected for quick access in SEP. To modify this list, click the Change Project button on the Project Summary, Project Plan, or FMEAs page (see Projects in SEP).

Tip: Clicking a project name in this tile opens the Project Summary page in a new browser tab and makes that project "active" for other SEP tiles and pages.

Project Plan Tile
This tile summarizes the plan for either the active project or for one or more projects that you select. It displays:

- Plan status (past due, not started, in progress or complete)
- Start and end dates (planned or actual, depending on the data)
- A pie chart of actions, if any

Tip: To highlight a pie "slice," move your pointer over a label in the legend.

Actions and Messages in SEP
SEP lets you create, view and edit the same actions and messages that are visible to you from ReliaSoft desktop applications in My Portal. It also allows colleagues who do not use the desktop applications to stay up to date on assignments and team communication.

Tip: The action alert e-mails and portal messages generated by ReliaSoft applications can include links to view the action details in SEP. If these links are not working properly for your web portal, see SEP Admin Page.

My Actions Page
The My Actions page shows actions that are pending and are relevant to you for any of the following reasons:

- You need to review or approve the action.
- You are responsible for the action.
- You are a member of the team that is assigned to the action.
Working with the Actions Table

- To filter actions, type text into the Find box and press Enter. The table will populate with actions that contain this text in the visible fields.
- To group actions by a column, drag and drop the column heading onto the shaded panel.
- To change the column order, drag and drop the column heading into the desired position.
- To sort in ascending or descending order, click the Sort icon, ▲.
- To apply a built-in filter (blanks, non-blanks or unique values), click the Filter icon, RENDER

Creating a New Action

- To add a new action in the project that is currently active, click Create Action.
- To create an action for a different project, you must first navigate to that project in SEP and then return to My Actions. (See Projects in SEP.)

Tip: The Project Summary, Project Plan and FMEAs pages also show actions for the active project; however, they include actions that are not directly relevant to you or that have already been completed.

Messages Page

The Messages page shows ReliaSoft portal messages that are relevant to you, sent to you, sent to a user group that you belong to or sent to all users. These are the same messages that you can view in My Portal in the desktop applications. (See Portal Messages.)

- To send a new message, click Create Message.
- To reply to an existing message (if applicable), click Reply.

Tip: You can also create a dashboard tile that shows a specified quantity of your most recent messages. (See Recent Messages Tile.)
Projects in SEP

In SEP, some pages, such as My Actions and My Reports, show data from any project that you have permission to view. Other pages display data only from the project that is currently active for you. These pages include:

- Project Summary
- Project Plan
- FMEAs

Select or Change Projects

For any page that shows data from a particular project, the Change Project button allows you to view that same type of data from another project. This button opens a popup box with a list of projects that you previously selected for quick access in SEP.

Tip: These projects also appear in the My Projects tile in the SEP dashboard.

To add or remove projects from this list, click Select Projects. In the Select Projects popup window, the right side shows your list of projects and the left side shows all the projects that you have permission to view.
You can apply any project filters that were created in ReliaSoft desktop applications or use the Find tool to search by project name.

Use the icons to add, remove or simply view projects:

- **Add to My Projects**
- **View Now** (i.e., view the project without adding it to your list)
- **Indicates that the project is already in your list.**
- **Remove from My Projects**

Tip: If you want to have quick access to the same set of projects while working in ReliaSoft desktop applications, you can create a [project filter](#) that filters based on [Selected projects](#).

Publishing to SEP

SEP does not display all of the analyses that were performed in ReliaSoft desktop applications. Instead, your team can decide which analyses to make available and publish selected analysis summaries and reports.

In the desktop applications, these features are only available when:

- You are connected to an enterprise database that has an SEP web portal implemented and the "Enable publish to SEP web portal" option is set to "Yes" for the database.
- You have the "Publish to SEP web portal" permission.
The types of data and analyses that can be published vary for each ReliaSoft application:

Weibull++/ALTA
- Life Data
- Non-Parametric LDA
- Life-Stress Data
- Weibull Degradation
- ALTA Degradation
- Parametric RDA
- Standard / Robust / Mixture / Free Form Design
- One Way ANOVA
- Linearity & Bias, Gage R&R, Gage Agreement
- Multiple Linear Regression
- Synthesis Workbooks

RGA
- Growth Data
- Synthesis Workbooks

BlockSim/RENO
- Analytical RBD, Simulation RBD
- Analytical Fault Tree, Simulation RBD
- Phase Diagram
- RENO Flowchart
- Continuous Markov, Discrete Markov
- Synthesis Workbooks

Lambda Predict
- Reports
- Stored Plots

XFMEA, RCM++ and RBI*
- Reports (saved with the project)

System hierarchy and FMEAs are also visible in SEP — no publishing is required.

Note: If you have published analysis summaries and you see a "Link is not properly formatted" message when you attempt to open the original analysis from SEP, the link may be corrupted or using old encryption. Republish the analysis to refresh the link.

Data Sheets or Diagrams
To publish an analysis summary from Weibull++/ALTA, RGA or BlockSim/RENO, open the data sheet or diagram and click **Publish SEP Summary** on the Publishing page of the control panel. (For DOE design folios, the **Data** tab with analyzed response data must be selected.)
Chapter 32: SEP Web Portal

To publish a data sheet, you must also click **Publish SEP Summary** again in the preview of the spreadsheet summary.

![Publish SEP Summary button]

After publishing, the panel displays "Synchronized" if the web version reflects the latest results from the analysis. If the analysis has been modified (e.g., if more data has been added, an analysis setting has changed, etc.), it displays "Out of Sync" and you will need to recalculate and republish to update the web portal.

To remove the summary from the web portal, click **Remove SEP Summary**.

Synthesis Workbooks

To publish a **Synthesis Workbook** from Weibull++/ALTA, RGA or BlockSim/RENO, open the module in the workbook that you want to share (spreadsheet or word processing document) and then click **Home > SEP > Publish Report**.

![Status bar showing visibility via SEP]

The status bar shows that the spreadsheet or document is visible via SEP and indicates when the web version was last updated.

If you subsequently make a change in the desktop application, you will need to republish to update the web portal.

If you want to remove the report from the web portal, open the module and click **Home > SEP > Remove Report**.

Prediction Reports and Plots

To publish a report for a standard item or block in Lambda Predict, select the item/block and choose **Prediction Tools > Share > Publish SEP Summary**.

![Select Report window]

In the Select Report window, select what to include in the report (e.g., template-based reports, default reports or plots) and click **OK**. (See **Lambda Predict Reports** in the Lambda Predict...
There can be only one published report for each item/block. If you publish again for the same item, it will replace the report that was previously published.

To publish a stored plot from Lambda Predict, open the plot, then click the **Publish SEP Summary** icon on the **Publishing** page of the plot control panel.

The following example shows two published reports from the Power Amplifier Circuit folio and one published plot.

To remove a report from the web portal, select the standard item or block, then open the Publishing tab of the Properties panel and click **Remove SEP Summary**.

To remove a plot from the web portal, open the plot, then click the **Remove SEP Summary** icon on the Publishing page of the plot control panel.

XFMEA/RCM++/RBI Reports

To publish a report generated in XFMEA/RCM++/RBI, use the Reports window to build the document, select at least one of the **Save/Publish** file formats on the ribbon (Word, Excel, or PDF) and click **Generate Report**.
Chapter 32: SEP Web Portal

To see all of the generated report documents that have been saved with the project (and therefore will be visible via SEP), click Published Reports Manager. You can also use the manager to edit the name and description that will show in the web portal.

For more information, see Save/Publish Reports in the XFMEA/RCM++/RBI documentation.

FMEAs in SEP

SEP allows users throughout your organization to view FMEAs and published reports that were created in ReliaSoft XFMEA/RCM++/RBI — even if they don’t have the desktop applications installed. It includes convenient features that allow managers and stakeholders to track key FMEA details from any web-enabled device.

The FMEAs link in the menu opens the FMEAs page for the project that is currently active for you in SEP. This link also appears in the Project Summary page if the project contains FMEA data.

To view the FMEAs from a different project, click the Change Project button at the top of the FMEAs page.

Viewing FMEAs in SEP

On SEP’s FMEAs page, the Hierarchy View tab displays the system hierarchy in the left pane. The properties for the item selected in the hierarchy appear in the right pane, along with
FMEAs and FMEA statistics, if applicable. (See System Hierarchy and FMEA Analysis in the XFMEA/RCM++/RBI documentation.)

- The icon indicates that the item has an FMEA. If a change log has been activated for the FMEA, the name and status of the current version will appear in the system hierarchy, and the icon will indicate the state of the change log. (See FMEA Change Logs.)

- The icon indicates that the item is associated with an XFRACAS template part. (See SEP and XFRACAS to learn how these applications interact.)

To view the full analysis in a desktop application, click Open.

Note: Starting in Version 2019, the Open buttons are now only visible to users who have the "Open desktop apps from SEP web portal" permission (see Managing Security Groups).

FMEA Stats
The FMEA Stats sub-tab provides a quick, at-a-glance summary of key statistics and charts for the item that is currently selected in the system hierarchy. If you select an item that has both a system FMEA and component FMEAs, you can view a report that shows data for the system FMEA only or a report that combines data from all component FMEAs.

To learn more about this feature, see FMEA Stats (Web Summary).

FMEAs
The FMEA sub-tab displays the full analysis for the item that is selected in the system hierarchy.

- To view the full properties for a record in the FMEA hierarchy, click the link (blue text).

- To specify which columns appear for any FMEA that you view in SEP, click . This opens the Customize FMEA Columns dialog box. You can also specify the column order.

Tip: Gray text indicates that a column is unavailable for the current project.

SEP can display colors to highlight issues based on their priority. When enabled, these colors appear in the FMEA hierarchy and in query results for effects and causes (assuming the relevant column(s) are displayed). This feature uses configurable logic that is saved with each project. (See FMEA > RPNs in the XFMEA/RCM++/RBI documentation.)

To display the color highlights, select Enable priority highlights in the Customize FMEA Columns dialog box and click OK.
FMEA Stats (Web Summary)

The FMEA Stats report provides a summary of key statistics and charts for a single FMEA or a group of FMEAs that were created in the desktop applications.

To view this report, navigate to the FMEAs page for the project, click the Hierarchy View tab (if necessary) and select an item. If the report does not appear by default, click the FMEA Stats tab.

Tip: To get a link to this report from within XFMEA/RCM++ or RBI, select an item in the desktop system hierarchy and choose System Hierarchy > Current Item > Web Summary > Open in SEP or E-mail SEP Link.

Depending on the item, you may be able to select either or both of the following options using the check boxes in the FMEA Stats view:

- **Current Item** shows data from the selected item's FMEA.
- **Sub-Items** shows data from the FMEAs for the selected item's sub-items.

For example, if both system FMEA and component FMEAs are available, you can review a report for the system FMEA only or a report that combines the data from all of the component FMEAs.

FMEA Stats

The large numbers in the FMEA stats section indicate the quantity of each record type. When applicable, the stats also show the percentage of those records that have been "analyzed" or "completed."

Note: If a change log has been activated for an FMEA, the name and status of the current version will appear at the top of the FMEA Stats section. (See FMEA Change Logs.)

% Analyzed

The logic for calculating this stat depends on the project's configurable settings; however, in general, to be considered "analyzed," the FMEA branch must have at least one function, failure, effect and cause, with ratings assigned to the *all* metrics that have been enabled for the project. In addition, each cause must be able to have a risk priority assigned.

For example, if the project is configured to calculate both initial and revised RPN, a failure is considered analyzed if all of the following conditions are met:

- It has at least one effect and at least one cause.
• All of its effects have both initial and revised S.
• All of its causes have both initial and revised O and D.

See [FMEA Stats Tile](#) and [FMEA Stats Grid Tile](#) for more information about % Analyzed for failure causes.

Note: Starting in Version 19.0.2, % Analyzed is now calculated based on all possible risk ranking methods (except for QCPN) that have been enabled for the project — not just RPN.

% Completed
This stat applies to actions and indicates that an actual completion date has been entered.

Top Failure Causes
If the project is configured to use RPN and/or SxO, the report will display the top failure causes. Use the check boxes to specify whether you want to view a pareto (bar) chart based on RPN, SxO or both.

Recommended Actions
If the project is configured to include actions in the FMEAs, the report will display a list of the FMEA actions along with the following:

- A **Completion Status** pie chart based on the number of actions that are completed, in progress, not started or past due.

- A **Progress** bar based on the total planned duration, the actual duration for closed actions and the percent completed for open actions. For example, if Action 1 (duration = 3 days) is complete and Action 2 (duration = 2 days) is still in progress but marked 50% complete, the overall progress is 80% (4 out of 5 days).

FMEA Reports, Dashboards and Queries
SEP’s FMEAs page provides convenient access to published reports, dashboards and queries that have been generated in ReliaSoft desktop applications. (See [FMEAs in SEP](#).)

Published Reports
The **Published Reports** tab displays reports (in Word, Excel or PDF format) that have been generated in desktop applications and saved with the project. This allows both desktop and SEP users to view and print the same report documents. (See [Save/Publish Reports](#) in the XFMEA/RCM++/RBI documentation.)
Dashboards
The Dashboards tab displays the dashboard layouts that have been predefined in desktop applications for FMEA data. Each dashboard can include data from all FMEAs in the current project. (See FMEA Dashboards in the XFMEA/RCM++/RBI documentation.)

To create a watch in SEP for a dashboard, click the Watch button. This adds the dashboard to the Reports page. (See Reports in SEP.)

Queries
The Queries & Data tab allows you to run queries that have been predefined in the desktop applications for item properties and FMEA data. It provides a way to quickly retrieve customized output — such as a list of incomplete actions, failure modes with high PRNs and more — based on the latest data from any analysis. (See Query Templates in the XFMEA/RCM++/RBI documentation.)

To filter the list of available query templates that SEP displays for the active project, use the Query Type and/or User drop-down lists.

- Public Queries shows only templates that are available to all database users.
- My Private Queries shows only templates that you personally saved.

Note: SEP only displays templates for items and FMEA data. It does not display queries for other types of analyses that are not visible in SEP, such as control plans or p-diagrams.

To run a query:

1. In the system hierarchy, select the item(s) that contain the data you want to query.
2. Identify the template you wish to use and click the Run button.
On the Results page, the top section displays a summary of the criteria that were defined in the query template.

- **Criteria match all rows** - an "AND" query that returns records that match all criteria
- **Criteria match any row** - an "OR" query that returns records that match any of the specified criteria

To sort by a field, click inside its column heading.

To save or share these results with others, use the Save URL, Copy URL and E-mail URL links at the top of the web page, or copy/paste the URL from the browser’s address bar.

Export Query Results to Excel
Starting in Version 19.0.2, you can export your query results to Excel. After you run your query, click Export to Excel on the Query Results page to download a file that you can open in Excel.

FMEA Web Data Source
Starting in Version 19.0.2, you can now use SEP as a web data source in an external reporting tool such as Excel or Power BI or in your own custom application. This service is designed for those who have specialized reporting needs that are not directly supported in SEP.

The FMEA web data source links to the fields, ratings and metrics that have been defined as part of the “interface style” for a project. (See Interface Styles in the XFMEA/RCM++/RBI help.)
1. In the **Queries & Data** tab on SEP’s FMEAs page, change the project (if necessary) and then select the FMEAs that you wish to include in your data set. You can select individual FMEAs from the hierarchy or use the **Select All** option to select all FMEAs in the project.

Note: The number of FMEAs you can select is limited by the length of the generated link, which cannot exceed 2000 characters. If an error message appears indicating that you have selected too many items, try using the **Select All** option instead.

2. In the **Web Data Source** area, click either the **XML** or **JSON** button. This will open a pop-up box displaying the URL.

 - **XML** is the preferred method if you plan to use the data in a tool such as Power BI or Excel. Since these tools recognize XML data formats and relationships automatically, no additional steps will be required to prepare your data for reporting or visualization.

 - **JSON** may be preferable for certain custom programming applications.

4. Right-click to display a shortcut menu and click **Copy** to copy the URL for use in your reporting / visualization tool.

Example: Using XML Data in Power BI

Power BI is just one of the many tools that can use SEP as a web data source. In the following example, copy the link as described above and perform the steps listed below; this process is also similar for Excel.

1. Open Power BI and click **Get Data**.

2. In the **Get Data** dialog box, select **Other > Web** and click **Connect**.
3. In the **From Web** dialog box, paste the URL you copied from SEP and click **OK**.

4. Expand each of the tables you wish to include in your data set, select them and click **Load**.
5. Use the data to perform analyses and create visualizations.

6. Save your project so you can access this data later.

FMEA Change Logs
The FMEA change log is an optional feature that can be activated and managed via the desktop applications. (See Change Logs and Electronic Approval Tracking in the XFMEA/RCM++/RBI documentation.) If a change log has been activated for an FMEA, the name of the current version will show in SEP's system hierarchy, along with its status:

- **In Progress** - a revision to the analysis is currently in progress.
- **Locked** - the analysis is locked for editing and there are no assigned approvers.
- **Awaiting Review** - the analysis is locked for editing and one or more assigned reviewers still need to approve.
- **Approved** - the analysis is locked for editing and all of the assigned approvers have electronically recorded their approval.
• **Rejected** - the analysis is locked for editing and has been rejected by at least one assigned reviewer.

This information is visible to all users.

If you are an assigned reviewer for the current version and it is ready for you to review, the version name and status will appear as a link (blue text) that opens a dialog box where you can record your comments.

The FMEA icon will indicate the state of the change log:

- An authorized user has started a revision.
- The analysis is locked, and no revision has started.

Reports in SEP

SEP's My Reports page makes it easy to monitor selected dashboards and reports from ReliaSoft desktop applications and XFRACAS.
Tip: You can also configure the My Reports tile to display reports in your SEP dashboard. (See My Reports Tile.)

View Desktop Dashboards and Reports
SEP gives you access to custom dashboards and Synthesis Workbook reports for different types of data. For example, you can view the latest information from a particular project plan in any of the dashboard layouts that are currently available for that type of data. Likewise, when you review the Weibull++/ALTA, RGA or BlockSim/RENO analyses for a particular project, you can see any Synthesis Workbook reports (spreadsheets or documents) that were published to SEP.

Note: You can save, copy, or e-mail the URL for a desktop report that you are viewing in SEP using the links at the top of the page. These links allow you (or another user who has permission to view the data) to reopen it later. For desktop dashboards, the URL will display the latest data from the analysis using the latest version of the predefined layout. For workbook reports, it will display the latest published version of the report. (See Quick Links in SEP.)

Watch This Report
The "Watch This Report" feature makes it easier to manage the specific reports you want to access quickly.

To watch a report, navigate to it in SEP and click the Watch button or link, and then enter the name and description that will appear in your personalized list of "My Reports."

To see the list of reports you are currently watching in SEP, click Reports in the menu.
You can filter by name/description, project or report type.

To change the sort order:

1. Clear all filters.
2. Click to drag and drop the reports into the desired position.
3. Click Save.

XFRACAS
If your XFRACAS and SEP sites are linked, any reports you choose to watch in XFRACAS will also appear in SEP. The XFRACAS and SEP watches are not synchronized after they are created, so deleting the watch in one application will not affect it in the other. (See SEP and XFRACAS.)

Quick Links in SEP
The Quick Links feature allows you to create your own personalized list of links within SEP.

Link to a Page in SEP
To create a link to a page in SEP (for quick access to a particular project summary, FMEA system hierarchy, assigned action, report, etc.), navigate to the page and then click the Save URL link at the top-right corner of the page. You will be prompted to specify the name that will appear in your list of quick links.

You can also use the Copy URL and E-mail URL links or copy/paste the URL from the browser’s address bar.

Link to an External Website
To create a link to an external website (e.g., a company intranet, document management system, etc.):
Chapter 32: SEP Web Portal

1. Click **Quick Links** in the SEP menu to open the Quick Links page.
2. In the **Add New Link** section, specify the name and URL.
3. Click **Save**.

![Add New Link Form]

Name: Acme Intranet

URL: https://OurIntranet

Note: URL links can only point to a web address — not a network share path.

Remove or Rename a Link

To remove a link or change the name that appears in the menu:

1. Click **Quick Links** in the SEP menu to open the Quick Links page.
2. In the **Manage Current Links** section, change display order, edit the link name or delete the link. For online links, you can also edit the URL.
3. Click **Save**.
SEP and XFRACAS

XFRACAS is a highly configurable, web-based, failure reporting, analysis and corrective action system (FRACAS) with integrated capabilities for part tracking, root cause analysis and team-based problem resolution. If your organization implements both the SEP and XFRACAS websites for the same enterprise repository, SEP can include links to the following types of XFRACAS records:

- **Actions and incidents** that you “own”
- **Observed occurrences** of incidents, failure analysis reports and/or problems that are associated with an item or failure mode in an FMEA
- **Reports and charts** that you have selected to “watch” in XFRACAS

Tip: The links between SEP and XFRACAS must be configured in XFRACAS by an admin user (Admin > Configure > Preferences). In the System-Wide Preferences section, set the **Synthesis - Display Synthesis Enterprise Portal (SEP) Command** to TRUE and specify two servers: XFRACAS Server - IIS Prefix (e.g., servername/XFRACAS) and Synthesis Enterprise Portal Server - IIS Prefix (e.g., servername/SEP).

XFRACAS Actions and Incidents

Two SEP dashboard tiles — the FRACAS Actions Grid and the FRACAS Incidents Grid — allow you to view the XFRACAS actions and incidents that you own. (See FRACAS Tiles.)

Tip: You can also show ReliaSoft desktop actions in your XFRACAS portal, if desired. Open the Portal Preferences page in XFRACAS and configure the **Display My Open Synthesis Actions** option.
Field Failure Reports (Observed Occurrences)

SEP's FMEAs page provides convenient access to field failure reports from XFRACAS. (See FMEAs in SEP). If your organization chooses to associate template parts and failure modes in XFRACAS with items and failure modes in XFMEA/RCM++/RBI, SEP will display the following:

- All FRACAS records that are relevant for a given part
- Quantities of “observed occurrences” for failure modes that correspond to specific parts

See Import or Sync from XFRACAS in the XFMEA/RCM++/RBI documentation for information on creating associations for parts and failure modes.

View All Records for an Item

To view all XFRACAS incidents, problems or failure analyses that have been reported for a specific item:

1. Navigate to the FMEAs page and select the Hierarchy View tab (if necessary).
2. Click the icon next to the item in the system hierarchy.

This opens a pop-up box showing all XFRACAS records for items that are identified as the "Responsible Part" for an incident, the "Part Category" for a problem or the "Repaired/Replaced Part" for a failure analysis.

- Click the record number to open the incident, problem or failure analysis in XFRACAS.
- Click View Report to open the report in XFRACAS.
Note: The XFRACAS reports that you open from SEP are based on the standard templates defined in XFRACAS for incidents, problems and failure analyses. However, SEP adds query criteria to retrieve results for a particular item and/or failure mode. Since these criteria are not saved with the template, you cannot "watch" the report, nor can you use the URL for the results page to regenerate the same results; instead, you must click the link within SEP.

View Records for a Failure Mode
To view the quantity of XFRACAS records that have been reported for a failure for a specific item, make sure the Observed Occurrences column is displayed in the FMEA hierarchy. (See FMEAs.)

![Observed Occurrences Table]

To open a pop-up box that contains links to the records and reports for a particular failure, click the Observed Occurrences links.

XFRACAS Reports and Charts
The watch feature in XFRACAS provides a quick, convenient way to access the XFRACAS reports and charts that you use most often (e.g., incident count by responsible part, all open incidents for a particular system, etc.).

When SEP and XFRACAS are linked, watches are created automatically in SEP for any reports or charts that you choose to watch in XFRACAS; however, these watches are not synchronized after the original creation. If you later delete the watch in XFRACAS, it will not update in SEP. Likewise, if you later delete or rename the watch in SEP, it will not change the original watch in XFRACAS.

Configure SEP

SEP Admin Page
The SEP Admin page allows you to enable and configure options for your organization's SEP implementation. To access this page, click the SEP Admin link in the top-right corner of the portal.
Note: To learn what’s required to set up an SEP web portal, consult the print-ready Implementation Guide (*.pdf). It describes how to perform many tasks that require IT expertise, including how to establish database and web server(s), install the website, connect to a ReliaSoft database and create user accounts. These tasks should be completed before you make changes to the SEP Admin page.

Be sure to click the Save button, whenever you make changes on the SEP Admin page. This button is located in the upper-right corner of the page.

Enable Publish to SEP Web Portal
Some SEP-related features in ReliaSoft desktop applications (e.g., the ability to publish analysis summaries, workbooks, reports, etc.) will be visible only if the Enable publish to SEP web portal option is enabled for the database. You can set this from the SEP Admin page or from the Repository Settings window in any ReliaSoft desktop application.

Configure Custom Content for the Home Page
Use the optional "custom content" feature to integrate a banner or other content into your organization's SEP home page. If custom content is enabled for a database, it will be visible to all SEP users. There are two ways to implement this feature:

- Edit the SEPDefault.htm file, which is installed in the CustomContent folder under the root directory for the website. In this case, you must enable the Use SEPDefault.htm on the application server option.
- Enable the Use a page from another website (HTTP only) option and specify a URL.

Note: If the content of the page exceeds the specified height in pixels, users with iOS devices will not be able to scroll.

Customize a Default Dashboard for New Users
SEP ships with a default dashboard that you can customize for new users in your organization by modifying the layout and tile settings. This allows you to give users access to meaningful data the first time they open SEP. Once the user opens the dashboard, they no longer have access to the original one that you created.

1. Under Configure the default dashboard, select Default dashboard for new users in the Currently active on your home page drop-down list and click the Save button.
2. Navigate to the SEP Home page, where you should see a note confirming that you are editing the default dashboard for new users.
3. Modify the tile settings and layout to create the custom dashboard. (See SEP Dashboards). Note that dashboard changes are saved automatically.
4. Navigate back to the SEP Admin page.

5. Under **Configure the default dashboard**, select **Your personal dashboard** in the **Currently active on your home page** drop-down list and then click the **Save** button.

Allow Aqira Users to Access SEP
nCode Aqira by HBM Prenscia allows your organization to manage and share nCode fatigue and durability analyses via the web. Aqira users are entitled to access the SEP web portal without requiring an SEP license seat. To provide this access:

1. Enable **Allow Aqira users to log in to SEP**.

2. Under **nCode Aqira**, specify:
 - **Aqira URL** (e.g., http://servername/aqira/)
 - **Aqira admin username**
 - **Aqira admin password**

3. Click the **Test Aqira Login** button. If the settings are valid, the page will display “Success” after the test completes.

When this feature is enabled, SEP’s menu will include a link to the Aqira login page. In addition, when an active Aqira user attempts to access SEP, the application will check for a ReliaSoft user account.

- If an account does not exist, it will be created automatically with the “Aqira” security group. (This group will always have at least “read” access to projects that use “repository-level security.” Any user with permission to edit security groups in ReliaSoft desktop applications can change these permissions to fit your needs.)

- If an account exists and is active, the user can access SEP with the permissions specified for the existing account.

- If an account exists but is inactive, the user cannot access SEP.

Configure URLs for Links to Actions in SEP
ReliaSoft applications generate action alert e-mails and portal messages that can include links to view the action details in SEP. They build these links based on the settings specified on the SEP Admin page.

- **SEP server - IIS prefix** - enter the server name and folder that you see in the browser’s address bar (e.g., servername/SEP).

- **Website uses SSL (https for URLs)** - select **Yes** if the web server has been configured with a Secure Socket Layer (SSL) certificate and the URLs need to start with "https" rather than "http."
Chapter 32: SEP Web Portal

If an administrator has not specified an IIS prefix, the alerts will not include links to SEP.

If these settings are incorrect, the links attached to the action alerts will give an error message when users click them to open the page in a web browser (e.g., "File or directory not found," "Access forbidden" or "This page can’t be displayed").

Configure the Service for Alerts

Any ReliaSoft database can be configured to send alerts when an action is created, modified or ready for review. These alerts, which are sent to any user who is subscribed to "watch" the action, can be delivered via e-mail, SMS text message or portal message, depending on the user's preference. (See Watches and Alerts.)

If an optional service is running on the SEP web server, you can send additional alerts based on calendar date. This service must be started by an IT admin using the procedure outlined in the Implementation Guide.

- To check the current status of the service, go to the Send action alerts based on calendar date section of the SEP Admin page. The Service Status indicates whether the service was Running, Not Running or Not Found at the time when the page loaded.
- To configure the service, do the following:
 1. Enable the Alert when action is due in X days option and enter the number of days before the action completion date (due date) to send the first alert.
 2. Specify a From address for e-mail alerts.
- To send regular reminders, enable the Remind every X days until the action is complete option and enter the number of days between alerts.

Configure the Open Buttons

Configure the Database Connection

When users view published analysis summaries and FMEAs in SEP, the Open buttons make it easy for them to open the full analysis in a relevant desktop application.

If your applications connect to an Oracle database, the Open buttons use the same connection as the SEP portal.

If your applications connect to a SQL Server database, you can choose one of the following options under the Database connection for Open buttons (SQL Server only) section:

- No impersonation - the buttons will attempt to connect using the domain\username that is currently logged in to Windows. This requires an individual or group login. (See SQL Server Logins or Using Windows Impersonation.)
• **Same as SEP configuration file** - the buttons will use the same impersonation account as
 the web portal. (See “Establish a Service Account for the Application” in the
 Implementation Guide.)

• **Specify impersonation account for Open buttons** - the buttons will use the
 impersonation account that you specify. In this case, you must provide a domain name,
 user name and password for the account.

 Note: Starting in Version 2019, these buttons are now only visible to users who have the “Open desktop
 apps from SEP web portal” permission. (See [Managing Security Groups](#)).

Enable Remote ReliaSoft
Remote ReliaSoft allows ReliaSoft desktop applications to run on a remote server, eliminating
the need to install and update software on client computers. If Remote ReliaSoft is enabled for
your implementation, users can choose whether to launch desktop applications remotely or
locally when they click **Open** buttons. (See [SEP User Preferences](#).)

Remote ReliaSoft must be configured for your organization by an IT admin who has experience
using Microsoft Remote Desktop Services (RDS). The IT admin must also create an RDP
template and make this available to you. Instructions for these tasks are provided in the
Implementation Guide.

Once Remote ReliaSoft has been configured, you can enable it on the SEP Admin page:

1. Under **Remote ReliaSoft**, click **Browse** to find the RDP template and then click the **Save**
 button to upload it to the database.

2. Click **Test Remote ReliaSoft**. Depending on your browser settings, this will either
download or open an *.rdp file or prompt you to choose. When you open the file, the
 ReliaSoft Launcher should run on the remote server.

3. After you confirm that the template is working properly, enable the **Open applications via Remote Desktop Services (RemoteApp)** option.

4. Click the **Save** button again.

SEP Error Log
This utility allows you to export an error log in *.csv format for troubleshooting and
maintenance purposes.

Assign SEP Access to Users
Once user accounts have been created for the desktop application(s), you can use the SEP
Admin page to specify who can access the web portal. (See [Managing User Accounts](#).) Scroll
down to the **Select SEP Users** section and select any user accounts that will have access to SEP.
Chapter 32: SEP Web Portal

Check the counters above the user table to determine how many more SEP users are allowed under your current license.

<table>
<thead>
<tr>
<th>Show All</th>
<th>Show SEP Only</th>
<th>Show non-SEP</th>
<th>Find</th>
</tr>
</thead>
</table>

Your SEP license allows up to **100** website users. Current number of SEP users **29**

SEP User Preferences
The User Preferences page in SEP allows you to manage your own personal preferences.

Click your name in the top-right corner of the portal to open the page.

Interface Language
Use the drop-down list to choose any of the languages that are available for ReliaSoft desktop applications. This will update the interface labels, but the data and configurable settings that have been entered by users will remain in the original language — for example, this includes (but is not limited to):

- Names, descriptions, identifiers and remarks that are entered by users
- Action property labels that are configurable within each project
- Published analysis summaries and reports
- System hierarchies and FMEA data

First Active Project
This setting determines which project will be displayed first for SEP features that show information from a particular project (e.g., project plan, project summary, FMEAs or new actions). You can choose:

- The last project used in any ReliaSoft application
- The last project set/used in the SEP web interface

You can use the **Change Project** button and **"My Projects" feature** any time to change the project that is currently active in SEP.
Receive Automated Alerts
These are the same options that you can set from the User Login and Contact Information window in a ReliaSoft desktop application. (See [Watches and Alerts](#).)

Note that alerts via e-mail and SMS text are available only if a valid SMTP server has been defined for the database and your user account has an e-mail address/SMS contact defined. (See [Enable Alerts via E-mail or SMS](#).)

Number of Decimals for Metrics
This preference determines how many decimal places will be used in the metric element on SEP web pages. If you are also using ReliaSoft desktop applications, this may be different than your preference in the Application Setup ([File > Application Setup](#)).

Open Buttons
When you view published analysis summaries and FMEAs in SEP, the **Open** buttons make it easy to open the full analysis in a relevant desktop application. Starting in Version 2019, these buttons will display only if you have the required permission.

If the Remote ReliaSoft feature is enabled for your implementation, you can choose whether to launch the applications remotely or locally. (See [Configure Remote ReliaSoft](#).)

- **Remote ReliaSoft** launches applications that are installed and activated on a remote server.

- **ReliaSoft Locator Links** generates link files that you can either save or open if the application is installed and activated on your computer.

Tip: To reduce the number of prompts, you can configure your web browser to always open *.rdp files with the ReliaSoft Launcher and to remember your login credentials for the remote server.
END USER LICENSE AGREEMENT

Click Wrap Agreement at time of product installation

BY INSTALLING THIS SOFTWARE OR BY CLICKING THE “I ACCEPT” BUTTON AND ACCEPTING THIS LICENSE IN ACCORDANCE WITH SECTION D (LICENSE ACCEPTANCE PROCEDURES) YOU AGREE TO THE TERMS OF THIS LICENSE WHICH WILL BIND YOU, THE COMPANY ON WhOSE BEHALF YOU ARE ENTERING INTO THIS LICENSE AGREEMENT, AND ITS EMPLOYEES, AS APPLICABLE.

THIS LICENSE AGREEMENT IS A LEGAL AGREEMENT BETWEEN HBM UNITED KINGDOM LIMITED (AN AFFILIATE OF HBM PRENSCIA INC.), A COMPANY INCORPORATED IN THE UNITED KINGDOM, WHOSE REGISTERED NUMBER IS 1589921 AND WHOSE REGISTERED OFFICE IS AT TECHNOLOGY CENTRE, ADVANCED MANUFACTURING PARK, BRUNEL WAY, CATCLIFFE, ROTHERHAM S60 5WG (THE “LICENSOR”) AND THE END USER LICENSEE OR ITS REPRESENTATIVE/AGENT AUTHORIZED TO BIND THE END USER LICENSEE (REFERENCED HEREIN AS “YOU” OR “YOUR”).

PLEASE READ THIS CAREFULLY BEFORE USING THE SOFTWARE PRODUCT

A: BACKGROUND

THIS LICENSE AGREEMENT SHALL BE BETWEEN YOU AND THE LICENSOR REGARDLESS OF WHETHER YOU HAVE PURCHASED THE SOFTWARE PRODUCT DIRECTLY FROM THE LICENSOR OR AN AUTHORIZED RESELLER AS SET OUT BELOW.

THE LICENSOR APPOINTS EXPERIENCED PROVIDERS OF SOFTWARE RESALE SERVICES WHO DISTRIBUTE THE SOFTWARE PRODUCT TO END USERS (“AUTHORISED RESELLER”). IF YOU HAVE PURCHASED THE SOFTWARE PRODUCT AND ANY ASSOCIATED SUPPORT AND MAINTENANCE SERVICES FROM AN AUTHORISED RESELLER, SUCH PRODUCTS AND SERVICES WILL BE PROVIDED DIRECTLY TO YOU BY THE AUTHORISED RESELLER ON THE AUTHORISED RESELLER’S TERMS AND PRICES.

IF YOU HAVE PURCHASED THE SOFTWARE PRODUCT AND SUPPORT AND MAINTENANCE SERVICES DIRECTLY FROM THE LICENSOR, SUCH SUPPORT AND MAINTENANCE SERVICES WILL BE DEALT WITH IN A SEPARATE AGREEMENT BETWEEN YOU AND THE LICENSOR AND ALL PAYMENTS WILL BE MADE TO THE LICENSOR AND GOVERNED BY THE LICENSOR’S TERMS OF SALE.

B: PROPERTY OF LICENSOR

THE LICENSOR, OR, WHERE APPLICABLE, THE RELEVANT MEMBER OF THE LICENSOR’S CORPORATE GROUP, IS THE ENTIRE LEGAL AND BENEFICIAL OWNER OF CERTAIN SOFTWARE PRODUCT(S) (THE “SOFTWARE PRODUCT”) AS SET OUT IN THE QUOTATION OF INFORMATION, WHICH SHALL ALSO INCLUDE YOUR LICENSE KEY, SENT TO YOU BY EMAIL EITHER BY THE LICENSOR OR, IF YOU HAVE PURCHASED THE SOFTWARE PRODUCT FROM AN AUTHORISED RESELLER, BY THE AUTHORISED RESELLER (“QUOTATION”). THE LICENSOR IS WILLING TO GRANT YOU A LICENSE TO USE THE SOFTWARE PRODUCT ONLY IF YOU ACCEPT ALL THE TERMS AND CONDITIONS SET OUT BELOW.

C: LICENSE TO BE GRANTED

THE LICENSOR IS PROPOSING TO GRANT YOU ONE OF THE FOUR FORMS OF LICENSES IN RESPECT OF THE SOFTWARE PRODUCT. THE DETAILS OF EACH FORM OF LICENSE ARE SET OUT IN CLAUSES 2.1 AND 3 BELOW. THE FORM OF LICENSE THAT IS PROPOSED TO BE GRANTED TO YOU IS SET OUT IN THE QUOTATION. THE QUOTATION FORMS PART OF THE LICENSE AGREEMENT AND BY ACCEPTING THE TERMS OF THE LICENSE YOU ARE ACCEPTING THOSE TERMS IN THE QUOTATION. IF YOU HAVE NOT RECEIVED THE
D: LICENSE ACCEPTANCE PROCEDURES

BY CLICKING ON THE ACCEPTANCE BUTTON WHICH FOLLOWS THIS LICENSE AGREEMENT (MARKED “I ACCEPT”), YOU INDICATE ACCEPTANCE OF THIS LICENSE AGREEMENT AND THE LIMITED WARRANTY AND LIMITATION OF LIABILITY SET OUT IN THIS LICENSE AGREEMENT. SUCH ACCEPTANCE IS ON YOUR OWN BEHALF, IF YOU ARE AN INDIVIDUAL, AND ON BEHALF OF ANY CORPORATE ENTITY WHICH EMPLOYS YOU OR WHICH YOU REPRESENT (“CORPORATE LICENSEE”) IN ENTERING INTO THIS LICENSE AND YOU WARRANT THAT YOU HAVE THE NECESSARY AUTHORITY TO BIND THE CORPORATE ENTITY IN THIS RESPECT OR THAT THE AUTHORISED REPRESENTATIVES OF THE CORPORATE ENTITY ARE AWARE OF YOUR ACCEPTANCE OF THIS AGREEMENT ON ITS BEHALF. IN THIS LICENSE AGREEMENT, “YOU” REFERS TO THE LICENSEE, ANY SUCH CORPORATE LICENSEE, OR BOTH, AS A COMMON SENSE INTERPRETATION OF THE RELEVANT SECTION Dictates.

E: LICENSE REJECTION PROCEDURES

IF YOU DO NOT ACCEPT THESE TERMS AND CONDITIONS, YOU SHOULD CLICK ON THE “I DO NOT ACCEPT” BUTTON, DELETE THE SOFTWARE PRODUCT FROM YOUR COMPUTER AND PROMPTLY (AND IN ANY EVENT, WITHIN 14 DAYS OF RECEIPT) RETURN TO THE RESELLER (A) ANY MEDIA; AND (B) ANY OTHER ITEMS PROVIDED, THAT ARE PART OF THIS PRODUCT.

F: OTHER AGREEMENTS

IF THE LICENSOR HAS EXPRESSLY AGREED WITH YOU IN WRITING THAT YOUR USE OF THE SOFTWARE PRODUCT IS GOVERNED BY A PRIOR EXECUTED LICENSE AGREEMENT WITH THE LICENSOR, SUCH AGREEMENT SHALL APPLY INSTEAD OF THE FOLLOWING TERMS AND CONDITIONS TO THE EXTENT THAT THEY CONFLICT.

YOU SHOULD PRINT A COPY OF THIS LICENSE AGREEMENT FOR FUTURE REFERENCE.

LICENSE AGREEMENT

1. Ownership of Software Product and Copies

1.1 The Software Product and any printed materials or electronic documentation accompanying the Software Product (“Documentation”) are copyrighted works of authorship, and are also protected under applicable database laws. The Licensor, or, where applicable, the relevant member of the Licensor’s corporate group, retains ownership of the Software Product and all subsequent copies of the Software Product, regardless of the form in which the copies may exist. This License Agreement is not a sale of the original Software Product or any copies.

2. Commercial License

2.1 In consideration of You agreeing to abide by the terms of this License Agreement and payment of the applicable License fees either to the Licensor or, if You have purchased the Software Product from an Authorised Reseller, to the Authorised Reseller (as specified in the Quotation), the Licensor hereby grants to You a personal, non-exclusive, and (unless expressly agreed otherwise by the Licensor in accordance with clause 5.1) non-transferable License to use the Software Product and the Documentation on the terms of this License Agreement. The License shall take one of the following forms, and shall be set out in the
Quotation:

(a) **Annual License:**

(i) **Duration** – this License shall continue for a period of 12 months ("Initial Period") from the date of delivery of the Quotation ("the Delivery Date") and, provided that You have paid all applicable renewal fees, from year to year thereafter unless terminated in accordance with any provision of clause 10 below or any other clause of this License Agreement.

(ii) **Termination** – You must give the Licensor 90 days' written notice prior to the anniversary of the Delivery Date, such notice not to expire before such anniversary date.

(b) **Perpetual License:**

(i) **Duration** – this License shall continue for a period of 25 years from the Delivery Date unless terminated in accordance with any provision of clause 10 below or any other clause of this License Agreement.

(ii) **Conversion** - this License may be converted to a Token Based Annual License, upon application to either the Licensor or the Authorised Reseller (if You have purchased the Software Product from an Authorised Reseller), and payment of an additional fee to the Licensor or the Authorised Reseller (as applicable), which shall be additional to the fees paid or payable in respect of any maintenance and support services provided by either by the Licensor or the Authorised Reseller (if You have purchased the Software Product from an Authorised Reseller). You may reverse this conversion to the same terms as agreed in the Perpetual License at the anniversary of the conversion by giving the Licensor 90 days' written notice prior to the anniversary of the Delivery Date, such notice not to expire before the anniversary of the Delivery Date.

(c) **Token Based Annual License (referenced in the Quotation as a Prenscia Access System, CDS, CRS, or CDRS License):**

(i) **Subject to the terms and conditions of this License Agreement, You may access any of the Software Product in the Quotation at any one time and in any combination up to the number of subscriptions granting You access to the Software Product for simultaneous use by You and purchased by You pursuant to this Agreement ("Access Credits"). You may add additional Access Credits which shall be charged in accordance with either the Licensor’s prices or the Authorised Reseller’s prices (if You have purchased the Software Product from an Authorised Reseller). Such increase in Access Credits shall apply to the following 12 month period, unless You give the Licensor or the Authorised Reseller (as applicable) written notice at least 90 days in advance of the expiration of the Initial Period, that You do not wish to sustain such increase in Access Credits. You may opt to reduce the number of Access Credits with 90 days’ written notice in advance of the 12 month period following from the anniversary of the Delivery Date, provided that the total number of Access Credits does not fall below the minimum threshold set by the Licensor or the Authorised Reseller (as applicable) or below the initial number of Access Credits calculated at the time of conversion of any Perpetual License.

(ii) **Duration** - this License shall continue for the Initial Period and, provided that You have paid for the applicable Access Credits, from year to year thereafter unless terminated in accordance with any provision of clause 10 below or any other clause of this License Agreement.

(iii) **Reporting** – in order to serve the Licensor’s customers better, the Licensor needs to be able to understand how its customers use the Token Based Annual License. As a condition of Your continued access to the system, You are asked to provide to the Licensor on a quarterly basis,
the log file. You will be provided with easy-to-follow instructions on how to do this.

 (iv) Termination – You must give the Licensor 90 days’ written notice in advance of the expiration of the Initial Period of Your intention to discontinue the Token Based Annual License, such notice not to expire before the anniversary of the Delivery Date, and You must have submitted all reports required of You in clause 2.1(c)(iii) above. Failure to provide such notice and reports will mean that the License shall automatically continue on the same terms until terminated in accordance with this clause.

2.2 As an end user licensee of the Software Product, You may, subject to the following conditions and any conditions specified in the Quotation:

 (a) use and copy the Software Product only for use on any computer system that is detailed in the release notes of the respective Software Product and which is licensed, leased and/or controlled by You (the Corporate Licensee) or any member of Your corporate group, which expression includes the Corporate Licensee’s majority-owned subsidiaries, any parent company having a majority-owned interest in the Corporate Licensee, and such parent’s majority-owned subsidiaries;

 (b) load the Software Product into and use it only on computers at the locations specified in the Quotation and which are under Your control; and

 (c) copy the Software Product only for back-up and archival purposes and make up to three copies of the Documentation, provided that the original and each copy is kept in Your possession and that Your installation and use of the Software Product does not exceed any restrictions contained in the Quotation.

3. Demonstration License

3.1 If the Licensor has provided You with the Software Product free of charge for evaluation purposes, this clause 3 shall apply to Your use of the Software Product.

3.2 You may use the Software Product on a computer solely for the purposes of evaluating the Software Product.

3.3 The Software Product is provided to You free of charge and on an “AS IS” basis, without any technical support or warranty of any kind from the Licensor including, without limitation, a warranty of satisfactory quality, fitness for purpose and non-infringement.

3.4 This License shall continue for a period of 30 days from the Delivery Date unless terminated in accordance with any provision of clause 10 below or any other applicable clause of this License Agreement or until such License is converted into an Annual License, Perpetual License, or Token Based Annual License, if earlier.

3.5 As part of the Licensor’s testing and evaluation of the Software Product, You shall share with the Licensor the input and views received and any reports and analysis produced promptly upon receipt of such feedback.

3.6 Clauses 4, 5.1(a), 6.1(b), 6.1(f), 8.1, 8.2, 8.5, 10.1(a) of this License Agreement shall not apply to a Demonstration License.

4. Delivery and Risk

4.1 The Software Product shall consist of one copy of the object code of the Software Product on machine-readable form only, on the disk, dongle or other media on which the Software Product is delivered as described in the Quotation (the “Media”). Risk in the Media shall pass to You on delivery. If any part of the Media shall thereafter be lost, damaged or destroyed, You must contact either the Licensor or the Authorised Reseller from whom You have purchased the Software Product who will arrange for a repair
or replacement of such Media at a cost (if any) determined by the Licensor or the Authorised Reseller (as applicable).

5. License Restrictions

5.1 You may not nor permit others to:

(a) transfer the Software Product from one location to another, without the express written consent of the Licensor and provided such transfers do not exceed two in any twelve month period. It will be a condition of the grant of any such consent that the Software Product held on hard drives at the current location must be erased and You must enter into a new License agreement with the Licensor before a Software Product License key is provided to You. The administration charge (currently US $1,500) will be payable by You in respect of such transfer. This charge is only applicable to end user licensees who do not have a support and maintenance services agreement with the Licensor or Authorised Reseller;

(b) exceed the number of concurrent users specified in the Quotation, if any;

(c) sub-License, sell, assign, rent, pledge, lease, transfer or otherwise dispose of the Software Product, on a temporary or permanent basis, without the prior written consent of the Licensor;

(d) translate, reverse engineer, decompile, disassemble, modify or create derivative works based on the Software Product except as permitted by law;

(e) make copies of the Software Product, in whole or part, except for back-up or archival purposes as permitted in this License Agreement;

(f) use any back-up copy of the Software Product for any purpose other than to replace the original copy in the event that it is destroyed or becomes defective;

(g) copy the Documentation (except as provided by this License Agreement);

(h) adapt, modify, delete or translate the Documentation in any way for any purpose whatsoever;

(i) vary, delete or obscure any notices of proprietary rights or any product identification or restrictions on or in the Software Product.

6. Undertakings

6.1 You undertake:

(a) to ensure that, prior to use of the Software Product by Your employees or agents, all such parties are notified of this License and the terms of this License Agreement and that any such use as aforesaid is in accordance with the terms of this License Agreement;

(b) to replace the current version of the Software Product with any updated or upgraded version or new release provided by the Licensor or the Authorised Reseller (if applicable) under the terms of this License Agreement immediately on receipt of such version or release;

(c) to use the Software Product only as described in the Documentation and subject to the restrictions as set out in clause 5 (License Restrictions above);

(d) to reproduce and include the Licensor’s copyright notice (or such other party’s copyright notice as specified on the Software Product) on all and any copies of the Software Product, including any partial copies of the Software Product as permitted to be made under the terms of this License Agreement;

(e) to hold all drawings, specifications, data (including object and source codes), Software Product listings and all other information relating to the Software Product confidential and not at any time, during
this License or after its expiration, disclose the same, whether directly or indirectly, to any third party
without the Licensor’s consent and

(f) to effect and maintain adequate security measures to safeguard the Software Product from access or
use by any unauthorised person and indemnify the Licensor for losses flowing from your failure to do
so.

7. Intellectual Property Rights

7.1 You acknowledge that all intellectual property rights in the Software Product and the Documentation
throughout the world belong to the Licensor, that rights in the Software Product are licensed (not sold) to
You, and that You have no rights in, or to, the Software Product or the Documentation other than the right
to use them in accordance with the terms of this License Agreement.

7.2 You acknowledge that You have no right to have access to the Software Product in source code form or in
unlocked coding or with comments.

7.3 The integrity of this Software Product is protected by technical protection measures (“TPM”) so that the
intellectual property rights, including copyright, in the software of the Licensor are not misappropriated.
You must not attempt in any way to remove or circumvent any such TPM, nor to apply, manufacture for
sale, hire, import, distribute, sell, nor let, offer, advertise or expose for sale or hire, nor have in Your
possession for private or commercial purposes, any means whose sole intended purpose is to facilitate the
unauthorised removal or circumvention of such TPM.

8. Limited Warranty

8.1 Subject to the limitations and exclusions of liability below and providing the Software is used in accordance
with the Documentation and on an operating system or computer for which it was designed, the Licensor
warrants that (a) the Media on which the Software Product is furnished will be free from material defects
under normal use for a period of 90 days from the date of delivery (the “Warranty Period”); and that (b)
during the Warranty Period, the Software Product will, when properly used, perform substantially in
accordance with the functions described in the Documentation; and (c) that the Documentation correctly
describes the operation of the Software Product in all material respects.

8.2 If, within the Warranty Period, You notify the Licensor in writing of any defect or fault in the Software
Product in consequence of which it fails to perform substantially in accordance with the Documentation,
and such defect or fault does not result from You having amended the Software Product or used it in
contravention of the terms of this License Agreement, the Licensor will, at its sole option, i) repair or replace
the Software Product, provided that You make available all information that may be necessary to assist the
Licensor in resolving the defect or fault, including sufficient information to enable the Licensor to recreate
the defect or fault, or ii) terminate this License Agreement immediately by notice in writing to You and the
Licensor will refund or if the Software Product has been purchased from an Authorised Reseller will procure
that the Authorised Reseller shall refund; any of the fees paid as at the date of termination (less a
reasonable sum in respect of Your use of the Software Product to the date of termination) on return of the
Software Product and all copies thereof. The Licensor’s obligation under this clause 8.2 is subject to Your
compliance with clause 6.1(b).

8.3 You acknowledge that the Software Product has not been developed to meet Your individual requirements
and that it is therefore Your responsibility to ensure that the facilities and functions of the Software Product
as described in the Documentation meet Your requirements.

8.4 You acknowledge that the Software Product may not be free of bugs or errors and You agree that the
existence of any minor errors shall not constitute a breach of this License Agreement.
8.5 The Licensor shall not be liable under the said warranty above if the Software Product fails to operate in accordance with the said warranty as a result of any modification, variation or addition to the Software Product not performed by the Licensor or caused by any abuse, corruption or incorrect use of the Software Product, including use of the Software Product with equipment or other software which is incompatible.

8.6 All other conditions, warranties or other terms which might have effect or be implied or incorporated into this License Agreement or any collateral contract, whether by statute, common law or otherwise, are hereby excluded, including, without limitation, the implied conditions, warranties or other terms as to satisfactory quality, fitness for purpose or the use of reasonable skill and care.

9. Exclusion of Liability

9.1 Nothing in this License Agreement shall limit or exclude the liability of either party for death or personal injury resulting from negligence, for fraud or for fraudulent misrepresentation.

9.2 Subject to clause 9.1, the Licensor shall have no liability for any losses or damages which may be suffered by You (or any person claiming under or through You), whether the same are suffered directly or indirectly or are immediate or consequential, and whether the same arise in contract, tort (including negligence) or otherwise howsoever, which fall within any of the following:

(a) loss of income;
(b) loss of business profits or contracts;
(c) business interruption;
(d) loss of the use of money or anticipated savings;
(e) loss of information;
(f) loss of opportunity, goodwill or reputation;
(g) loss of, damage to or corruption of data; or
(h) any indirect or consequential loss or damage of any kind howsoever arising and whether caused by tort (including negligence), breach of contract or otherwise;

provided that this clause 9.2 shall not prevent claims for loss of or damage to Your tangible property that fall within the terms of clause 8 or a claim for a refund of the License fees paid to the Licensor or the Authorised Reseller (as applicable) for the License of the Software Product.

9.3 Subject to clause 9.1 and clause 9.2, the Licensor's maximum aggregate liability under or in connection with this License Agreement, or any collateral contract, whether in contract, tort (including negligence) or otherwise, shall be limited to a sum equal to the fees paid by You to the Licensor or the Authorised Reseller (as applicable) for the License of the Software Product.

9.4 Subject to clause 9.1, clause 9.2 and clause 9.3, the Licensor's liability for infringement of third party intellectual property rights shall be limited to breaches of third party rights subsisting in the UK and USA.

9.5 This License Agreement sets out the full extent of the Licensor's obligations and liabilities in respect of the supply of the Software and Documentation. In particular, there are no conditions, warranties, representations or other terms, express or implied, that are binding on the Licensor except as specifically stated in this License Agreement. Any condition, warranty, representation or other term concerning the supply of the Software and Documentation which might otherwise be implied into, or incorporated in, this License Agreement, or any collateral contract, whether by statute, common law or otherwise, is hereby excluded to the fullest extent permitted by law.

10. Term and Termination
10.1 This License Agreement is effective for the period referred to in clause 2.1 or until otherwise terminated in accordance with that clause. The Licensor may terminate this License Agreement immediately by written notice to You if:

(a) save in respect of a Perpetual License, if You purchase the Software Product directly from the Licensor, You fail to pay any renewal or other fees due by You to the Licensor in respect of this License Agreement;

(b) You fail to comply with any provisions of this License Agreement;

(c) You commit a material or persistent breach of this License Agreement which You fail to remedy (if remediable) within 14 days after the service on You of written notice requiring You to do so;

(d) a petition for a bankruptcy order to be made against You has been presented to the court; or

(e) where You, as the Corporate Licensee, become insolvent or unable to pay its (the company’s) debts, enters into liquidation, whether voluntary or compulsory (other than for reasons of bona fide amalgamation or reconstruction), passes a resolution for its winding-up, has a receiver or administrator manager, trustee, liquidator or similar officer appointed over the whole or any part of its assets, makes any composition or arrangement with its creditors or takes or suffers any similar action in consequence of its debt, or becomes unable to pay its debts or ceases to trade.

10.2 In the event of termination in accordance with clause 10.1, You must immediately pay to the Licensor any sums due to the Licensor under the License Agreement and (at the Licensor’s sole option) You must return, destroy or delete all copies of the Software Product from all storage media in Your control and, in the case of destruction, certify to the Licensor that You have done so.

11. Export

11.1 You will comply with all applicable laws, rules, and regulations governing export of goods and information, including the laws of the countries in which the Software Product was created. In particular, You will not export or re-export, directly or indirectly, separately or as a part of a system, the Software Product or other information relating thereto to any country for which an export License or other approval is required, without first obtaining such License or other approval.

12. General

12.1 You agree that the Licensor shall have the right, after supplying undertakings as to confidentiality, to audit any computer system on which the Software Product are installed in order to verify compliance with this License Agreement.

12.2 You agree that the Licensor may use Your company name in Licensor’s customer lists and other promotional materials describing Your company as a customer or user of Licensor’s software or services, as applicable, unless it receives written notice from You objecting to such use.

12.3 This License Agreement, its subject matter or its formation (including non-contractual disputes or claims) shall be governed by and construed in accordance with English law and submitted to the non-exclusive jurisdiction of the English courts.

12.4 This License Agreement constitutes the complete and exclusive statement of the agreement between the Licensor and You with respect to the subject matter of this License and supersedes all proposals, representations, understandings, and prior agreements, whether oral or written, and all other communications between the parties relating to that subject matter except for those expressly referred to in this License Agreement.

12.5 Any clause in this License Agreement that is found to be invalid or unenforceable shall be deemed deleted and the remainder of this License Agreement shall not be affected by that deletion.
12.6 Failure or neglect by either party to exercise any of its rights or remedies under this License Agreement will not be construed as a waiver of that party’s rights nor in any way affect the validity of the whole or part of this License Agreement nor prejudice that party’s right to take subsequent action.

12.7 This License Agreement is personal to You, and You may not assign, transfer, sub-contract or otherwise part with this License or any right or obligation under it without the Licensor’s prior written consent.

ADDENDUM TO THE END USER LICENSE AGREEMENT:

This addendum ("Addendum") to the end user license agreement ("Agreement") applies only to the purchase of an Aqira® System Software Product (as referenced in the Quotation, and hereinafter, the “Aqira Software Product”), is dated as of the date You installed or accepted the Aqira Software Product according to the Agreement, and is between HBM United Kingdom Limited (the “Licensor”) and the end user licensee or its representative/agent authorized to bind the end user licensee (referenced herein as “You” or “Your”). This Addendum shall be governed by the terms of the Agreement and the terms set forth below. Capitalized terms not otherwise defined herein shall have the meaning set forth in the Agreement. If there is a direct conflict between a term in this Addendum and a term in the Agreement, the term in this Addendum shall prevail.

The Licensor and You entered into the Agreement for Your use of the Aqira Software Product, as defined under the Agreement. The Aqira Software Product contains certain technology products owned or distributed by Oracle Corporation UK Limited (including program documentation and any program updates acquired through technical support) (“Oracle Programs”). In order for the license granted to You for the Aqira Software Product under the Agreement to be valid, You must hereby agree to Oracle’s third party terms and conditions for the use of the Oracle Programs. Therefore, the parties acknowledge and agree that this Addendum is incorporated into and made a part of the Agreement, the terms and provisions of which, except as expressly modified in this Addendum, are hereby affirmed and ratified by the parties and remain in full force and effect. You are hereby notified, understand and agree that Your use of the Oracle Programs shall be subject to certain terms and conditions, as follows, and You agree to abide by the following terms and conditions:

(a) You shall limit the use of the Oracle Programs to the legal entity that either executed or entered into and accepted the Agreement;

(b) You shall restrict use of the Oracle Programs to the scope of the Aqira Software Product and to Your internal business operations. You shall be responsible for Your employees, agents, contractors, outsourcers, customers, and suppliers use of the Aqira Software Product and compliance with the Agreement.

(c) Oracle or its licensors retain all ownership and intellectual property rights to the Oracle Programs.

(d) You are prohibited from: (i) transferring the Oracle Programs, except for a temporary transfer in the event of computer malfunction if the Aqira Software Product embeds the Oracle Programs in a physical device; and (ii) assigning, giving, or transferring the Oracle Programs ordered or an interest in them to another individual or entity (in the event You grant a security interest in the Oracle Programs, the secured party has no right to use or transfer the Oracle Programs).

(e) You are prohibited from: (i) using the Oracle Programs for rental, timesharing, subscription service, hosting, or outsourcing; (ii) the removal or modification of any Oracle Program markings or any notice
of Oracle’s or its licensors’ proprietary rights; (iii) making the Oracle Programs available in any manner to any third party for use in the third party’s business operations; and (iv) passing title to the Oracle Programs from You to any other party.

(f) You are prohibited from: (i) reverse engineering, disassembly, or decompilation of the Oracle Programs (the foregoing prohibition includes but is not limited to review of data structures or similar materials produced by the Oracle Programs); (ii) duplicating the Oracle Programs, except for a sufficient number of copies of each Oracle Program for Your licensed use and one copy of each Oracle Program media.

(g) You agree to hereby disclaim, to the extent permitted by applicable law, Oracle’s liability for: (i) any damages, whether direct, indirect, incidental, special, punitive or consequential; and (ii) any loss of profits, revenue, data or data usage, arising from the use of the Oracle Programs.

(h) You agree to prohibit publication of any results of benchmark tests run on the Oracle Programs.

(i) You agree to comply fully with all relevant export laws and regulations of the United States and other applicable export and import laws to assure that neither the Oracle Programs, nor any direct product thereof, are exported, directly or indirectly, in violation of applicable laws.

(j) You are hereby notified, understand, and agree that the Oracle Programs are subject to a restricted license and can only be used in conjunction with the Aqira Software Product and that You are not permitted to modify the Oracle Programs.

(k) You agree to not require that Oracle perform any obligations or incur any liability which has not been previously agreed to between you and Oracle.

(l) You agree to: (i) permit Licensor to audit Your use of the Oracle Programs; (ii) provide reasonable assistance and access to information in the course of such audit; and (iii) permit Licensor to report the audit results to Oracle or allow Licensor to assign to Oracle its audits rights under this Addendum. You agree that Oracle will not be responsible for any of Your costs incurred in cooperating with the audit.

(m) You agree that Oracle is a third party beneficiary of the Agreement.

(n) You are hereby notified that some Oracle Programs may include source code that Oracle may provide as part of the standard shipment of such Oracle Programs; such source code shall be governed by the terms of the Agreement.

(o) You are hereby notified that third party technology that may be appropriate or necessary for use with some Oracle Programs is specified in the Aqira Software Product Documentation or as otherwise notified by the Licensor. Such third party technology is licensed to You only for use with the Aqira Software Product under the terms of the third party license agreement specified in the Aqira Software Product Documentation or as otherwise notified by the Licensor and not under the terms of the Agreement.